ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (33)
  • Open Access-Papers  (33)
  • 04.06. Seismology  (24)
  • 05.09. Miscellaneous  (7)
  • Boundary currents
  • Topographic effects
  • MDPI  (11)
  • INGV  (10)
  • Springer  (6)
  • American Meteorological Society  (3)
  • American Geophysical Union  (1)
  • Armando Siciliano Editore  (1)
  • Blackwell Publishing Ltd
  • Editrice NOVA Science Publisher, New York
  • Società Geologica Italiana
  • Springer Nature
  • 2020-2024  (14)
  • 2020-2023  (19)
  • 2020-2022
  • 2015-2019
  • 1960-1964
  • 1935-1939
  • 2024  (13)
  • 2022  (20)
  • 2022  (20)
  • 2022  (20)
Collection
  • Articles  (33)
Source
  • Open Access-Papers  (33)
Publisher
Years
  • 2020-2024  (14)
  • 2020-2023  (19)
  • 2020-2022
  • 2015-2019
  • 1960-1964
  • +
Year
  • 1
    Publication Date: 2022-04-11
    Description: Natural sites in urban spaces can have a key role in citizen well-being, providing fundamental ecosystem services to the population and assuring a multitude of benefits. Therefore, cities should guarantee a number of green areas and their conservation in time as an essential part of urban architecture. In this framework, cooperation between scientists, decision makers and citizens is critical to ensure the enhancement of green public spaces. Social and scientific communities are called to work in a tuned way to combine scientific knowledge and methods to local socio-economic contexts, driven by the values of geoethics. The Bullicante Lake case study, discussed in this work, represents an example of application of geoethical values, such as inclusiveness, sharing, sustainability and conservation of bio- and geodiversity. This urban lake in Rome appeared following illegal excavation works in 1992 and remained closed until 2016 favouring re-naturalization processes. Over time, this site was often threatened by pending actions for building. The aim of this study was to highlight how fruitful cooperation between science and citizens is able to transform a degraded urban area into a place of knowledge, recreation, enjoyment and eco-systemic preservation. Moreover, on the basis of this experience, the authors proposed a generalised approach/strategy to be developed and applied in other contexts. The active involvement of citizens and the cooperation among scientists, artists and institutions were able to redress opportunistic behaviours well by preventing site degradation and its improper use, favouring environmental safeguarding and making possible the site’s recognition as a natural monument. The results of these actions led to the improved quality of citizen life, showing an excellent example of virtuous cooperation between science and society.
    Description: Published
    Description: 4429
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: geoethics ; conservation ; education ; citizen participation ; ecosystems ; urban lake ; green areas ; Rome ; 05.09. Miscellaneous ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-21
    Description: This book outlines the current development of geoethical thinking, proposing to the general public reflections and categories useful for understanding the ethical, cultural, and societal dimensions of anthropogenic global changes. Geoethics identifies and orients responsible behaviors and actions in the management of natural processes, redefining the human interaction with the Earth system based on a critical, scientifically grounded, and pragmatic approach. Solid scientific knowledge and a philosophical reference framework are crucial to face the current ecological disruption. The scientific perspective must be structured to help different human contexts while respecting social and cultural diversity. It is impossible to respond to global problems with disconnected local actions, which cannot be proposed as standard and effective operational models. Geoethics tries to overcome this fragmentation, presenting Earth sciences as the foundation of responsible human action toward the planet. Geoethics is conceived as a rational and multidisciplinary language that can bind and concretely support the international community, engaged in resolving global environmental imbalances and complex challenges, which have no national, cultural, or religious boundaries that require shared governance. Geoethics is proposed as a new reading key to rethinking the Earth as a system of complex relationships, in which the human being is an integral part of natural interactions.
    Description: Published
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: 3TM. Comunicazione
    Keywords: geoethics ; responsibility ; social-ecological systems ; Earth ; environmental ethics ; Anthropocene ; ecological humanism ; global anthropogenic changes ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-16
    Description: Mobile network routers in seismic and volcanic surveillance
    Description: Published
    Description: 1-36
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: N/A or not JCR
    Keywords: mobile ; router ; cellulare ; sourveillance ; router ; sorveglianza ; 05.04. Instrumentation and techniques of general interest ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-18
    Description: We applied a new version of physics-based earthquake simulator upon a seismogenic model of the Italian seismicity derived from the latest version of the Database of Individual Seismogenic Sources (DISS). We elaborated appropriately for their use within the simulator all fault systems identified in the study area. We obtained synthetic catalogs spanning hundreds of thousands of years. The resulting synthetic seismic catalogs exhibit typical magnitude, space and time features that are comparable to those obtained by real observations. A typical aspect of the observed seismicity is the occurrence of earthquake sequences characterized by multiple main shocks of similar magnitude. Special attention was devoted to verifying whether the simulated catalogs include this notable aspect, by the use of an especially developed computer code. We found that the phenomenon of Coulomb stress transfer from causative to receiving source patches during an earthquake rupture has a critical role in the behavior of seismicity patterns in the simulated catalogs. We applied the simulator to the seismicity of the northern and central Apennines and compared the resulting synthetic catalog with the observed seismicity for the period 1650–2020. The result of this comparison supports the hypothesis that the occurrence of sequences containing multiple mainshocks is not just a casual circumstance.
