ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (884)
Collection
Years
Year
  • 1
    Publication Date: 2014-12-01
    Description: Central New York State, located at the intersection of the northeastern United States and the Great Lakes basin, is impacted by snowfall produced by lake-effect and non-lake-effect snowstorms. The purpose of this study is to determine the spatiotemporal patterns of snowfall in central New York and their possible underlying causes. Ninety-three Cooperative Observer Program stations are used in this study. Spatiotemporal patterns are analyzed using simple linear regressions, Pearson correlations, principal component analysis to identify regional clustering, and spatial snowfall distribution maps in the ArcGIS software. There are three key findings. First, when the long-term snowfall trend (1931/32–2011/12) is divided into two halves, a strong increase is present during the first half (1931/32–1971/72), followed by a lesser decrease in the second half (1971/72–2011/12). This result suggests that snowfall trends behave nonlinearly over the period of record. Second, central New York spatial snowfall patterns are similar to those for the whole Great Lakes basin. For example, for five distinct regions identified within central New York, regions closer to and leeward of Lake Ontario experience higher snowfall trends than regions farther away and not leeward of the lake. Third, as compared with precipitation totals (0.02), average air temperatures had the largest significant (ρ 〈 0.05) correlation (−0.56) with seasonal snowfall totals in central New York. Findings from this study are valuable because they provide a basis for understanding snowfall patterns in a region that is affected by both non-lake-effect and lake-effect snowstorms.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-01
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-01
    Description: The main object of this work is to study the lightning climatology in the Po Valley in Italy and how it varies in time (interannual, annual, weekly, and daily time scales) and space (sea coast, plains, and mountain areas) and how that is related to topographic characteristics and anthropogenic emissions. Cloud-to-ground (CG) lightning in the target area is analyzed for 18 yr of data (about 7 million records). It is found that the Julian Prealps of the Friuli Venezia Giulia region are one of the areas of maximum CG lightning activity across all of Europe. During spring lightning activity is more confined toward the mountainous regions, whereas during summer and even more during autumn the lightning activity involves also the coastal region and the Adriatic Sea. This is due to different triggering mechanisms acting in different topographic zones and during different periods of the year and times of the day. In analogy to previous studies of lightning done in the United States, a weekly cycle is also identified in the area of interest, showing that on Friday the probability of thunderstorms reaches its maximum. After conducting a parallel analysis with monitoring stations of atmospheric particulates (diameter ≤ 10 μm: PM10) and sounding-derived potential instability, the results presented herein seem to support the hypothesis that the weekly cycle in the thunderstorm activity may be due to anthropogenic emissions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-01
    Description: In 2011, exceptionally low atmospheric moisture content combined with moderately high temperatures to produce a record-high vapor pressure deficit (VPD) in the southwestern United States (SW). These conditions combined with record-low cold-season precipitation to cause widespread drought and extreme wildfires. Although interannual VPD variability is generally dominated by temperature, high VPD in 2011 was also driven by a lack of atmospheric moisture. The May–July 2011 dewpoint in the SW was 4.5 standard deviations below the long-term mean. Lack of atmospheric moisture was promoted by already very dry soils and amplified by a strong ocean-to-continent sea level pressure gradient and upper-level convergence that drove dry northerly winds and subsidence upwind of and over the SW. Subsidence drove divergence of rapid and dry surface winds over the SW, suppressing southerly moisture imports and removing moisture from already dry soils. Model projections developed for the fifth phase of the Coupled Model Intercomparison Project (CMIP5) suggest that by the 2050s warming trends will cause mean warm-season VPD to be comparable to the record-high VPD observed in 2011. CMIP5 projections also suggest increased interannual variability of VPD, independent of trends in background mean levels, as a result of increased variability of dewpoint, temperature, vapor pressure, and saturation vapor pressure. Increased variability in VPD translates to increased probability of 2011-type VPD anomalies, which would be superimposed on ever-greater background VPD levels. Although temperature will continue to be the primary driver of interannual VPD variability, 2011 served as an important reminder that atmospheric moisture content can also drive impactful VPD anomalies.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-01
    Description: Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large-drop formation (weather radar “first echo”). These measurements also complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2D) along-wind range–height indicator observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning Atmospheric Radiation Measurement Program (ARM) cloud radar (SACR) at the U.S. Department of Energy (DOE)–ARM Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger-scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous small nonprecipitating cloud elements. A new cloud identification and tracking algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2D observations (30 s) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud-element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived nonprecipitating clouds having an apparent life cycle shorter than 15 min. The advantages and disadvantages of cloud tracking using an SACR are discussed.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-01
