ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (229)
Collection
Years
Year
  • 1
    Publication Date: 2019-12-21
    Description: A fundamental understanding of the effect of a crosslinker on gel properties is important for the design of novel soft materials because a crosslinking is a key component of polymer gels. We focused on post-polymerization crosslinking (PPC) system utilizing activated ester chemistry, which is a powerful tool due to structural diversity of diamine crosslinkers and less susceptibility to solvent effect compared to conventional divinyl crosslinking system, to systematically evaluate the crosslinker effect on the gel properties. A variety of alkyldiamine crosslinkers was employed for the synthesis of poly(N-isopropylacrylamide) (PNIPAAm) gels and it was clarified that the length of alkyl chains of diamine crosslinkers strongly affected the gelation reaction and the swelling behavior. The longer crosslinker induced faster gelation and decreased the swelling degree and the response temperature in water, while the crosslinking density did not significantly change. In addition, we were able to modify the polymer chains in parallel with crosslinking by using a monoamine modifier along with a diamine crosslinker. This simultaneous chain modification during crosslinking (SMC) was demonstrated to be useful for the regulation of the crosslinking density and the swelling behavior of PNIPAAm gels.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-18
    Description: Surface decontamination is of general concern in many technical fields including optics, electronics, medical environments, as well as art conservation. In this respect, we developed thin copolymer networks covalently bonded to flexible polyethylene (PE) sheets for hydrogel-based cleaning of varnished paintings. The syntheses of acrylates and methacrylates of the surfactants Triton X-100, Brij 35, and Ecosurf EH-3 or EH-9 and their incorporation into copolymers with acrylamide (PAM) and N-(4-benzoylphenyl)acrylamide are reported. Photocrosslinked polymer networks were prepared from these copolymers on corona-treated PE sheets, which can be swollen with aqueous solution to form hydrogel layers. The cleaning efficacy of these PE-PAM hydrogel systems, when swollen with appropriate cleaning solutions, was evaluated on painting surfaces in dependence of the PAM copolymer composition and degree of crosslinking. Specifically, soil and varnish removal and varnish surface solubilization were assessed on mock-ups as well as on paintings, indicating that even surfactant-free cleaning solutions were effective.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-09
    Description: The aim of this study was to develop a stable aqueous formulation containing a combination of doxycycline and monocaprin in clinically relevant concentrations. Increase in expression of Matrix metalloproteinases (MMPs) and microbial role in oral diseases is well established and the combination of above active ingredients could be potentially beneficial in treatment of oral mucosal conditions. The hydrogels containing different concentrations of doxycycline and monocaprin in the presence and absence of stabilizing excipients were developed and their stabilities were studied at 4 °C for up to 1 year. The drug–drug interaction was evaluated using Fourier-transform infrared spectroscopy (FTIR). The addition of monocaprin on doxycycline in situ hydrogel’s mucoadhesiveness, texture properties and drug release mechanism was studied. The addition of monocaprin negatively affected the doxycycline stability and was concentration dependent, whereas monocaprin was stable up to 1 year. Doxycycline did not interfere with the anti-Candidal activity of monocaprin. Furthermore, the presence of monocaprin significantly affected the formulation hardness, compressibility and adhesiveness. Monocaprin and doxycycline release followed zero order kinetics and the release mechanism was, by anomalous (non-Fickian) diffusion. The addition of monocaprin increased the drug release time and altered the release mechanism. It is possible to stabilize doxycycline in the presence of monocaprin up to 1 year at 4 °C.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-03
    Description: Cryogenic processes are increasingly being utilized to create unique polymeric materials that tackle challenges mainly in the biomedical arena, environmental science, and field of food technology [...]
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-22
    Description: In the last two decades, various kinds of the low-molecular-weight organogelators (LMOGs) have been investigated in terms of technological applications in various fields as well as their fundamental scientific properties. The process of gelation is generally considered to arise from immobilization of the solvents in the three-dimensional networks formed by the assembly of gelator molecules through weak intermolecular noncovalent interactions. From these points of view a huge number of organogelators have been developed so far. In the course of our research on LMOGs we have noticed a mixture of two gelators could show a different trend in gelation compared to the single gelator. It is well known that the catecholic moiety easily forms cyclic boronate esters with the boronic acid. Thus, we have investigated the two-component system based on cyclic boronate esters formed by the catechols and a boronic acid in terms of the control of gelation capability. Basic gelation properties of the constituent catecholic gelators have also been clarified. The catecholic gelators with the amide unit form no gel by addition of the boronic acid. In contrast, the catecholic gelators with the glutamic acid moiety improve their gelation abilities by mixing with the boronic acid. Furthermore, the gelation ability of the catecholic gelators having the urea unit is maintained after addition of the boronic acid. It has been found that gelation abilities of the catecholic gelators are highly affected by addition of the boronic acid. In terms of practical applications some gels can be obtained by on-site mixture of two kinds of solutions.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-16
