ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • Open Access-Papers  (4)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (2)
  • 05. General::05.01. Computational geophysics::05.01.01. Data processing  (2)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes  (1)
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
  • Istituto Nazionale di Geofisica e Vulcanologia  (2)
  • Istituto Nazionale di Geofisica e Vulcanonolgia  (1)
  • Nature Publishing Group  (1)
  • American Chemical Society
  • BioMed Central
  • 2020-2023
  • 2010-2014  (4)
  • 1990-1994
  • 1945-1949
  • 2013  (4)
Collection
  • Articles  (4)
Source
  • Open Access-Papers  (4)
Keywords
Publisher
Years
  • 2020-2023
  • 2010-2014  (4)
  • 1990-1994
  • 1945-1949
Year
  • 1
    Publication Date: 2017-04-04
    Description: Infrared remote sensing monitoring is a significant tool aimed to integrated surveillance system of active volcanic areas. In this paper we describe the realization and the technological evolution of the permanent image thermal infrared (TIR) surveillance system of the Vesuvius volcano. The TIR monitoring station was installed on the Vesuvius crater rim on July 2004 in order to acquire scenes of the SW inner slope of Vesuvius crater that is characterized by a significant thermal emission. At that time, it represented the first achievement all over the world of a permanent surveillance thermal imaging system on a volcano. It has been working in its prototypal configuration till May 2007. The experience gained over years about the engineering, management and maintenance of TIR remote acquisition systems in extreme environmental conditions, allows us to design and realize a new release of the TIR monitoring station with improved functionalities and more flexibility for the IR image acquisition, management and storage, which became operational in June 2011. In order to characterize the thermal background of the Vesuvius crater at present state of volcanic quiescence, the time series of TIR images gathered between July 2004 and May 2012 were analyzed using a statistical approach. Results show no significant changes in the thermal radiation during the observation periods, so they can be assumed as representative of a background level to which refer for the interpretation of possible future anomalies related to a renewal of the volcanic dynamics of the Vesuvius volcano.
    Description: The Vesuvius IR monitoring system was partially funded by the 2000-2006 National Operating Program and by the Italian Dipartimento della Protezione Civile in the frame of the 2004-2006 agreement with Istituto Nazionale di Geofisica e Vulcanologia.
    Description: Published
    Description: S0454
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.10. TTC - Telerilevamento
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: open
    Keywords: Thermal Infrared ; Image processing ; Volcano monitoring ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.
    Description: Published
    Description: 385
    Description: 3.1. Fisica dei terremoti
    Description: N/A or not JCR
    Description: restricted
    Keywords: Tohoku ; Subduction ; Tsunami ; Inverse problem ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The detection and evaluation of the status of disposal sites that contain hazardous waste materials is becoming an increasingly important element in environmental investigations. Close cooperation between the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Volcanology and Geophysics) in Rome and the Italian environmental police has resulted in numerous underground investigations of different buried materials. Among the geophysical investigation tools, magnetometry is the most effective, rapid and precise of all of the geophysical methods for localizing buried steel drums. Analysis of magnetic map anomalies can provide a variety of information about buried materials, including extension, distribution and depth, with processing of the acquired magnetic data. This information is also very useful in case of excavations that are aimed at the recovery of hazardous waste. This study determines the most relevant analyses reported in the literature, with modeling of magnetometric methods for environmental applications both theoretically and experimentally. Some studies and research results achieved by the INGV in relation to magnetic anomalies produced by buried steel drums are also reported, as found in field operations and as achieved from test sites.
    Description: Published
    Description: R0108
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 3.4. Geomagnetismo
    Description: 5.4. Banche dati di geomagnetismo, aeronomia, clima e ambiente
    Description: JCR Journal
    Description: partially_open
    Keywords: Toxic waste ; Steel-drum detection ; Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In the 1980's, from an analysis of satellite images, Russian scientists reported on a short-term thermal infrared radiation enhancement that occurred before some medium-to-large earthquakes in central Asia [Gorny et al. 1988]. Since then, many researchers have been studying earthquake thermal anomalies with satellite remote sensing data [Qiang et al. 1991, Tronin 1996, Tramutoli et al. 2001, Ouzounov and Freund 2004, Saraf and Choudhury 2004, Aliano et al. 2008, Blackett et al. 2011]. Recently, abnormal surface latent heat flux [Dey and Singh 2003, Cervone et al. 2005, Qin et al. 2009, Qin et al. 2011, Qin et al. 2012], outgoing long-wave radiation [Ouzounov et al. 2007] and microwave radiation [Takashi and Tadashi 2010] have also been shown to precede earthquakes. To investigate the possible physical mechanisms of such satellite thermal anomalies, some studies conducted a series of detecting experiments on rock loaded to fracturing [Wu et al. 2000, Freund 2002, Wu et al. 2002, Wu et al. 2006a, Wu et al. 2006b, Freund et al. 2007], and some hypotheses have been proposed. These have included: leaking of pore-gas, and hence the resulting greenhouse effect [Qiang et al. 1995]; activating and recombining of p-holes during rock deformation [Freund 2002]; release of latent heat due to near-surface air ionization [Pulinets et al. 2006], and stress-induced thermal effects due to friction and fluids [Wu and Liu 2009]. According to the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology), two major earthquakes with almost the same large magnitudes struck northern Italy, on the Po Plain in the Emilia Region. The first hit on May 20, 2012, at 02:03 UTC, with ML 5.9 (44.89 °N, 11.23 °E; 6 km in depth), and the second on May 29, 2012, at 07:00 UTC, with ML 5.8 (44.85 °N, 11.09 °E; 10 km in depth). These caused a total of 27 deaths and widespread damage. In this study, the long-term temperature data from both satellite and ground (with greater emphasis on the satellite data) have been used to determine whether there were thermal anomalies associated with this Emilia 2012 seismic sequence. In particular, the next section will be dedicated to describing both the data and the method of analysis. In Section 3, we provide the more significant results, which we discuss in Section 4, together with the main conclusions. We acknowledge that this work cannot be exhaustive, as it will require more data and analyses. However, although further studies will be welcome, we are confident that we have done the best with the data at our disposal.
    Description: Published
    Description: 823-828
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: earthquake event ; numerical method ; surface temperature ; Emilia-Romagna, Italy ; Emilia ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...