ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (167)
  • 2015-2019  (167)
  • 2015  (167)
Collection
  • Articles  (167)
Publisher
Years
  • 2015-2019  (167)
Year
Journal
Topic
  • 1
    Publication Date: 2015-12-25
    Description: The eruption of the Siberian Traps Large Igneous Province (SLIP) at the Permo-Triassic boundary was synchronous with environmental degradation and the largest known mass extinction in the geological record. The volatile emissions associated with these eruptions have been linked to the environmental change yet we understand little of their source and magnitude and how they varied with time. There are a number of possible sources for the volatiles that were emitted during the eruptions: the mantle (including metasomatized lithosphere), volatile-rich sediments (through metamorphism or direct assimilation) and the crustal basement. To assess the relative importance of these sources (with the exception of the metamorphic outgassing source), we have conducted a geochemical study of melt inclusions hosted by clinopyroxene in Siberian Traps low-Ti tholeiitic lavas and sills of the Khakanchansky, Ayansky and Khonnamakitsky Formations. The magmas were not emplaced into or erupted onto evaporite deposits, in contrast to samples studied previously. The trace element compositions of the melt inclusions are highly variable compared with the uniform whole-rocks, exhibiting a wide range of La/Yb ratios from 0·7 to 9·5. The melt geochemistry is consistent with relatively large degrees of partial melting of a dominantly peridotite mantle source. A negative Nb anomaly indicates a degree of crustal contamination, but there is no evidence for contamination by volatile-rich evaporites. Enrichment of some of the melts in large ion lithophile elements (Ba, Sr) indicates their interaction with a fluid. We suggest that, consistent with the observed depletion in other incompatible trace elements in the melt inclusions, the volatile concentrations in the melts were relatively low, and that subsequently the melts underwent variable degrees of degassing in the crust. Overall, the melts are more volatile-poor than those reported previously from the SLIP and were erupted after the first "pulse" of more volatile-rich magmas described by Sobolev et al. (2015) . These volatile-poor magmas may have been widespread across the region during the Siberian Traps eruptions once a pyroxenite component in the mantle source had been exhausted.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-25
    Description: Analysis of the 18 O and 13 C values of carbonate rocks from Islay, Scotland reveals structural channelling of metamorphic fluids through the axial region of a major en echelon anticlinal fold system. Metamorphic fluid flow produced axial planar veins with higher vein density in the axial region of the fold. Fluid:rock ratios were more than 30:1 within this axial region, at least four times greater than the regional mean ratio of 7·6 ± 1·5:1 for carbonate rocks on Islay. This supports the interpretation that metamorphic fluids were channelled through the axial region of the Islay Anticline. Fluid:rock ratios were calculated using a model for coupled 18 O and 13 C exchange with a metamorphic fluid. The metamorphic fluid was calculated to have 18 O and 13 C values of 15·3 and –6·1, respectively and X CO2 of 0·2. This is in isotopic and chemical equilibrium with chlorite- and graphite-bearing metamudstones that are structurally below the folded metacarbonate rocks on Islay. Devolatilization of these metamudstones is therefore a likely source mechanism for this metamorphic fluid. Removal of the effects of metamorphic fluid flow on 13 C values recorded by metacarbonate rocks on Islay allows us to re-evaluate evidence used to reconstruct Neoproterozoic climate. This evidence includes a large negative 13 C excursion reported from the Lossit Limestone Formation. This unit underlies the Port Askaig Formation, which is dominated by diamictites that have been interpreted as glacial tillites. This ‘Islay anomaly’ has been correlated with other such anomalies worldwide and together with overlying tillites has been cited as evidence of major (worldwide) glaciation events. In this study, we show that the magnitude of this negative 13 C anomaly can partly be explained by exchange with metamorphic fluids. However, we also show that extremely negative 13 C values in the Bonahaven Dolomite Formation, which overlies the Port Askaig Formation and has been interpreted as a ‘cap carbonate’, cannot be attributed to metamorphic fluid flow.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-25