    Description: This research work deployed free radical polymerization for the development of pH-responsive hybrid nanocomposite hydrogels (NCHs) with the formation of improved interpenetrating networks (IPN). The crosslinked biopolymeric system was composed of (chitosan (CH)/guar gum (GG)/polyol) and a nanofiller (Cloisite 30B). The study was aimed to investigate the role of Cloisite 30B as a nanofiller and linseed oil-derived polyol to induce stable interpenetrating networks in chitosan‒guar gum-based hydrogels. FT-IR analysis confirmed the formation of crosslinked networks with the formation of hydrogen bonds in the synthesized NCHs. Thermogravimetric analysis and differential scanning calorimetry revealed high thermal stability of the NCHs. The hydrolytic and soil burial degradation tests confirmed the biodegradability of the synthesized NCHs. An extraordinarily high swelling capacity in a buffer solution of pH 4.0 and 7.4 demonstrated their pH-responsive behavior. It has been demonstrated that even the minimal addition of polyol to the guar gum-based hydrogels has influenced the stability and characteristic features such as high swelling capacity owing to the formation of interpenetrating networks and the biodegradability of the hydrogels.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-30
    Description: Hydrogels are used for a variety of technical and medical applications capitalizing on their three-dimensional (3D) cross-linked polymeric structures and ability to act as a reservoir for encapsulated species (potentially encapsulating or releasing them in response to environmental stimuli). In this study, carbohydrate-based organogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of a β-D-glucose pentaacetate containing methacrylate monomer (Ac-glu-HEMA) in the presence of a di-vinyl cross-linker; these organogels could be converted to hydrogels by treatment with sodium methoxide (NaOMe). These materials were studied using solid state 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, Fourier transform infrared (FTIR) spectroscopy, and field emission scanning electron microscopy (FE-SEM). The swelling of the gels in both organic solvents and water were studied, as was their ability to absorb model bioactive molecules (the cationic dyes methylene blue (MB) and rhodamine B (RhB)) and absorb/release silver nitrate, demonstrating such gels have potential for environmental and biomedical applications.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-02
    Description: The main scope of the present work is to synthesize pH-responsive Engelhard titanium silicate (ETS)-10 phase crystalline pellets through the smart modification of a synthetic process which was previously applied to the preparation of other phases. The original preparative method, which envisages the use of the same initial synthesis as a binder for the preparation of pellets, was modified by adding an appropriate pH indicator to a number of systems subject to this investigation. It should be noted that the modified process was never before used to give access to pH-responsive ETS-10 phase pellets, and it is disclosed here for the first time. The study started from the definition of the best experimental conditions, which were optimized by analyzing the effects of temperature and system composition. The addition of the pH indicator did not alter the physicochemical characteristics and reactivity of the system. The pH-responsive ETS-10 phase crystalline pellets were characterized by an adequate mechanical strength and by a high capability to change color. The latter aspect can be particularly useful when this material is used in catalytic processes whose performance is strictly dependent on the pH value. The amount of gel used, as well as the working temperature, were the main critical parameters to be controlled during the preparation of pH-responsive ETS-10 phase crystalline pellets. The pellets were fully characterized by X-ray diffraction in order to investigate and identify the possible phases, and by using a hardness tester to measure the compressive strength. Finally, toning tests were performed.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-29
    Description: Previous studies involving poly N-vinylcaprolactam (PNVCL) and itaconic acid (IA) have synthesised the hydrogels with the presence of a solvent and a crosslinker, producing chemically crosslinked hydrogel systems. In this study, however, temperature sensitive PNVCL was physically crosslinked with a pH-sensitive comonomer IA through ultraviolet (UV) free-radical polymerization, without the presence of a solvent, to produce hydrogels with dual sensitivity. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy indicated successful polymerisation of the hydrogels. The temperature and pH sensitivity of the hydrogels was investigated. The lower critical solution temperature (LCST) of the gels was determined using the UV spectrometry and it was found that the incorporation of IA decreased the LCST. Rheology was conducted to investigate the mechanical and viscoelastic properties of the hydrogels, with results indicating IA that enhances the mechanical properties of the gels. Swelling studies were carried out at ~20 °C and 37 °C in different buffer solutions simulating the gastrointestinal tract (pH 2.2 and pH 6.8). In acidic conditions, the gels showed gradual increase in swelling while remaining structurally intact. While in basic conditions, the gels had a burst in swelling and began to gradually degrade after 30 min. Results were similar for drug release studies. Acetaminophen was incorporated into the hydrogels. Drug dissolution studies were carried out at 37 °C in pH 2.2 and pH 6.8. It was found that
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-14
    Description: Chitosan-based hydrogels are being widely used in biomedical applications due to their eco-friendly, biodegradable, and biocompatible properties, and their ability to mimic the extracellular matrix of many tissues. However, the application of chitosan hydrogels has been limited due to their inherent mechanical weakness. Halloysite nanotubes (HNTs) are naturally occurring aluminosilicate clay minerals and are widely used as a bulk filler to improve the performance characteristics of many polymeric materials. HNTs have also been shown to be a viable nanocontainer able to provide the sustained release of antibiotics, chemicals, and growth factors. This study’s objective was to develop a stable drug delivery chitosan/HNT nanocomposite hydrogel that is biocompatible, biodegradable, and provides sustained drug release. In this study, chitosan/HNTs hydrogels containing undoped or gentamicin-doped HNTs were combined in different wt./wt. ratios and cross-linked with tripolyphosphate. The effects of chitosan and HNTs concentration and combination ratios on the hydrogel surface morphology, degradability, and mechanical properties, as well as its drug release capability, were analyzed. The results clearly showed that the addition of HNTs improved chitosan mechanical properties, but only within a narrow range. The nanocomposite hydrogels provided a sustained pattern of drug release and inhibited bacterial growth, and the live/dead assay showed excellent cytocompatibility.
    Electronic ISSN: 2310-2861
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...