ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (28)
  • Open Access-Papers  (28)
  • 04.08. Volcanology  (10)
  • 04.06. Seismology  (9)
  • 05.03. Educational, History of Science, Public Issues  (6)
  • 04.04. Geology
  • Topographic effects
  • Springer  (17)
  • Nature PG  (8)
  • American Meteorological Society  (3)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024  (22)
  • 2020-2023
  • 2020-2022
  • 2015-2019  (6)
  • 1960-1964
  • 1935-1939
  • 2023  (22)
  • 2023  (22)
  • 2018  (6)
Collection
  • Articles  (28)
Source
  • Open Access-Papers  (28)
Keywords
Years
  • 2020-2024  (22)
  • 2020-2023
  • 2020-2022
  • 2015-2019  (6)
  • 1960-1964
  • +
Year
  • 11
    Publication Date: 2023-02-21
    Description: We develop a new inversion approach to construct a 3-D structural and shear-wave velocity model of the crust based on teleseismic P-to-S converted waves. The proposed approach does not require local earthquakes such as body wave tomography, nor a large aperture seismic network such as ambient noise tomography, but a three-component station network with spacing similar to the expected crustal thickness. The main features of the new method are: (1) a novel model parametrization with 3-D mesh nodes that are fixed in the horizontal directions but can flexibly vary vertically; (2) the implementation of both sharp velocity changes across discontinuities and smooth gradients; (3) an accurate ray propagator that respects Snell’s law in 3-D at any interface geometry. Model parameters are inverted using a stochastic method composed of simulated annealing followed by a pattern search algorithm. The first application is carried out over the Central Alps, where long-standing permanent and the temporary AlpArray Seismic Network stations provide an ideal coverage. For this study we invert 4 independent parameters, which are the Moho discontinuity depth, the Conrad discontinuity depth, the P-velocity change at the Conrad and the average Vp/Vs of the crust. The 3-D inversion results clearly image the roots of the Alpine orogen, including the Ivrea Geophysical Body. The lower crust's thickness appears fairly constant. Average crustal Vp/Vs ratios are relatively higher beneath the orogen, and a low-Vp/Vs area in the northern foreland seems to correlate with lower crustal earthquakes, which can be related to mechanical differences in rock properties, probably inherited. Our results are in agreement with those found by 3-D ambient noise tomography, though our method inherently performs better at localizing discontinuities. Future developments of this technique can incorporate joint inversions, as well as more efficient parameter space exploration.
    Description: Published
    Description: 529 - 562
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Computational seismology ; Receiver functions  ; Inverse theory ; Crustal imaging ; Central Alps ; 05.01. Computational geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12),(2022): 3199-3219, https://doi.org/10.1175/jpo-d-22-0009.1.
    Description: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515, 1736109, and 2149080. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530.
    Description: 2023-05-18
    Keywords: Abyssal circulation ; Diapycnal mixing ; Meridional overturning circulation ; Topographic effects ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-03-20
    Description: The deformation style of the continental lithosphere is a relevant issue for geodynamics and seismic hazard perspectives. Here we show the first evidence of two well-distinct low-angle and SW-dipping individual reverse shear zones of the Italian Outer Thrust System in Central Italy. One corresponds to the down-dip prosecution of the Adriatic Basal Thrust with its major splay and the other to a hidden independent structure, illuminated at a depth between 25 and 60 km, for an along-strike extent of ~ 150 km. Combining geological information with high-quality seismological data, we unveil this novel configuration and reconstruct a detailed 3D geometric and kinematic fault model of the compressional system, active at upper crust to upper mantle depths. In addition, we report evidence of coexisting deformation volumes undergoing well-distinguished stress fields at different lithospheric depths. These results provide fundamental constraints for a forthcoming discussion on the Apennine fold-and-thrust system's geodynamic context as a shallow subduction zone or an intra-continental lithosphere shear zone.
