ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (363)
  • 2015-2019  (363)
Sammlung
  • Artikel  (363)
Erscheinungszeitraum
Jahr
Zeitschrift
  • 11
    Publikationsdatum: 2019-12-01
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-12-01
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-12-01
    Beschreibung: With the development of transportation in the west of China, tunnel construction in mountain cities is becoming very important and widespread. Tunneling safety in the tunnels is usually controlled by faults, and the advanced prediction of faults by seismic detection method has become a research hotspot in the field of engineering geophysics. Unlike seismic exploration on the ground, the sources and receivers are not properly arranged due to the limitation of the tunnel detection space, so as to cause migration artifacts problem in the process of advanced migration imaging. The problem results in inaccurate imaging of the faults. To solve the problem, this paper proposed a new polarization migration method. The method makes use of the polarization characteristic of three-component seismic signals. The principal polarization direction is calculated by Hilbert transform and complex covariance matrix analysis. A weighted function of the principal polarization direction factor is incorporated into the migration calculation. To verify the effectiveness of the polarization migration method, this paper carries out numerical simulations. Test results demonstrate that the artifacts are eliminated by the polarization migration, and occurrence parameters of faults, such as dip and trend are calculated accurately. The field detection case shows that seismic advanced prediction which is based on polarization migration provided parameters of faults in the front of the tunnel face with 100m, and the distance error is less than 2m, and the dip error is less than 3°, which ensures efficient and safe construction of tunneling.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-12-01
    Beschreibung: Geophysical technologies are used to mitigate geological hazard caused by adverse geological conditions in front of a tunnel face. The prevailing method for forward probing for tunnels constructed by a tunnel boring machine (TBM) for advance prediction is based on seismic detection. Conventional tunnel seismic prediction technology uses P- and S-waves with sources fired on the tunnel wall or face and layout receivers on the tunnel wall to acquire the reflected waves. However, the results show that most of these methods have different deficiencies that are in either low detection accuracy, short detection depth, and/or multiplicity in imaging. This paper proposes a new high resolution tunnel advance prediction technology on the face based on 3D seismic wave detection. It arranges the 3D high-density source and recording geometry on the tunnel face to receive reflected P-waves for 3D imaging. By using the 3D numerical simulation, we first analyze the energy distribution and propagation characteristics of the wave field, which proves that our method is feasible. Compared with the conventional technologies, the seismic energy propagating towards the tunnel face is stronger and produces rich reflected information. The reflected wave has the advantages of bandwidth, strong energy and little interferences from surface wave, so that the seismic phases are easy to be identified. On this basis, we present the high resolution true 3D prediction technology to obtain more comprehensive and abundant azimuth information. Our approach is further validated by an application experiment in a real-world engineering project of water conveyance tunnel. The results show that the new technique has a greater detection length, higher detection accuracy and more reliable imaging results.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-12-01
    Beschreibung: Metros are mass rapid-transit systems that have helped solve commuting problems for residents of metropolises throughout the world. However, adverse geological structures, leading to problem such as water inrush and mud gushing, pose a major threat to metro construction. Geophysical survey techniques provide quick and relatively inexpensive ways to detect adverse geological structures ahead of the tunnel face. Left line of the R3 metro tunnel in Qingdao, China will pass an aquifer sand layer under the Wolong River. To map the geological conditions below the river, we proposed a comprehensive prospecting method that would combine the merits of surface electrical resistivity imaging (S-ERT), seismic ahead prospecting, and tunnel-face and borehole electrical resistivity imaging (TBERI). The prospecting scheme was effectively revealed in a numerical model analysis, in which the stratum distribution was reconstructed using S-ERT. Field tests validated the synthetic results. The ahead prospecting scheme was able to reconstruct the distribution of an aquifer sand layer. Based on the results obtained, we believe that, the proposed scheme could play an important role in metro tunnel construction.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-09-01
    Beschreibung: Seabed logging (SBL) is an application of the marine controlled-source electromagnetic (CSEM) technique to discover offshore hydrocarbon reservoirs underneath the seabed. This application is based on electrical resistivity contrast between hydrocarbon and its surroundings. In this paper, simulation and forward modeling were performed to estimate the hydrocarbon depths in one-dimensional (1-D) SBL data. 1-D data, consisted offset distance (input) and magnitude of electric field (output), were acquired from SBL models developed using computer simulation technology (CST) software. The computer simulated outputs were observed at various depths of hydrocarbon reservoir (250 m–2,750 m with an increment of 250 m) with frequency of 0.125 Hz. Gaussian processes (GP) was employed in the forward modeling by utilizing prior information which is electric field (E-field) at all observed inputs to provide E-field profile at unobserved/untried inputs with uncertainty quantification in terms of variance. The concept was extended for two-dimensional (2-D) model. All observations of E-field were then investigated with the 2-D forward GP model. Root mean square error (RMSE) and coefficient of variation (CV) were utilized to compare the acquired and modeled data at random untried hydrocarbon depths at 400 m, 950 m, 1,450 m, 2,100 m and 2,600 m. Small RMSE and CV values have indicated that developed model can fit well the SBL data at untried hydrocarbon depths. The measured variances of the untried inputs revealed that the data points (true values) were very close to the estimated values, which was 0.003 (in average). RMSEs obtained were very small as an average of 0.049, and CVs found as very reliable percentages, an average of 0.914%, which implied well fitting of the GP model. Hence, the 2-D forward GP model is believed to be capable of predicting unobserved hydrocarbon depths.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-09-01
