ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Open Access-Papers  (2)
  • Molecular Diversity Preservation International
  • Periodicals Archive Online (PAO)
  • University of Chicago Press
  • 2020-2024  (2)
  • 1905-1909
  • 1
    Publication Date: 2023-01-13
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carrier, T. J., Beaulieu, S. E., Mills, S. W., Mullineaux, L. S., & Reitzel, A. M. Larvae of deep-sea invertebrates harbor low-diversity bacterial communities. Biological Bulletin, 241(1), (2021): 65–76, https://doi.org/10.1086/715669.
    Description: Microbial symbionts are a common life-history character of marine invertebrates and their developmental stages. Communities of bacteria that associate with the eggs, embryos, and larvae of coastal marine invertebrates tend to be species specific and correlate with aspects of host biology and ecology. The richness of bacteria associated with the developmental stages of coastal marine invertebrates spans four orders of magnitude, from single mutualists to thousands of unique taxa. This understanding stems predominately from the developmental stages of coastal species. If they are broadly representative of marine invertebrates, then we may expect deep-sea species to associate with bacterial communities that are similar in diversity. To test this, we used amplicon sequencing to profile the bacterial communities of invertebrate larvae from multiple taxonomic groups (annelids, molluscs, crustaceans) collected from 2500 to 3670 m in depth in near-bottom waters near hydrothermal vents in 3 different regions of the Pacific Ocean (the East Pacific Rise, the Mariana Back-Arc, and the Pescadero Basin). We find that larvae of deep-sea invertebrates associate with low-diversity bacterial communities (~30 bacterial taxa) that lack specificity between taxonomic groups. The diversity of these communities is estimated to be ~7.9 times lower than that of coastal invertebrate larvae, but this result depends on the taxonomic group. Associating with a low-diversity community may imply that deep-sea invertebrate larvae do not have a strong reliance on a microbiome and that the hypothesized lack of symbiotic contributions would differ from expectations for larvae of coastal marine invertebrates.
    Description: TJC was supported by a National Science Foundation (NSF) Graduate Research Fellowship; SEB, SWM, and LSM were supported by NSF (OCE-0424953, OCE-1028862, and OCE-1829773) and the Dalio Explore Fund; and AMR was supported by the Human Frontier Science Program Award RGY0079/2016.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-10
    Description: Author Posting. © University of Chicago, 2022. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 242(1), (2022): 62-73, https://doi.org/10.1086/716711.
    Description: We tested the impact of temperature and symbiont state on calcification in corals, using the facultatively symbiotic coral Astrangia poculata as a model system. Symbiotic and aposymbiotic colonies of A. poculata were reared in 15, 20, and 27 °C conditions. We used scanning electron microscopy to quantify how these physiological and environmental conditions impact skeletal structure. Buoyant weight data over time revealed that temperature significantly affects calcification rates. Scanning electron microscopy of A. poculata skeletons showed that aposymbiotic colonies appear to have a lower density of calcium carbonate in actively growing septal spines. We describe a novel approach to analyze the roughness and texture of scanning electron microscopy images. Quantitative analysis of the roughness of septal spines revealed that aposymbiotic colonies have a rougher surface than symbiotic colonies in tropical conditions (27 °C). This trend reversed at 15 °C, a temperature at which the symbionts of A. poculata may exhibit parasitic properties. Analysis of surface texture patterns showed that temperature impacts the spatial variance of crystals on the spine surface. Few published studies have examined the skeleton of A. poculata by using scanning electron microscopy. Our approach provides a way to study detailed changes in skeletal microstructure in response to environmental parameters and can serve as a proxy for more expensive and time-consuming analyses. Utilizing a facultatively symbiotic coral that is native to both temperate and tropical regions provides new insights into the impact of both symbiosis and temperature on calcification in corals.
    Description: This work was supported by the Marine Biological Laboratory and the University of Chicago Metcalf program and by a National Institutes of Health Research Project Grant (grant R01EB26300 to PJLR).
    Description: 2023-01-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...