    Description: Published
    Description: 21066
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-03-14
    Description: New textural and petrological data are presented on products from five paroxysms at Stromboli (Aeolian Islands, Italy) including the two from 2019 and three historical (1930, undated, sixteenth century) eruptions. The data are used to con- strain timescales associated with the initiation of paroxysms and to examine current models for their triggering. Samples were collected from the deposits and a subset selected for mineral separation and petrological and textural characterization. Minerals and glass were imaged by scanning electron microscopy (SEM), and chemical composition and zonation were analysed by electron microprobe. Trace elements in olivine were also determined. Vesicle number densities, vesicularities and vesicle diameters were measured by X-ray microCT techniques. The data were systematically compared with results of experiments simulating, on the one hand, ascent, vesiculation, degassing and crystallization of LP (low-porphyricity) magma and, on the other hand, interaction between LP and HP (high-porphyricity) magma. Paroxysm samples are mixed and include portions representative of both LP and HP magma. They host in variable proportions minerals and glass textur- ally and compositionally typical of these two magma types. Small but systematic variations in matrix glass compositions are found between each of the five eruptions considered. All samples host a population of vesicles ranging from 〈 15 to 〉 1000 μm in diameter and whose size distributions follow mixed exponential to power law distributions. Vesicularities are high (75% on average) and vesicle number densities range from 102-103 to 103-104 mm-3. Using experimental calibrations, the vesicle textural data suggest average LP magma ascent rates of 1–2 m/s (i.e. ~1.5 hours from depths between 7 and 1.5 km). The correlation between ascent rate and textures demonstrates systematic variations between eruptions, the most ener- getic (i.e. that of 1930) being associated with the highest ascent rate (~2 m/s). Widths of plagioclase reaction zones indicate that LP and HP magmas interacted for a maximum a few hours before eruption. Olivine reaction also implies durations of a few hours for LP-HP interaction and is followed by crystallization for 20 hours in the HP magma. Our results stress the fast ascent of LP magma from their storage region and their short residence times at shallow levels before being erupted. They clarify the respective roles of the deep and shallow feeding systems. An integrated phenomenological model for paroxysm initiation at Stromboli is outlined. Keywords
    Description: This study was supported by the Labex Vol- taire (ANR-10-LABX-100-01), by INGV Progetti Ricerca Libera (timescale of magma transfer within the Stromboli plumbing sys- tem) and by the “DisEqm” (quantifying disequilibrium processes in basaltic volcanism) and “Shedding new light on volcanoes: real-time synchrotron X-ray tomography of magmatic phenomena” projects funded by NERC (NE/N018575/1 and NE/M013561/1).
    Description: Published
    Description: 36
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli ; Paroxysms ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2023-01-27
    Description: Classical mechanisms of volcanic eruptions mostly involve pressure buildup and magma ascent towards the surface1. Such processes produce geophysical and geochemical signals that may be detected and interpreted as eruption precursors1-3. On 22 May 2021, Mount Nyiragongo (Democratic Republic of the Congo), an open-vent volcano with a persistent lava lake perched within its summit crater, shook up this interpretation by producing an approximately six-hour-long flank eruption without apparent precursors, followed-rather than preceded-by lateral magma motion into the crust. Here we show that this reversed sequence was most likely initiated by a rupture of the edifice, producing deadly lava flows and triggering a voluminous 25-km-long dyke intrusion. The dyke propagated southwards at very shallow depth (less than 500 m) underneath the cities of Goma (Democratic Republic of the Congo) and Gisenyi (Rwanda), as well as Lake Kivu. This volcanic crisis raises new questions about the mechanisms controlling such eruptions and the possibility of facing substantially more hazardous events, such as effusions within densely urbanized areas, phreato-magmatism or a limnic eruption from the gas-rich Lake Kivu. It also more generally highlights the challenges faced with open-vent volcanoes for monitoring, early detection and risk management when a significant volume of magma is stored close to the surface.
    Description: Published
    Description: 83–88
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-03
    Description: The protracted nature of the 2016-2017 central Italy seismic sequence, with multiple damaging earthquakes spaced over months, presented serious challenges for the duty seismologists and emergency managers as they assimilated the growing sequence to advise the local population. Uncertainty concerning where and when it was safe to occupy vulnerable structures highlighted the need for timely delivery of scientifically based understanding of the evolving hazard and risk. Seismic hazard assessment during complex sequences depends critically on up-to-date earthquake catalogues-i.e., data on locations, magnitudes, and activity of earthquakes-to characterize the ongoing seismicity and fuel earthquake forecasting models. Here we document six earthquake catalogues of this sequence that were developed using a variety of methods. The catalogues possess different levels of resolution and completeness resulting from progressive enhancements in the data availability, detection sensitivity, and hypocentral location accuracy. The catalogues range from real-time to advanced machine-learning procedures and highlight both the promises as well as the challenges of implementing advanced workflows in an operational environment.
    Description: Published
    Description: 710
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: earthquakes catalogue ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-03-06
    Description: The development of a resilient society is a major challenge for growing human population faced with abundant natural hazards. During and after the May 22, 2021 eruption of Nyiragongo, the local population was surprised and scared by the subsequent seismicity and associated surface fracturing, coupled with the alert of a possible new eruptive vent opening in Goma (Democratic Republic of Congo) and/or Gisenyi (Rwanda). The creation of a toll-free phone number enabled the population to record fractures and gas/thermal anomalies affecting the area. Such work was fundamental in enabling scientists and authorities to assess the associated risks. Crucially, gas data showed that the degassing through fractures did not represent direct transfer of magmatic volatiles but was more likely of superficial origin. Surprisingly, this participatory work revealed that the first fractures appeared several weeks before the eruption and their opening was not detected by the monitoring system. This firmly underlines the need for scientists to anchor citizen science in monitoring strategies.