    Beschreibung: Borehole Radar (BHR) uses ultra-wideband electromagnetic (EM) waves to image discontinuities in formations. It has been a major bottleneck to extend BHR applications to obtain a clear and high-resolution radar profile in a complex and noisy environment, which increases ambiguity in the geology interpretation. To avoid this increased ambiguity in the geology interpretation, we proposed a scheme based on the empirical mode decomposition (EMD) and complex signal analysis theory to process the BHR data with low signal to noise ratio (SNR). The scheme includes four steps. First, the original radar profile is pre-processed to avoid mode confusion and noise interference to the radar echo. Next, the EMD method is used to process a single-channel radar dataset and to analyze the frequency components of the radar signal. Various intrinsic modes of the pre-processing radar profile are also obtained by using EMD. Finally, we reconstruct the intrinsic mode profile, which contains information about the formation, calculate the complex signals of the reconstructed radar profile using the Hilbert transform, extract the three instantaneous attributes (instantaneous amplitude, instantaneous phase, and instantaneous frequency), and draw the separate instantaneous attributes profiles. This processing scheme provides both the conventional time-distance profile also in addition to the three instantaneous attributes. The additional attributes reduce ambiguity when evaluating the original radar profile and avoid the deviation relying solely on a conventional time-distance profile. An actual radar profile, which was obtained by a BHR system in a limestone fracture zone, is used to verify the effectiveness of instantaneous attributes for improving interpretation accuracy. The results demonstrate that the EMD method is superior in processing the BHR signal under a low SNR and has the capability to separate the high-low components of the radar echo effectively.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-09-01
    Beschreibung: Hydraulic connections between aquifers is usually studied through hydrochemical analysis or by pumping tests. However, hydrochemical analyses are usually conducted in areas of variable lithology. In addition, the hydrogeological data obtained by drilling and pumping tests are typically insufficient to get 3D distributions of hydraulic head. In this paper, the time-lapse transient electromagnetic method (TEM) is used to image groundwater migration between aquifers in Inner Mongolia, China. First, 1D geophysical models of aquifers are generalized according to the hydrogeological conditions of the region, and the feasibility of detecting the multiple aquifers by TEM is analyzed and discussed. Then, the 2D models of aquifers pre- and post- pumping test are established based on the distribution of groundwater in the aquifers, and the variation law of induced electromotive force measured on the surface is analyzed. The simulation results show that significant time-lapse electromagnetic anomalies can be observed between pre- and post- pumping test and the variation in the induced electromotive force reaches a distinguishable level between 0.7 ms and 100 ms due to the vertical change in the aquifer properties. Furthermore, the electromagnetic variation generated by hydraulic connection between aquifers is greater than 30% within the range of 3/4 of the transmitting loop. Finally, a successful case history to map hydraulic connections between aquifers is conducted using a time-lapse TEM pre- and post- a pumping experiment. This simulation and field experiment shows that time-lapse TEM could characterize and monitor the groundwater migration more effectively than pump tests or hydrogeochemical methods alone.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-09-01
    Beschreibung: Each year hydraulic structures such as levees and earth dams are hit by disorders that can lead to their collapse. A dike reinforcement method such as the deep soil mixing gets interest for its reinforcement capacity at moderate cost. We report on the use of a non-destructive technique to effectively assess the proper achievement of these structures and their evolution in time. More particularly, 2D-electrical resistivity imaging (2D-ERI) was used to assess a cut-off wall. We evaluate the benefits and limitations of three acquisition techniques (longitudinal, transversal and cross-hole). To complete the interpretation, we performed a comprehensive geotechnical study to make a diagnosis of the structure. Each inversion result is combined with numerical modelling that enlightens limitations of the acquisition techniques and improve the interpretation. Results show that 2D-ERI can present a real benefit for the assessment of cut-off walls even if the dimensions of the cut-off wall limit the detectability of deep heterogeneities.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-09-01
    Beschreibung: A subsurface landslide is the key problem to a large affordable home program in the southern Qinshui Basin, China. A geophysical survey integrated with seismic refraction tomography (SRT), seismic scattered wave imaging (SSI), and electrical resistivity tomography (ERT) was performed along five profiles over the landslide body. The bedrock surface was a crucial interface, represented by a relatively high velocity, high density, and high resistivity in contrast to the unconsolidated soil and landslide material above it. Based on the most comparable geophysical features, several problems were uncovered such as a “sandwich velocity structure” in the SRT results, velocity trap in the SSI results, and rapid variations in the local topography in all three methods. Aiming to improve the comprehensive interpretation of the ERT, SRT, SSI data, the vertical gradient extremum in the ERT and SRT data and tracing the target wave group according to the velocity sensitivity in the SSI data were analyzed. Moreover, a joint interpretation of the three geophysical survey datasets as well as 32 geological wells and 73 geotechnical boreholes helped to determine one undulating bedrock surface, delineate two types of failure surface geometry (landslide surface and collapse surface), and identify three external shapes in the ex situ body (ancient river channel, landslide body and collapse body). The results showed that the integrated geophysical survey not only provided detailed evidence for the existing of landslide but also presented meaningful evidence for the sliding mechanism. These results were difficult to fully describe and to apply to understanding landslide processes. Furthermore, for near-surface landslide events, the joint interpretation of geologic, geotechnical and geophysical data was necessary to reduce problems with any single geophysical survey.
    Print ISSN: 1083-1363
    Digitale ISSN: 1943-2658
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...