ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Other Sources  (1)
  • Open Access-Papers  (1)
  • CITATION GEO-LEO  (1)
  • Analytical Chemistry and Spectroscopy
  • Animals
  • General Chemistry
Collection
  • Articles  (1)
  • Other Sources  (1)
Source
Keywords
Language
Years
  • 1
    Publication Date: 2021-04-25
    Description: Niphargus is a speciose amphipod genus found in groundwater habitats across Europe. Three Niphargus species living in the sulphidic Frasassi caves in Italy harbour sulphur-oxidizing Thiothrix bacterial ectosymbionts. These three species are distantly related, implying that the ability to form ectosymbioses with Thiothrix may be common among Niphargus. Therefore, Niphargus-Thiothrix associations may also be found in sulphidic aquifers other than Frasassi. In this study, we examined this possibility by analysing niphargids of the genera Niphargus and Pontoniphargus collected from the partly sulphidic aquifers of the Southern Dobrogea region of Romania, which are accessible through springs, wells and Movile Cave. Molecular and morphological analyses revealed seven niphargid species in this region. Five of these species occurred occasionally or exclusively in sulphidic locations, whereas the remaining two were restricted to nonsulphidic areas. Thiothrix were detected by PCR on all seven Dobrogean niphargid species and observed using microscopy to be predominantly attached to their hosts' appendages. 16S rRNA gene sequences of the Thiothrix epibionts fell into two main clades, one of which (herein named T4) occurred solely on niphargids collected in sulphidic locations. The other Thiothrix clade was present on niphargids from both sulphidic and nonsulphidic areas and indistinguishable from the T3 ectosymbiont clade previously identified on Frasassi-dwelling Niphargus. Although niphargids from Frasassi and Southern Dobrogea are not closely related, the patterns of their association with Thiothrix are remarkably alike. The finding of similar Niphargus-Thiothrix associations in aquifers located 1200 km apart suggests that they may be widespread in European groundwater ecosystems.
    Keywords: amphipods; ecology; sulphide; symbiosis; systematics; taxonomy ; 551 ; Amphipoda ; Animals ; DNA, Bacterial ; Ecosystem ; Groundwater ; Molecular Sequence Data ; Phylogeny ; RNA, Ribosomal, 16S ; Romania ; Sequence Analysis, DNA ; Sulfur ; Symbiosis ; Thiothrix
    Language: English , English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-26
    Description: Identifcation of ontogenetic age classes plays an important role in the felds of zoology, palaeontology and archaeology, where accurate age classifcations of (sub)fossil remains are a crucial component for the reconstruction \nof past life. Textural ageing\xe2\x80\x94the identifcation of age-related bone surface textures\xe2\x80\x94provides a size-independent \nmethod for age assessment of vertebrate material. However, most of the work so far is limited to qualitative results. \nWhile qualitative approaches provide helpful insights on textural ageing patterns, they are heavily subject to observer \nbias and fall short of quantitative data relevant for detailed statistical analyses and cross-comparisons. Here, we present a pilot study on the application of 3D surface digital microscopy to quantify bone surface textures on the long \nbones of the grey heron (Ardea cinerea) and the Canada goose (Branta canadensis) using internationally verifed \nroughness parameters. Using a standardised measuring protocol, computed roughness values show a strong correlation with qualitative descriptions of textural patterns. Overall, higher roughness values correspond to increased numbers of grooves and pits and vice versa. Most of the roughness parameters allowed distinguishing between diferent \nontogenetic classes and closely followed the typical sigmoidal animal growth curve. Our results show that bone \ntexture quantifcation is a feasible approach to identifying ontogenetic age classes.
    Keywords: General Physics and Astronomy ; General Environmental Science ; General Biochemistry ; Genetics and Molecular Biology ; General Materials Science ; General Chemistry ; Roughness ; Surfaces ; Taphonomy ; Topography ; Bone ; Ontogeny ; Digital microscopy
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...