    Description: Published
    Description: 2062
    Description: 2T. Deformazione crostale attiva
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: numerical modeling ; earthquake simulator ; statistical methods ; earthquake clustering ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-24
    Description: The identification of the mechanisms responsible for the deformation of calderas is of primary importance for our understanding of the dynamics of magmatic systems and the evaluation of volcanic hazards. We analyze twenty years (1997–2018) of geodetic measurements on Ischia Island (Italy), which include the Mt. Epomeo resurgent block, and is affected by hydrothermal manifestations and shallow seismicity. The data from the GPS Network and the leveling route show a constant subsidence with values up to 􀀀15 2.0 mm/yr and a centripetal displacement rate with the largest deformations on the southern flank of Mt. Epomeo. The joint inversion of GPS and levelling data is consistent with a 4 km deep source deflating by degassing and magma cooling below the southern flank of Mt. Epomeo. The depth of the source is supported by independent geophysical data. The Ischia deformation field is not related to the instability of the resurgent block or extensive gravity or tectonic processes. The seismicity reflects the dynamics of the shallow hydrothermal system being neither temporally nor spatially related to the deflation.
    Description: Published
    Description: 4648
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: GNSS ; resurgent caldera ; subsidence ; modelling ; degassing processes ; earthquakes ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-25
    Description: Physics-based broadband ground-motion simulations are generated for the strong mainshocks that occurred in the region of the Central Ionian Islands, on 26th January 2014 in Kefalonia (Mw6.1) and 17th November 2015 in Lefkas (Mw6.5). The study area is associated with frequent strong earthquakes both in the historical and instrumental eras. During the last decades, the network of strong-motion accelerographs in the area has been densified, and thus provided an adequate number of strong ground-motion records as a means to better examine the related ground-motion characteristics. In the present study, broadband ground motions for the two case studies are simulated both at selected sites and at a dense grid of points covering the affected areas. The low-frequency part of the synthetics is computed using a discrete wavenumber finite element method by convolving Green’s functions with a kinematic slip model in the frequency domain. A stochastic finite fault model approach based on a dynamic corner frequency is considered to calculate the ground motions for the higher frequencies. The broadband synthetic time series are generated after merging the results obtained from the two separate techniques, by performing a weighted summation at intermediate frequencies. The simulated values are validated by comparison with both recorded Peak Ground Acceleration (PGA) and PeakGround Velocity (PGV) values and the estimated ones by using widely accepted Ground Motion Prediction Equations (GMPEs). Our results indicate that both the spatial distribution and the amplification pattern of the simulated ground motions, in the near-field, in terms of PGA and PGV are highly influenced by the slip heterogeneity and the maximum slip patches within the seismic source.
    Description: Published
    Description: 3505–3527
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: seismic hazard ; Strong ground motion ; near-source ground motion ; Ionian Islands ; stochastic finite-fault method ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-14
    Description: On November 20, 2019, an exercise was held at the National Institute of Geophysics and Volcanology (INGV) as part of the activities planned for preparing for seismic emergencies. The training was "tabletop" with the simulation of an earthquake with a magnitude greater than the threshold required for the activation of the intervention procedures, described in the "Protocol of the Authority for the management of seismic and tsunami emergencies and Establishment of the Crisis Unit”, the flow of actions that follow was verified. The exercise involved the entire INGV even if the Rome headquarters was the most involved, and it was the second of this type after that carried out in 2015 [Pondrelli et al., 2016]. Main motivation of this training was the analysis of the efficiency of the Organization Protocol, a document that for the first time at INGV codifies the actions of the Crisis Unit and of the Institute in general on the occurrence of seismic events and / or seismic sequences and / or tsunamis. The Protocol has been formalized on the basis of the numerous experiences that the Institute has supported over many years, to honour its vocation in the monitoring and seismic surveillance of the national territory [Margheriti et al., 2021].
