ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (139)
  • 2010-2014  (139)
  • Chemistry and Pharmacology  (139)
Collection
  • Articles  (139)
Publisher
Years
Year
Journal
Topic
  • Chemistry and Pharmacology  (139)
  • Physics  (139)
  • 1
    Publication Date: 2014-04-01
    Description: Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-01
    Description: The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-01
    Description: This review documents the development of high–bunch charge electron pulses with sufficient combined spatiotemporal resolution and intensity to literally light up atomic motions. This development holds promise in coming to a first-principles understanding of diverse problems, ranging from molecular reaction dynamics and structure-function correlations in biology to cooperativity in strongly correlated electron-lattice systems. It is now possible to directly observe the key modes involved in propagating structural changes and the enormous reduction in dimensionality that occurs in barrier crossing regions, which is central to chemistry and makes reaction mechanisms transferrable concepts. This information will help direct theoretical advances that will undoubtedly lead to generalized principles with respect to scaling relations in structural dynamics that will bridge chemistry to biology. In this quest, the limitations and future directions for further development are discussed to give an overview of the present status of the field.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-01
    Description: Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-01
    Description: Field confinement at the junction between a biased scanning probe microscope's tip and solid surface enables local probing of various bias-induced transformations, such as polarization switching, ionic motion, and electrochemical reactions. The nanoscale size of the biased region, smaller or comparable to that of features such as grain boundaries and dislocations, potentially allows for the study of kinetics and thermodynamics at the level of a single defect. In contrast to classical statistically averaged approaches, this approach allows one to link structure to functionality and deterministically decipher associated mesoscopic and atomistic mechanisms. Furthermore, responses measured as a function of frequency and bias can serve as a fingerprint of local material functionality, allowing for local recognition imaging of inorganic and biological systems. This article reviews current progress in multidimensional scanning probe microscopy techniques based on band excitation time and voltage spectroscopies, including discussions on data acquisition, dimensionality reduction, and visualization, along with future challenges and opportunities for the field.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-01
    Description: The photophysical behavior of organic semiconductors is governed by their excitonic states. In this review, I classify the three different exciton types (Frenkel singlet, Frenkel triplet, and charge transfer) typically encountered in organic semiconductors. Experimental challenges that arise in the study of solid-state organic systems are discussed. The steady-state spectroscopy of intermolecular delocalized Frenkel excitons is described, using crystalline tetracene as an example. I consider the problem of a localized exciton diffusing in a disordered matrix in detail, and experimental results on conjugated polymers and model systems suggest that energetic disorder leads to subdiffusive motion. Multiexciton processes such as singlet fission and triplet fusion are described, emphasizing the role of spin state coherence and magnetic fields in studying singlet ↔ triplet pair interconversion. Singlet fission provides an example of how all three types of excitons (triplet, singlet, and charge transfer) may interact to produce useful phenomena for applications such as solar energy conversion.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-01
    Description: Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-01
    Description: Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal–containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-01
    Description: Fluorescence fluctuation spectroscopy (FFS) techniques provide information at the single-molecule level with excellent time resolution. Usually applied at a single spot in a sample, they have been recently extended into imaging formats, referred to as imaging FFS. They provide spatial information at the optical diffraction limit and temporal information in the microsecond to millisecond range. This review provides an overview of the different modalities in which imaging FFS techniques have been implemented and discusses present imaging FFS capabilities and limitations. A combination of imaging FFS and nanoscopy would allow one to record information with the detailed spatial information of nanoscopy, which is ∼20 nm and limited only by fluorophore size and labeling density, and the time resolution of imaging FFS, limited by the fluorescence lifetime. This combination would provide new insights into biological events by providing spatiotemporal resolution at unprecedented levels.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-04-01
    Description: Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...