ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (8)
  • Artikel (Open Access)  (8)
  • Atmosphere-ocean interaction  (3)
  • Climate change  (3)
  • Fronts
  • American Meteorological Society  (7)
  • Geological Society of America  (1)
  • American Chemical Society
  • American Institute of Physics
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Springer Nature
  • Springer Science + Business Media
  • Wiley
  • 2020-2023  (8)
  • 2015-2019
  • 1965-1969
  • 1950-1954
  • 2021  (8)
Sammlung
  • Artikel  (8)
Datenquelle
  • Artikel (Open Access)  (8)
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2023  (8)
  • 2015-2019
  • 1965-1969
  • 1950-1954
Jahr
  • 1
    Publikationsdatum: 2022-10-19
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Ireland, T., Murray, R. W., & Clift, P. D. Marine sedimentary records of chemical weathering evolution in the western Himalaya since 17 Ma. Geosphere, 17(3), (2021): 824–853, https://doi.org/10.1130/GES02211.1.
    Beschreibung: The Indus Fan derives sediment from the western Himalaya and Karakoram. Sediment from International Ocean Discovery Program drill sites in the eastern part of the fan coupled with data from an industrial well near the river mouth allow the weathering history of the region since ca. 16 Ma to be reconstructed. Clay minerals, bulk sediment geochemistry, and magnetic susceptibility were used to constrain degrees of chemical alteration. Diffuse reflectance spectroscopy was used to measure the abundance of moisture-sensitive minerals hematite and goethite. Indus Fan sediment is more weathered than Bengal Fan material, probably reflecting slow transport, despite the drier climate, which slows chemical weathering rates. Some chemical weathering proxies, such as K/Si or kaolinite/(illite + chlorite), show no temporal evolution, but illite crystallinity and the chemical index of alteration do have statistically measurable decreases over long time periods. Using these proxies, we suggest that sediment alteration was moderate and then increased from 13 to 11 Ma, remained high until 9 Ma, and then reduced from that time until 6 Ma in the context of reduced physical erosion during a time of increasing aridity as tracked by hematite/goethite values. The poorly defined reducing trend in weathering intensity is not clearly linked to global cooling and at least partly reflects regional climate change. Since 6 Ma, weathering has been weak but variable since a final reduction in alteration state after 3.5 Ma that correlates with the onset of Northern Hemispheric glaciation. Reduced or stable chemical weathering at a time of falling sedimentation rates is not consistent with models for Cenozoic global climate change that invoke greater Himalayan weathering fluxes drawing down atmospheric CO2 but are in accord with the idea of greater surface reactivity to weathering.
    Beschreibung: This study was made possible by samples provided by the IODP. The work was partially funded by a grant from The U.S. Science Support Program (USSSP), as well as additional funding from the Charles T. McCord Jr. Endowed Chair in petroleum geology at LSU.
    Schlagwort(e): Alteration ; Arabian Sea ; Arid environment ; Asia ; Bengal Fan ; Chemical composition ; Chemical weathering ; Chlorite ; Chlorite group ; Clay minerals ; Climate change ; Cooling ; Crystallinity ; Emission spectra ; Erosion ; Expedition 355 ; Glaciation ; Goethite ; Grain size ; Hematite ; Himalayas ; ICP mass spectra ; Illite ; Indian Ocean ; Indus Fan ; International Ocean Discovery Program ; IODP Site U1456 ; IODP Site U1457 ; Kaolinite ; Karakoram ; Magnetic properties ; Magnetic susceptibility ; Marine environment ; Mass spectra ; Mineral assemblages ; Moisture ; Oxides ; Paleoclimatology ; Paleoenvironment ; Paleomagnetism ; Provenance ; Reactivity ; Reconstruction ; Sediment transport ; Sedimentary rocks ; Sedimentation ; Sedimentation rates ; Sheet silicates ; Silicates ; Spectra ; Terrestrial environment ; Transport ; Weathering
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-27
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(2), (2021): 457–474, https://doi.org/10.1175/JPO-D-20-0088.1.
    Beschreibung: The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth hm before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂hm/∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−wmb) amounted to 8% and the lateral induction (−umb ⋅ ∇hm) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed hm that were incurred by the poleward shift of KE front.
    Beschreibung: Xiaopei Lin is supported by the National Natural Science Foundation of China (41925025 and 92058203) and China’s national key research and development projects (2016YFA0601803). Baolan Wu is supported by the China Scholarship Council (201806330010). Lisan Yu thanks NOAA for support for her study on climate change and variability.