    Description: To evaluate compaction and interstitial melt expulsion during cumulate formation, a 20 m cumulate section including the UG2 and UG3 chromitites from a 264 m drill core through the Upper Critical Zone of the Bushveld Complex (South Africa) has been studied. The cumulates in the studied section are as follows: 3 m plagioclase pyroxenite to pyroxenite, pegmatoid footwall pyroxenite at the lower contact to UG2, 0·7 m UG2 chromitite, 6·8 m pyroxenite, 0·24 m UG3 chromitite, 2·0 m plagioclase-rich pyroxenite changing locally to norite, the two 5 cm leader stringers UG3a and UG3b, and 7 m total of olivine pyroxenites grading into plagioclase pyroxenites. All pyroxenites are dominated by orthopyroxene (opx) and the cumulate sequence is topped by mottled anorthosite grading into norite. Stratigraphic concentrations of major and trace elements of 52 bulk-rock samples were determined. Bulk-rock Mg-numbers are 0·79–0·81 throughout the silicate cumulate units, and 0·40–0·46 in the chromitite layers. The stratigraphic distribution of six incompatible trace elements (K, Rb, Ba, Cs, Zr and Th) has been used to determine the amount of trapped liquid ( F TL ) or paleo-porosity in the cumulate rocks. Final porosities (volume fractions), based on averages from the six trace elements, are 0·06–0·33 in the pyroxenites. In chromitite layers, trapped melt fractions of 0·12–0·36 are calculated from incompatible trace element concentrations, but bulk SiO 2 concentrations and X-ray tomography yield 0·04–0·17 higher porosities. Hence, the bulk silicate fraction in the chromitites may not necessarily correspond to the trapped liquid fraction, as poikilitic opx was crystallizing while the silicate melt still equilibrated. Using a previously derived experiment-based model for compaction time scales, gravitationally driven chemical compaction in the UG2–UG3–pyroxenite section is calculated to occur within 1–10 years. This time frame corresponds to the times necessary to cool a 20 m layer by 10–50°C, the temperature interval argued to encompass the liquidus and almost complete solidification. Compaction within a decade can in fact easily develop the paleo-porosities indirectly observed today and is probably stopped by crystallization of the interstitial liquid. Contrary to previous assertions, melt expulsion from the cumulate pile does not hinder compaction; calculated permeabilities would allow for the migration of an order of magnitude higher amount of melt than has to be expelled from the 20 m pile of cumulate. The pegmatoid zones in the chromitite footwalls enriched in incompatible trace elements are consistent with a collection of interstitial melts expelling from the underlying compacting pyroxenites. Their entrapment below the chromitite layers suggests that these act as permeability barriers. This is in part due to their finer grain size compared with the pyroxenites, but is mainly due to the crystallization of large poikilitic opx during compaction.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-25
    Description: The recent eruptive history on the island of Tenerife is characterized in part by the presence of zoned phonolitic ignimbrites, some of which prominently display two types of juvenile clasts (i.e. light-colored, aphyric pumices alongside darker, more crystal-rich pumices, here dubbed ‘crystal-poor’ and ‘crystal-rich’, respectively). Petrographic observation of the crystal-rich pumices reveals intensely resorbed and intergrown mineral textures, consistent with the system reaching a high crystallinity, followed by perturbation and remobilization prior to eruption. Some trace elements show anomalous concentrations in such crystal-rich pumices (e.g. bulk Ba 〉 2000 ppm alongside low Zr and a positive Eu anomaly) indicative of crystal accumulation (of feldspar ± biotite). Many biotite and feldspar crystals are reversely zoned, with rim concentrations that are high in Ba but low in Sr, implying crystallization from an ‘enriched’ melt, potentially derived from remobilization by partial melting of the aforementioned cumulate zones. Given (1) the presence of cumulates in the eruptive record on Tenerife and a bimodality of pumice textures, (2) the presence of three dominant compositions (basanite, phonotephrite, phonolite, separated by compositional gaps) in the volcanic record, and (3) abundant support for crystal fractionation as the dominant drive for magmatic evolution in Tenerife, it is hypothesized that crystal-poor magmas are extracted from mushy reservoirs in both the lower and upper crust. The thermodynamic software MELTS is used to test a polybaric differentiation model whereby phonolites ( sensu lato ) are generated by extraction of residual liquids from an intermediate-crystallinity phonotephritic mush in the upper crust, which is in turn generated from the residual liquids of an intermediate-crystallinity basanitic mush at deeper levels. Latent heat spikes following crystallization of successive phases in the upper crustal reservoir provide a thermal buffering mechanism to slow down cooling and crystallization, permitting enhanced melt extraction at a particular crystallinity interval (mostly ~40–60 vol. % crystals). MELTS modeling typically fits the observed chemical data adequately, although some major elements (mostly Al 2 O 3 ) also indicate partial ‘cannibalization’ of feldspar along with some magma mixing (and potentially minor crustal contamination).
