ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (3)
  • Published Data from GFZ  (3)
  • Published Data from (DKRZ) Deutsches Klimarechenzentrum
  • MiniSEED  (3)
  • Deutsches GeoForschungsZentrum GFZ  (3)
  • 1
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-04-11
    Description: Abstract
    Description: GEOFON (GEOFOrschungsNetz) is the global seismological broad-band network operated by the German GeoForschungsZentrum (GFZ). The GEOFON seismic network came into being in 1993 as one of the three pillars of the GEOFON program dedicated to Ernst von Rebeur-Paschwitz, proposer of a global earthquake monitoring system, who recorded the first teleseismic seismogram in Potsdam in 1889. The program and its seismic network were created to provide high quality broad-band data for scientific use and foster common standards in the seismological community. The network has evolved towards real-time data acquisition and distribution while keeping the high quality broad-band data in focus. Today the network plays a leading role in global real-time seismology providing valuable data for almost all fundamental and applied global/regional seismological research projects at GFZ and the wider seismological community. The GEOFON network is operated jointly with more than 50 international partners and in 2014 consists of about 80 active stations on all continents, but concentrated in Europe and the Mediterranean region as well as in the Indian Ocean. Station operation is mostly performed by local partners with GFZ guidance and logistic support, allowing the global network to be well-advanced technically while still extremely cost-effective. All stations are equipped with broad-band sensors (generally STS-2) that allow resolution of the complete seismic spectrum from small high-frequency local earthquakes to the largest global earthquakes. Data from all stations are freely redistributed in real-time for earthquake monitoring and tsunami warning centers immediately after acquisition at the GEOFON data centre via wired or satellite links. Archived data is also available. GEOFON is part of the Modular Earth Science Infrastructure (MESI) housed at GFZ.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Global network ; Permanent ; Velocity ; Seismometers ; MiniSEED ; MESI
    Type: Dataset , Seismic Network
    Format: Approximately 80 active stations; greater than 440MB/day.
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The seismic array is part of a collaborative international passive-source seismic experiment in the southern Puna (25°S to 28°S) that aims to address fundamental questions on the processes that form, modify and destroy continental lithosphere and control lithospheric dynamics along Andean-type continental margins. The southern Puna is anomalous with respect to the rest of the Andean plateau in having a distinct magmatic and structural history, a large deficit in crustal shortening compared to its elevation and an underlying slab with a transitional dip between a steeper segment to the north and the Chilean flat-slab to the south. With the international project we proposed to test the hypothesis of the lithospheric delamination beneath the southern Puna. The total network consists of 75 seismic stations and has been operated in Argentina and chile for 2 years. The GFZ has contributed 30 stations with EarthData logger (EDL). Sensors include broadband Güralp 3ESP (60 s) and 3T (100 s) and short-period Mark L4 (1 s). Continuous data are freely available on the GEOFON. The US data can be requested from the IRIS.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 496GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The temporary Pollino Seismic Experiment, FDSN network code 4A, monitored the earthquake swarm in the Pollino Range region, Italy, between November 2012 and September 2014. The region is located at the transition from the Southern Apennines chain to the Calabrian arc. Striking a volume of about 20x20x15 km, the swarm started in October 2010, culminated in an Mw=5.2 event on 25 October 2012, and has continued since with a variable rate of activity. The area represents a seismic gap as there are no documented historical M〉6 earthquakes during the last thousand years. The tectonic structures of the area are poorly known. The experiment was part of a collaborative effort made by the German Research Centre for Geosciences (GFZ) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) within the framework of the NERA and CCMP-Pompei projects. The 4A network consisted of 9 stations including 6 short-period and 3 broadband instruments, provided by GFZ. The permanent seismic network was complemented by the 9 GFZ stations and 5 IV stations temporarily installed by INGV. The short-period stations had Mark L-4C3D sensors with EDL digitizers. The broadband stations were equipped with STS2.5 seismometers and RefTek RT130S digitizers. Five short period and one broadband (CSA0 to CSA5) were installed in a small-aperture array in the west of the range. The other three stations (broadband: CSB, CSC and short period: CSD) were installed around the swarm area. The array and the network stations recorded in continuous mode at 200 Hz and at 100 Hz, respectively. The sensors were buried in the ground at 0.5 m depth except for CSB and CSD which were installed on the surface. High-precision station coordinates were obtained by using differential GPS measurements. The data have been used to analyze the earthquakes and seismogenetic structures and to discern the characteristics of the swarm sequence.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: 208GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...