    Schlagwort(e): Boundary currents ; Decadal variability ; Fronts ; Water masses/storage
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-27
    Beschreibung: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(8),(2021): 2463–2482, https://doi.org/10.1175/JPO-D-20-0291.1.
    Beschreibung: This paper presents analyses of drifters with drogues at different depths—1, 10, 30, and 50 m—that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs) and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm s−1), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of the significant terms, but not the only one, in the vorticity balance. Two-dimensional FTLEs are 2 × 10−5 s−1 after 1 day, 2 times as large as in a 400-m-resolution numerical model. Three-dimensional FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths and are partially due to only measuring at four depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.
    Beschreibung: Authors Rypina and Pratt were supported by U.S. Office of Naval Research (ONR) Grant N000141812417. Author Getscher acknowledges support from the U.S. Navy Civilian Institution Office with the MIT–WHOI Joint Program. Author Mourre acknowledges support from ONR Grant N00014-16-1-3130. We also thank Eugenio Cutolo for the initial technical support in the implementation of the ultra-high-resolution WMOP simulation. CALYPSO is a Departmental Research Initiative funded by the ONR.
    Beschreibung: 2022-01-16
    Schlagwort(e): Convergence/divergence ; Fronts ; Nonlinear dynamics ; Small scale processes ; Trajectories ; Upwelling/downwelling ; Vertical motion
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(19), (2020): 8415-8437, doi:10.1175/JCLI-D-19-0954.1.
    Beschreibung: Four state-of-the-art satellite-based estimates of ocean surface latent heat fluxes (LHFs) extending over three decades are analyzed, focusing on the interannual variability and trends of near-global averages and regional patterns. Detailed intercomparisons are made with other datasets including 1) reduced observation reanalyses (RedObs) whose exclusion of satellite data renders them an important independent diagnostic tool; 2) a moisture budget residual LHF estimate using reanalysis moisture transport, atmospheric storage, and satellite precipitation; 3) the ECMWF Reanalysis 5 (ERA5); 4) Remote Sensing Systems (RSS) single-sensor passive microwave and scatterometer wind speed retrievals; and 5) several sea surface temperature (SST) datasets. Large disparities remain in near-global satellite LHF trends and their regional expression over the 1990–2010 period, during which time the interdecadal Pacific oscillation changed sign. The budget residual diagnostics support the smaller RedObs LHF trends. The satellites, ERA5, and RedObs are reasonably consistent in identifying contributions by the 10-m wind speed variations to the LHF trend patterns. However, contributions by the near-surface vertical humidity gradient from satellites and ERA5 trend upward in time with respect to the RedObs ensemble and show less agreement in trend patterns. Problems with wind speed retrievals from Special Sensor Microwave Imager/Sounder satellite sensors, excessive upward trends in trends in Optimal Interpolation Sea Surface Temperature (OISST AVHRR-Only) data used in most satellite LHF estimates, and uncertainties associated with poor satellite coverage before the mid-1990s are noted. Possibly erroneous trends are also identified in ERA5 LHF associated with the onset of scatterometer wind data assimilation in the early 1990s.
    Beschreibung: FRR, JBR, and MGB acknowledge support for this investigation through the NASA Energy and Water Cycle Study (NEWS), Dr. Jared Entin, Program Manager. MS acknowledges the financial support by the EUMETSAT member states through CM SAF. The NOAA-CIRES-DOE Twentieth Century Reanalysis Project version 3 used resources of the National Energy Research Scientific Computing Center managed by Lawrence Berkeley National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231 and used resources of NOAA’s remotely deployed high-performance computing systems. Support for the Twentieth Century Reanalysis Project version 3 dataset is provided by the U.S. DOE, Office of Science Biological and Environmental Research (BER), by the NOAA Climate Program Office, and by the NOAA Physical Sciences Laboratory. RSS products are supported by funding from the NASA Earth Science Division. H. Tomita acknowledges support from JSPS Grants JP18H03726, JP18H03737, and JP19H05696 and JAXA Announcement EO-2. We gratefully acknowledge provision and institutional support for the following SST datasets: ESA CCI (http://data.ceda.ac.uk/neodc/esacci/sst/data/CDR_v2/); NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, version 2, (https:/doi.org/10.7289/V5SQ8XB5); NOAA ERSST v5 (https:/doi.org/10.7289/V5T72FNM) and access to COBE-SST2 provided by the NOAA/OAR/ESRL PSD (boyin.huang@noaa.gov); 20CRv3 data are available at the NERSC Science Tape Gateway via portal.nersc.gov.