    Description: Published
    Description: 7488
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcano monitoring ; citizen science ; soil degassing ; eruptive fractures ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-24
    Description: Investigating relationships between macroseismic intensity and strong-motion data requires the existence of these two records for the same seismic event and site. In Italy, this comparison is feasible through the cross-matching of the Italian Macroseismic Database (DBMI) and the Italian Strong-Motion Database (ITACA) which are the most comprehensive sources of both data. However, the two databases lack a direct link which would allow performing joint analysis of macroseismic data points and strong-motion recordings, making the comparison a time consuming job for the researcher. This paper demonstrates the usefulness of cross-database identifiers, and presents their use in a webtool called Rosetta, an initial proof-of-concept that helped testing linking procedures among DBMI and ITACA, and user friendly visual solutions. The development allowed the working group to exchange expertise on their respective database structures and workflows, laying the groundwork for a consistent, low-maintenance, and durable solution that will be easily updatable each time a new version of DBMI or ITACA will be released.
    Description: Italian Department of Civil Protection to the project INGV-DPC S2-2014 “Constraining Observations into Seismic Hazard”
    Description: Published
    Description: 2429–2443
    Description: 3T. Storia Sismica
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: seismology ; macroseismic intensity ; strong-motion ; stations ; historical earthquakes ; database ; identifiers ; 04.06. Seismology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2927-2947, doi:10.1175/JPO-D-17-0083.1.
    Description: Motivated by observations in Hudson shelf valley showing stronger onshore than offshore flows, this study investigates wind-driven flows in idealized shallow shelf valleys. This first part of a two-part sequence focuses on the mechanism of the asymmetrical flow response in a valley to along-shelf winds of opposite directions. Model simulations show that (i) when the wind is in the opposite direction to coastal-trapped wave (CTW) phase propagation, the shelf flow turns onshore in the valley and generates strong up-valley transport and a standing meander on the upstream side (in the sense of CTW phase propagation) of the valley, and (ii) when the wind is in the same direction as CTW phase propagation, the flow forms a symmetric onshore detour pattern over the valley with negligible down-valley transport. Comparison of the modeled upstream meanders in the first scenario with CTW characteristics confirms that the up-valley flow results from CTWs being arrested by the wind-driven shelf flow establishing lee waves. The valley bathymetry generates an initial excessive onshore pressure gradient force that drives the up-valley flow and induces CTW lee waves that sustain the up-valley flow. When the wind-driven shelf flow aligns with CTW phase propagation, the initial disturbance generated in the valley propagates away, allowing the valley flow to adjust to roughly follow isobaths. Because of the similarity in the physical setup, this mechanism of arrested CTWs generating stronger onshore than offshore flow is expected to be applicable to the flow response in slope canyons to along-isobath background flows of opposite directions.
    Description: WGZ and SJL were supported by the National Science Foundation through GrantOCE1154575.WGZ is also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-06-08
    Keywords: Ocean circulation ; Topographic effects ; Transport ; Vertical motion ; Waves, oceanic ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-01-25
    Description: Ongoing resurgence affects Campi Flegrei caldera (Italy) via bradyseism, i.e. a series of ground deformation episodes accompanied by increases in shallow seismicity. In this study, we perform a mathematical analysis of the GPS and seismic data in the instrumental catalogs from 2000 to 2020, and a comparison of them to the preceding data from 1983 to 1999. We clearly identify and characterize two overlying trends, i.e. a decennial-like acceleration and cyclic oscillations with various periods. In particular, we show that all the signals have been accelerating since 2005, and 90-97% of their increase has occurred since 2011, 40-80% since 2018. Nevertheless, the seismic and ground deformation signals evolved differently-the seismic count increased faster than the GPS data since 2011, and even more so since 2015, growing faster than an exponential function The ground deformation has a linearized rate slope, i.e. acceleration, of 0.6 cm/yr2 and 0.3 cm/yr2 from 2000 to 2020, respectively for the vertical (RITE GPS) and the horizontal (ACAE GPS) components. In addition, all annual rates show alternating speed-ups and slow-downs, consistent between the signals. We find seven major rate maxima since 2000, one every 2.8-3.5 years, with secondary maxima at fractions of the intervals. A cycle with longer period of 6.5-9 years is also identified. Finally, we apply the probabilistic failure forecast method, a nonlinear regression that calculates the theoretical time limit of the signals going to infinity (interpreted here as a critical state potentially reached by the volcano), conditional on the continuation of the observed nonlinear accelerations. Since 2000, we perform a retrospective analysis of the temporal evolution of these forecasts which highlight the periods of more intense acceleration. The failure forecast method applied on the seismic count from 2001 to 2020 produces upper time limits of [0, 3, 11] years (corresponding to the 5th, 50th and 95th percentiles, respectively), significantly shorter than those based on the GPS data, e.g. [0, 6, 21] years. Such estimates, only valid under the model assumption of continuation of the ongoing decennial-like acceleration, warn to keep the guard up on the future evolution of Campi Flegrei caldera.
    Description: Published
    Description: 19175
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...