    Description: Recognizing the importance and challenges inherent to the remote sensing of precipitation in mountainous areas, this study investigates the performance of the commonly used satellite-based high-resolution precipitation products (HRPPs) over several basins in the mountainous western United States. Five HRPPs [Tropical Rainfall Measuring Mission 3B42 and 3B42-RT algorithms, the Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN), and the PERSIANN Cloud Classification System (PERSIANN-CCS)] are analyzed in the present work using ground gauge, gauge-adjusted radar, and CloudSat precipitation products. Using ground observation of precipitation and streamflow, the skill of HRPPs and the resulting streamflow simulations from the Variable Infiltration Capacity hydrological model are cross-compared. HRPPs often capture major precipitation events but seldom capture the observed magnitude of precipitation over the studied region and period (2003–09). Bias adjustment is found to be effective in enhancing the HRPPs and resulting streamflow simulations. However, if not bias adjusted using gauges, errors are typically large as in the lower-level precipitation inputs to HRPPs. The results using collocated Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and CloudSat precipitation data show that missing data, often over frozen land, and limitations in retrieving precipitation from systems that lack frozen hydrometeors contribute to the observed microwave-based precipitation errors transferred to HRPPs. Over frozen land, precipitation retrievals from infrared sensors and microwave sounders show some skill in capturing the observed precipitation climatology maps. However, infrared techniques often show poor detection skill, and microwave sounding in dry atmosphere remains challenging. By recognizing the sources of precipitation error and in light of the operation of the Global Precipitation Measurement mission, further opportunity for enhancing the current status of precipitation retrievals and the hydrology of cold and mountainous regions becomes available.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-01
    Description: Five years of measurements from the Earth Radiation Budget Satellite (ERBS) have been analyzed to define the diurnal cycle of albedo from 55°N to 55°S. The ERBS precesses through all local times every 72 days so as to provide data regarding the diurnal cycles for Earth radiation. Albedo together with insolation at the top of the atmosphere is used to compute the heating of the Earth–atmosphere system; thus its diurnal cycle is important in the energetics of the climate system. A principal component (PC) analysis of the diurnal variation of top-of-atmosphere albedo using these data is presented. The analysis is done separately for ocean and land because of the marked differences of cloud behavior over ocean and over land. For ocean, 90%–92% of the variance in the diurnal cycle is described by a single component; for land, the first PC accounts for 83%–89% of the variance. Some of the variation is due to the increase of albedo with increasing solar zenith angle, which is taken into account in the ERBS data processing by a directional model, and some is due to the diurnal cycle of cloudiness. The second PC describes 2%–4% of the variance for ocean and 5% for land, and it is primarily due to variations of cloudiness throughout the day, which are asymmetric about noon. These terms show the response of the atmosphere to the cycle of solar heating. The third PC for ocean is a two-peaked curve, and the associated map shows high values in cloudy regions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-01
    Description: One of the challenges that limit the amount of information that can be inferred from radar measurements of ice and mixed-phase precipitating clouds is the variability in ice mass within hydrometeors. The variable amount of ice mass within particles of a given size drives further variability in single-scattering properties that results in uncertainties of forward-modeled remote sensing quantities. Nonspherical ice-phase hydrometeors are often approximated as spheroids to simplify the calculation of single-scattering properties, yet offline calculations remain necessary to quantify these radiative properties as a function of size in discrete increments. In this paper, a simple scaling of the Clausius–Mossotti factor is used that allows for an approximation of the scattering and extinction cross sections for an arbitrary mass–dimensional power-law relationship of a nonspherical particle given a single T-matrix calculation. Using data collected by the University of Wyoming King Air in snow clouds over the Colorado Park Range, the uncertainty in forward-modeled radar reflectivity to assumptions regarding mass–dimensional relationships is examined. This is accomplished by taking advantage of independently measured condensed mass and particle size distributions to estimate the variability of the prefactor in the mass–dimensional power law. Then, calculating the partial derivative of the radar backscatter cross sections using the scaling relationships, an estimate is made of the statistical uncertainty in forward-modeled radar reflectivity. Uncertainties on the order of 4 dB are found in this term for the dataset considered.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-01
    Description: This brief paper addresses the frequency of precipitating open-cell convection over the northeastern Gulf of Alaska during a 5-yr period (2002–06). The research employs 154 previously documented satellite synthetic aperture radar–derived wind speed (SDWS) images that contain open-cell convection signatures. Each SDWS image is paired with a near-in-time, National Weather Service Weather Surveillance Radar-1988 Doppler Level-III 0.5°-elevation-angle short-range base reflectivity image from coastal Alaska for which coverage spatially overlaps open-cell convection signatures. The time difference between any two images of a single pair is typically a few minutes or less. For 65% of the image pairs, at least one SDWS open-cell convection signature in the overlap region is associated with precipitation. That percentage may be conservative given the method used in this research. Thus, the results of this research support a suggestion that has been posed in previous studies that the organization of open-cell convection can be controlled by the interaction of the environmental vertical wind shear and precipitation-driven cold pools.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-01
    Description: Climatic variability over southern Africa is a well-recognized phenomenon, yet knowledge about the temporal variability of extreme seasons is lacking. This study investigates the intraseasonal progression of extreme seasons over Zimbabwe using precipitation and normalized difference vegetation index (NDVI) data covering the 1981–2005 period. Results show that the greatest deficits/surpluses of precipitation occur during the middle of the rainfall season (January and February), and the temporal distribution of precipitation during extreme dry seasons seems to shift earlier than that of extreme wet seasons. Furthermore, anomalous wet (dry) conditions were observed prior to the development of extreme dry (wet) seasons. Impacts of precipitation variations on vegetation lag by approximately 1–2 months. The semiarid southern region experiences more variability of vegetation cover than do the northern and eastern regions. Three distinct temporal patterns of dry years were noted by considering the maximum NDVI level, the mid-postseason NDVI condition, and nested dry spells. The findings of this study emphasize that climate extremes ought not to be simply understood in terms of total seasonal precipitation, because they may have within them some nested distribution patterns that may have a strong influence on primary production.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...