    Description: Published
    Description: 1-50
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: N/A or not JCR
    Keywords: Esercitazione ; Emergenza ; Protocollo di Ente ; Rischio Sismico ; Operating protocol ; Emergency ; Exercise ; Seismic risk ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-02
    Description: Volcanology, seismology and Earth Sciences in general, like all quantitative sciences, are increasingly dependent on the quantity and quality of data acquired. In recent dec-ades, a marked evolution has characterized Earth sciences towards a greater use of ana-lytical and numerical approaches, shifting these fields from the natural to the physical sciences. Understanding the physical behavior of active volcanoes and faults is critical to as-sess the hazards affecting the population living close to active volcano and seismic areas, and thus to mitigate the risks posed by those threats [1,2]. The knowledge of a physical process requires the acquisition of a huge amount of information (data) on that particular phenomenon. Today, different kinds of data record the processes that operate in volcanic and tec-tonic systems and provide insights that can lead to improved predictions of potential hazards, both immediate and long term. The geoscience community has collected an enormous wealth of data that require further analysis. The diversity and quantity of these geoscience data and collections continue to expand [3]. The increasing amount of data and the availability of new technologies and instru-mentation at an ever-greater rate open new frontiers and challenges for acquiring, trans-mitting, archiving, processing and analyzing the newly available datasets. Guo [4] pre-dicted growth for the general digital universe size of factor 10 from 2016 to 2025. Among all digital data, scientific data are those relevant to the observation of natural phenomena and characterized by non-repeatability, high uncertainty, high dimensionality and a high degree of computational complexity [4]. This means that scientific data need to be well preserved, due to the non-repeatability, and implies a parallel growth of processing capa-bilities to be well exploited. Cheng et al. [5] highlighted the striking growth of Earth Sci-ence data from molecular to astronomical scales and the increasing use of supercompu-ting tools for supporting geoscience research. The authors evidence how, with the contin-uously increasing availability of digital data, Earth Sciences are also turning from the tra-ditional question-driven or problem-driven approach, where scientists seek to find an-swers to known questions, to the new data-driven one where scientists apply a data dis-covery process that might find answers to still unknown questions. In agreement with Cheng et al. [5], we believe that new integrated multi-disciplinary knowledge systems and new data discovery techniques for handling and mining big data for knowledge discovery would spur the integration of transdisciplinary and mul-ti-dimensional Earth science data. Furthermore, this will help the transition from a nar-row focus on separate disciplines to a holistic, comprehensive and integrative focus of the different disciplines linked to the Earth Sciences. With this aim, for this special issue titled “Data Processing and Modeling on Volcan-ic and Seismic Areas”, we invited articles on all aspects of solid Earth Science that made use of data to analyze and model processes related to volcanoes or earthquakes. Manuscripts with various types of analyses, including volcanic ground deformation modeling, seismic swarm characterization and volcanic gas measurement, have been proposed and published. The collection provides an insight into the enormous need for increasingly complex data analysis and modeling techniques to try to describe the natural phenomena here considered. This special issue was introduced to collect the latest research on the processing and modeling of Earth Sciences data, and to address challenging problems with all topics re-lated to volcanoes and seismic areas. Various subjects have been addressed in this collec-tion, mainly on data processing for volcanic studies (three papers), tectonics (two papers) and one paper on data analysis of a new instrument to measure gases. The first contribution to this collection [6] reports the results of the processing and combination of high-rate and low-rate geodetic data for revealing the dynamics underly-ing violent volcanic eruptions at Mount Etna. This study evidences the wide spectrum of ground deformation produced by these phenomena, to be investigated, processed and modeled in order to generate a picture of the feeding system of the volcano and better un-derstand its dynamics and rates of magma transfer in the upper crust. Another contribution focuses on volcanoes [7]: the authors exploit 20 years of high temporal resolution satellite Thermal Infra-Red (TIR) data collected over three active vol-canoes (Etna, Shishaldin and Shinmoedake). They present the results of an analysis of this dataset performed through a preliminary RST (Robust Satellite Techniques) algorithm implementation to TIR data from the Advanced Spaceborne Thermal Emission and Re-flection Radiometer (ASTER). This approach ensures efficient identification and mapping of volcanic thermal features even of a low intensity level, which is also useful in the per-spective of an operational multi-satellite observing system. The contribution by Woohyun Son et al. [8] proposes specific depth-domain data processing of migration velocity analysis (MVA) of seismic data collected during a survey on a saline aquifer sediment in the Southern Continental Shelf of Korea. This analysis al-lowed the authors to identify and determine the precise depth of a basalt flow that could act as a cap rock for CO2 storage beneath the aquifer. The investigation, through the geo-logical model obtained from both time- and depth-domain processing, provides suitable information for locating the best drilling sites for CO2 injection, maximizing the storage volume. In volcanic areas, gases represent important physical evidence of volcanic processes that need to be measured. Parracino et al. [9] have shown how novel range-resolved DI-AL-Lidar (Differential Absorption Light Detection and Ranging) could herald a new era in the observation of long-term volcanic CO2 gases. An accurate and integrated analysis of different types of data such as GNSS, seismic and MT-InSAR, has led, in the work by Gatsios et al. [10], to a first account of deformation processes and their temporal evolution over recent years for Methana (Greece), thus providing initial information to feed into a volcano baseline hazard assessment and mon-itoring system. Seismic data are among the most important data to understand the dynamics of the Earth’s interior. A consistent analysis of a seismic swarm allowed Kostoglou et al. [11] to shed more light on the regional geodynamics of the Kefalonia Transform Fault Zone (Greece), and to follow the temporal evolution of the b-value to distinguish between fore-shock and aftershock behaviors.