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-25
    Description: To investigate the nature and origin of across-arc geochemical variations over time in mantle wedge derived magmas, we have carried out a geochemical study of basalts in the NE Japan arc spanning an age range from 35 Ma to the present. Back-arc basalts erupted at 24–18 Ma, 10–8 Ma, 6–3 Ma and 2·5–0 Ma have higher concentrations of both high field strength elements (HFSE) and rare earth elements (REE) [particularly light REE (LREE) and middle REE (MREE)], and higher incompatible trace element ratios compared with frontal-arc basalts at any given time. Geochemical modeling of Nb/Yb versus Nb shows that the frontal-arc and back-arc compositional differences are independent of subduction modification and can, in many cases, be explained by different degrees of melting (higher degrees of melting for frontal-arc magmas and lower degrees of melting for back-arc magmas) of a nearly homogeneous depleted mid-ocean ridge basalt (MORB) mantle (DMM)-like source, although there are several exceptions. These include some Pliocene frontal-arc basalts that may originate from a source that is slightly more depleted than DMM, several 35–32 Ma and 24–18 Ma back-arc basalts derived from a lithospheric mantle source that is enriched in HFSE compared with DMM, and a rare 16–12 Ma basalt that was erupted in the back-arc but was produced by a similar degree of melting to frontal-arc basalts erupted at the same time. Variations in ratios of fluid-mobile and -immobile elements and those of melt-mobile and -immobile elements for the 35–0 Ma NE Japan basalts indicate that the principal subduction component added to the source mantle prior to generation of these basalt magmas is a sediment-derived melt. Comparison of Sr and Nd isotopic compositions for Pacific Ocean MORB, the NE Japan basalts and subducting sediments suggests that the isotopic compositions of most post-16 Ma more depleted back-arc basalts can be explained by the addition of 〈2% bulk sediment; the most enriched isotope compositions of the subcontinental lithosphere-derived magmas can be accounted for by addition of a maximum 5–7% Japan Trench Sediment (JTS), if the original Sr and Nd compositions of the lithosphere approximated that of DMM. The Sr and Nd isotope composition of the frontal-arc basalts can be accounted for by the addition of 1–5% JTS. A depleted asthenospheric mantle (DMM-like) upwelling model with interaction between asthenospheric mantle-derived magmas and overlying lithospheric mantle can account for the geochemical characteristics of the 35–0 Ma NE Japan basalts. The frontal-arc magmas were generally generated by higher degrees of melting of the shallower part of the asthenospheric mantle, whereas the back-arc magmas resulted from lower degrees of melting of the deeper part of asthenospheric mantle. These latter magmas underwent interaction with the lithospheric mantle, resulting in more enriched Sr and Nd isotopic signatures for the pre-18 Ma back-arc basalts and post-22 Ma frontal-arc basalts, but less interaction, resulting in more depleted Sr and Nd isotopic signatures, for most of the back-arc basalts younger than 16 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-25
    Description: Mt. Lamington is a composite, dome-forming volcano in Papua New Guinea, sitting on the Papuan Ultramafic Belt (PUB) ophiolite. The 1951 eruption produced andesitic dome lavas with numerous basaltic–andesitic enclaves and a few PUB ultramafic xenoliths. To understand the nature of the 1951 eruption, and to assess the effect of assimilating ophiolitic crust in modifying the geochemistry of arc magmas, we carried out petrological, mineralogical and geochemical studies on andesitic lavas as well as magmatic enclaves and ultramafic inclusions. The mineralogy of the enclaves is dominated by amphibole and plagioclase, similar to the andesitic lava hosts. The textures of the enclaves vary from fine-grained diktytaxitic to coarser-grained plutonic textured. We interpret this variation to result from variable cooling rates in the enclave-forming magma body when it invades the overlying andesite. The diktytaxitic enclaves contain variable proportions of host-derived amph + plag antecrysts and xenocrysts of ol + sp ± cpx ± amph with disequilibrium textures, indicating interaction with host lava and assimilation of foreign materials, respectively. A previous study argued that the olivine xenocrysts with chromian spinel inclusions are derived from the PUB, and thus that the PUB contaminated the Mt. Lamington magmas. We demonstrate that this is highly unlikely on the basis of morphological and compositional discrepancies between PUB ol + sp, sampled in nodules, and the xenocrysts. Mass balance indicates that the high whole-rock Ni contents of enclaves and andesitic hosts can be explained by olivine incorporation and do not require any PUB involvement. The olivines are considered to represent crystal mush fractionated from precursor(s) of andesitic and/or pre-1951 shoshonitic lavas. Their presence in enclaves represents recycling of earlier-fractionated components through magma recharge. We argue that this recycling is an important and underestimated process in shaping arc magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-25