    Beschreibung: 2021-03-01
    Schlagwort(e): Atmosphere-ocean interaction ; Hydrologic cycle ; Microwave observations ; Satellite observations ; Reanalysis data ; Decadal variability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    American Meteorological Society
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(12),(2020): 3623-3639, https://doi.org/10.1175/JPO-D-20-0173.1
    Beschreibung: Sea level rise over the last deglaciation is dominated by the mass of freshwater added to the oceans by the melting of the great ice sheets. While the steric effect of changing seawater density is secondary over the last 20 000 years, processes connected to deglacial warming, the redistribution of salt, and the pressure load of meltwater all influence sea level rise by more than a meter. Here we develop a diagnostic for steric effects that is valid when oceanic mass is changing. This diagnostic accounts for seawater compression due to the added overlying pressure of glacial meltwater, which is here defined to be a barosteric effect. Analysis of three-dimensional global seawater reconstructions of the last deglaciation indicates that thermosteric height change (1.0–1.5 m) is counteracted by barosteric (−1.9 m) and halosteric (from −0.4 to 0.0 m) effects. The total deglacial steric effect from −0.7 to −1.1 m has the opposite sign of analyses that assume that thermosteric expansion is dominant. Despite the vertical oceanic structure not being well constrained during the Last Glacial Maximum, net seawater contraction appears robust as it occurs in four reconstructions that were produced using different paleoceanographic datasets. Calculations that do not account for changes in ocean pressure give the misleading impression that steric effects enhanced deglacial sea level rise.
    Beschreibung: GG is supported by NSF OCE-1536380 and OCE-1760878.
    Beschreibung: 2021-06-01
    Schlagwort(e): Abyssal circulation ; Sea level ; Water masses/storage ; Climate change ; Glaciation ; Water budget/balance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(17), (2020): 7697-7714, https://doi.org/10.1175/JCLI-D-20-0115.1.
    Beschreibung: The decadal to multidecadal mixed layer variability is investigated in a region south of the Kuroshio Extension (130°E–180°, 25°–35°N), an area where the North Pacific subtropical mode water forms, during 1948–2012. By analyzing the mixed layer heat budget with different observational and reanalysis data, here we show that the decadal to multidecadal variability of the mixed layer temperature and mixed layer depth is covaried with the Atlantic multidecadal oscillation (AMO), instead of the Pacific decadal oscillation (PDO). The mixed layer temperature has strong decadal to multidecadal variability, being warm before 1970 and after 1990 (AMO positive phase) and cold during 1970–90 (AMO negative phase), and so does the mixed layer depth. The dominant process for the mixed layer temperature decadal to multidecadal variability is the Ekman advection, which is controlled by the zonal wind changes related to the AMO. The net heat flux into the ocean surface Qnet acts as a damping term and it is mainly from the effect of latent heat flux and partially from sensible heat flux. While the wind as well as mixed layer temperature decadal changes related to the PDO are weak in the western Pacific Ocean. Our finding proposes the possible influence of the AMO on the northwestern Pacific Ocean mixed layer variability, and could be a potential predictor for the decadal to multidecadal climate variability in the western Pacific Ocean.
    Beschreibung: Xiaopei Lin is supported by the China’s national key research and development projects (2016YFA0601803) and the National Natural Science Foundation of China (41925025 and U1606402). Baolan Wu is supported by the China Scholarship Council (201806330010). Lisan Yu thanks NOAA for support for her study on climate change and variability.
    Schlagwort(e): Atmosphere-ocean interaction ; Boundary currents ; Hadley circulation ; Ocean dynamics ; Teleconnections
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(22), (2020): 9883-9903, https://doi.org/10.1175/JCLI-D-20-0004.1.
    Beschreibung: Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.
    Beschreibung: This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. JAF was also supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. JS was supported in part by the U.S. National Science Foundation through Grants AGS-1602920 and AGS-1805490, and by the National Oceanic and Atmospheric Administration by Grant NA20OAR4310425. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portal. We thank the editor and two reviewers for comments that greatly improved the quality of this manuscript. This is SOEST Publication No. 11116 and LDEO Publication No. 8450.
    Beschreibung: 2021-04-15
    Schlagwort(e): Drought ; Climate change ; Paleoclimate ; Climate models ; Climate variability ; Other artificial intelligence/machine learning
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.
    Beschreibung: The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
    Beschreibung: This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper.
    Schlagwort(e): Atmosphere-ocean interaction ; El Nino ; Extreme events ; La Nina ; Precipitation ; Salinity
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...