    Description: Published
    Description: 10759
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: processing ; monitoring ; 04.08. Volcanology ; 05.01. Computational geophysics ; 05.06. Methods ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-09-07
    Description: To increase seismic resilience is one of the challenges the developers of new technologies face to reduce seismic risk. We set up an augmented reality (AR) exhibition with which users’ curiosity was confronted with the opportunity to have a wealth of information on damaging earthquakes that could be a multimedia add-on to the plain “single-layer exhibit”. AR is an emergent technology developed to “augment” reality through various devices; it combines the real world with virtual items, such as images and videos. Our AR exhibition aims to: (i) show the effects of earthquakes even in cases of moderate magnitude; and (ii) promote preventive actions to reduce non-structural damage. It can be customized for different seismic scenarios. In addition, it offers a holistic approach to communicate problems and solutions—with the cost and degree of ease of execution for each solution—to reduce non-structural damage at home, school, and office. Our AR exhibition can do more than just a plain text or a preconceived video: it can trigger fruitful interaction between the presenters, or even the stand-alone poster, and the public. Such interactivity offers an easy engagement to people of all ages and cultural backgrounds. AR is, indeed, extremely flexible in raising recipients’ interest; moreover, it is an appealing tool for the digital native generations. The positive feedback received led us to conclude that this is an effective way to raise awareness and individual preparedness to seismic risk.
    Description: This study was co-financed by the European Commission’s Humanitarian Aid and Civil Protection (grant agreement ECHO/SUB/2015/718655/PREV28).
    Description: Published
    Description: 332
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Augmented Reality ; earthquakes ; non-structural damage ; seismic risk ; education ; 04.06. Seismology ; 05.06. Methods ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-08-16
    Description: Geoheritage and geodiversity visually and symbolically express the link between the physical and biological environment and cultural world. In the geoethical vision, their protection is fundamental, since they are irreplaceable components of a non-renewable social and natural ‘capital’. They become points of reference to redefine the intimate connection between human beings and Earth, thus assuming a value meaning to be placed at the basis of a new way of experiencing the territory. Initiatives such as geoparks or geotourism represent their concrete implementation, as activities capable of enhancing the environment and its geological landscape. Furthermore, their learning and enjoyment also foster a broader understanding of the significance of geosciences and their importance for the functioning of societies, as well as promoting interactions with local human communities, and the expansion of one’s spiritual and aesthetical dimension while living the interaction with nature. Responsible geotourism enhances sites and landscapes of geological significance, assuring their protection and the sustainable development of surrounding areas. Moreover, the use of those sites by citizens can increase their awareness and understanding of key issues to be faced by society, such as the sustainable use of geo-resources, the mitigation of and adaptation to climate change effects, and the reduction of risks related to natural and anthropogenic phenomena. Geotourism, therefore, also represents the common ground on which geosciences and social sciences can interact, offering undoubted advantages. It makes multidisciplinary and interdisciplinary work and cross-boundaries national and international collaboration visual and tangible; it produces an increase in public awareness and scientific knowledge; it improves the quality of life of the local population by creating incentives for economic development; finally, it drives society to behave and act more responsibly towards geodiversity and biodiversity. This chapter frames geotourism within geoethical thought, emphasising its formative contribution for the human being.
    Description: Submitted
    Description: 1TM. Formazione
    Description: 2TM. Divulgazione Scientifica
    Description: 3TM. Comunicazione
    Keywords: geoethics ; geotourism ; geoparks ; responsibility ; sustainability ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...