    Description: Measurements of dihedral angles at three-grain junctions in gabbros, involving two grains of plagioclase and one grain of another mineral, demonstrate that the median dihedral angle is generally the same for all minerals in any sample. The few exceptions to this can be attributed to reaction or to the cessation of growth of plagioclase during the last stages of solidification of highly evolved liquids that do not crystallize volumetrically important amounts of plagioclase. The dihedral angle is therefore primarily controlled by the growth behavior of plagioclase in the last remaining liquid. The final value of the dihedral angle is controlled by the extent to which plagioclase growth is accommodated on the (010) faces: low angles form when growth on the (010) faces is minor compared with that on the other growth faces, and high angles form when the (010) faces accommodate significant growth. The response of dihedral angles to changes in crystallization time is therefore explained by the changing response of plagioclase growth to cooling rate, with limited growth on (010) faces during rapid cooling (leading to a low dihedral angle) and more significant growth at slow cooling (leading to high dihedral angle). The correspondence between dihedral angle and plagioclase grain shape (as quantified by the average apparent aspect ratio observed in thin section) is clearly evident for non-fractionated bodies such as dolerite sills. Although the stratigraphic variation of the overall plagioclase grain shape in the floor cumulates of the Skaergaard Intrusion is broadly similar to that observed in sills, there is no correspondence to observed augite–plagioclase–plagioclase dihedral angles, which show a step-wise stratigraphic variation, corresponding to changes in the liquidus assemblage. This decoupling occurs because plagioclase growth in layered intrusions occurs in two stages, the first at, or close to, the magma–mush interface and the second within the mush. Chemical maps of samples on either side of the augite-in dihedral angle step demonstrate a step-wise change in the aspect ratio of the plagioclase grown during the second stage, with the aspect ratio of this stage corresponding to that predicted from the dihedral angles. Plagioclase shape in layered intrusions thus records two separate thermal regimes, with the overall shape controlled by the global cooling rate of the intrusion, and the second (minor) stage within the mushy layer reflecting local thermal buffering controlled by the liquidus assemblage of the bulk magma. Dihedral angles in layered intrusions record the second thermal regime.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-12-10
    Description: The fore-arc mantle above a subducting slab is a unique site where complex partial melting, melt/fluid–rock interaction, and deformation of mantle rocks occur. To constrain these geological and geodynamic processes we analyzed the deformation microstructures, crystal preferred orientations (CPOs or fabrics), and water content in natural harzburgites that occur as exhumed massifs in the North Qilian suture zone, NW China. These harzburgites are very fresh, and have mineral assemblages of olivine (~81–87 vol. %), orthopyroxene (~11–17 vol. %), clinopyroxene (~1–2 vol. %), and spinel (~1 vol. %). Detailed analyses of mineral textures, CPO patterns, and rotation axis distributions suggest that the plastic deformation of olivine and pyroxene was accommodated by activating a series of slip systems of dislocation. The olivine (A-/D-type fabric) shows dominant (010)[100] and/or (001)[100] slip systems, as well as other minor [100]-glide, {0 kl }[100], and [001]-glide slip systems. The orthopyroxene shows dominant (100)[001] and subordinate (010)[001] slip systems, with minor (100)[010] and (100)[0 vw ] slip systems. The water content is extremely low in the orthopyroxene (38–44 ppm by weight), equilibrated olivine (4–7 ppm), and bulk-rock samples (9–14 ppm). Previously published refractory mineral and whole-rock compositions, as well as estimated low-pressure (~1–2 GPa), high-temperature (~1100–1300°C), low-stress (~1–4 MPa) and water-poor conditions of deformation, suggest that these harzburgites represent a remnant of fossil fore-arc lithospheric mantle that was probably both formed (experienced partial melting and high-temperature melt/fluid–rock reaction) and deformed in a young and warm fore-arc mantle setting (i.e. juvenile subduction zone). Based on these results, a refined schematic model of olivine fabric distributions in subduction zones is proposed. In this model, the A-/D-type olivine fabrics are inferred to be prevalent in fore-arc lithospheric mantle. The opposing polarizing directions of A-/D-type olivine fabrics with other underlying anisotropic sources in the mantle wedge (e.g. B-type olivine fabrics and oriented serpentinite layers) may weaken the trench-parallel fast S-wave anisotropy contributed by the deformed fore-arc mantle, and thus provide an alternative explanation for the short or nearly null delay times of local shear-wave splitting (sourced from intra-slab earthquakes) that have been detected in some fore-arc regions. In addition, topotactic antigorite fabrics after the A-/D-type olivine fabric might play a minor role in contributing to the low P- and S-wave velocities, high V p / V s ratios, and large seismic anisotropies that are typically observed in fore-arc mantle.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-10
    Description: The historical eruptive activity on Tenerife (Canary Islands, Spain) consists of relatively mafic magmas that produced mildly explosive monogenetic eruptions; this is the most likely style of eruption that might occur in the near future. Here we investigate the processes and time scales that lead to such eruptions with the aim of better interpreting volcanic unrest in the island and improving eruption forecasts. We combine geochemical and petrological information with a compilation of accounts of seismicity for the historical eruptions of Siete Fuentes, Fasnia, and Arafo. These occurred between December 1704 and February 1705 along the NE rift of Tenerife from three vents at different altitudes and more than 10 km apart from each other. The erupted volume increased with time from about 1 x 10 6 m 3 for Siete Fuentes, to 7 x 10 6 m 3 for Fasnia, and to 28 x 10 6 m 3 for Arafo. All the erupted magmas were basanitic; the bulk-rock compositions became more mafic with time owing to accumulation of olivine with Cr-spinel inclusions and clinopyroxene, rather than to the arrival of a truly more primitive melt. We have identified four olivine compositional populations [crystal cores at Fo = 79–80, Fo = 81–82, Fo = 83–84, and Fo = 85–87; Fo = 100 x Mg/(Mg + Fe)] that are either unzoned or normally or reversely zoned in major and minor elements. The variety of olivine core populations and zoning patterns reflects mixing and mingling between different magmas; their proportions changed with time from Siete Fuentes to Arafo. Clinopyroxene crystals also show a variety of zoning patterns and changes in Mg/Fe and Cr contents indicative of open-system magma interactions, but are more difficult to interpret because of fast disequilibrium growth conditions. Modelling of the zoning profiles of olivine shows that early mixing occurred between two relatively evolved magmas, probably at shallow depths 1 year prior to the eruption. Another mixing event between two more primitive magmas stored presumably at deeper levels occurred less than 2 months prior to the eruption. Finally, movement from depth of the pre-mixed primitive melts and interaction with the also pre-mixed, shallower and more evolved melts occurred only 2 weeks before the eruption. Although the first and last eruptions were fed by the same magma, each also records renewed magma movement from depth and mixing before eruption and thus they were probably fed by different dike systems. The shorter transport times of weeks are also seen in our compilation of the historical accounts of seismicity associated with these eruptions. The sequence of events and their timing should be useful for interpretation of monitoring data of unrest in Tenerife, and the short times between the last processes before eruption could be considered for the implementation of emergency plans during volcanic crises.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-10
    Description: Experiments simulating magma decompression allow the textures of volcanic rocks to be calibrated against known eruptive conditions. Interpretation of natural samples may be complicated, however, by both the decompression path and the composition of exsolving volatiles, which affect the time evolution of crystal textures. Here we present the results of decompression experiments at elevated temperature and pressure designed to assess the effects of degassing path on crystallization of Mount St. Helens rhyodacite. Three families of experiments were employed to simulate varied P H 2 O– t trajectories: single-step, H 2 O-saturated decompression (SSD); continuous, H 2 O-saturated decompression (CD); continuous, H 2 O–CO 2 -saturated decompression. Quantitative textural data (crystal abundance, number density, and size) are used to calculate plagioclase nucleation and growth rates and assess deviations from equilibrium in run products. These are the first experiments to quantify feldspar nucleation and growth rates during H 2 O–CO 2 -saturated decompression. We find that reducing the initial melt water content through addition of CO 2 increases nucleation rates relative to the pure water case, an effect most pronounced at low d P /d t. Moreover, these early formed textural distinctions persist at the lowest pressures examined, suggesting that deep H 2 O–CO 2 fluids could leave a lasting textural ‘fingerprint’ on erupted magmas. Crystals formed prior to decompression during the annealing process also modulate sample textures, and growth on pre-existing crystals contributes significantly to added crystallinity at a wide range of experimental conditions. The phase assemblage itself is a dynamic variable that can be used in conjunction with textural data to infer conditions of magma ascent and eruption. Finally, quantitative textural data from experimental samples are compared with those of natural pyroclasts erupted during the summer 1980 explosive–effusive transition at Mount St. Helens. This comparison supports a model of magma ejected from multiple storage regions present in the upper crust following the May 18 Plinian eruption, such that subsequent eruptions tapped magmas that experienced varied decompression and degassing histories.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...