ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,802,976)
  • Other Sources  (2,952)
  • Springer  (3,530,420)
  • Public Library of Science  (275,023)
  • GEOMAR
  • IFM-GEOMAR
Collection
Language
Years
  • 1
    Publication Date: 2024-07-11
    Description: We report two Arctic species of incirrate octopods new to science. One is formally described here as Muusoctopus aegir Golikov, Gudmundsson & Sabirov sp. nov. while the other, Muusoctopus sp. 1, is not formally described due to a limited number of samples (all are immature individuals). These two species differ from each other, and from other Muusoctopus, especially in: 1) absence of stylets (in M. aegir sp. nov.); 2) proportions of mantle and head; 3) funnel organ morphology (W-shaped with medial and marginal limbs of equal length in M. aegir sp. nov., or medial are slightly longer; V V-shaped with medial limbs slightly longer and broader than marginal in Muusoctopus sp. 1); 4) sucker and gill lamellae counts; 5) relative arm length and sucker diameter; and 6) male reproductive system relative size and morphology. Species of Muusoctopus now comprise four of 12 known Arctic cephalopods. Additionally, this study provides: a) new data on the morphology and reproductive biology of M. johnsonianus and M. sibiricus, and a diagnosis of M. sibiricus; b) the equations to estimate mantle length and body mass from beak measurements of M. aegir sp. nov. and M. johnsonianus; c) a cytochrome c oxidase subunit I gene barcode for M. sibiricus; d) new data on the ecology and distribution of all studied species; and e) a data table for the identification of northern North Atlantic and Arctic species of Muusoctopus.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-11
    Description: Background: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. Results: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. Conclusion: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply “fine-tuning” of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host’s traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-09
    Description: Published
    Description: OS: Terza missione
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-09
    Description: Anthropogenic disturbances are having strong, negative effects on aquatic systems globally, altering ecological communities and potentially creating vacant niches for both native and non-native species (NNS). Globalization and new trade routes have amplified the spread and establishment of NNS by connecting disturbed areas worldwide. In this study, we conducted a comparative assessment of seasonal variations in amphipod communities at three southeastern Baltic Sea locations – two anthropogenically impacted and one protected habitat – to determine if native and NNS diversity differed among these habitats. Our study revealed nine amphipod species - of which two were NNS - across all three habitats. The impacted habitats had significantly higher native species richness and lower NNS abundance. Grandidierella japonica was the only NNS found at the impacted habitas. In the case of the protected habitat, NNS Gammarus tigrinus was dominant for most of the year. In autumn, dominance shifted in favour of the native Gammarus locusta and Microdeutopus cf. gryllotalpa. Grandidierella japonica was not detected there. Although anthropogenically impacted habitats may be under higher invasion risk, other environmental factors, such as salinity and temperature, may be driving the establishment pattern of NNS and the resulting community structures. Furthermore, undisturbed and/or protected habitats may be highly vulnerable to invasions due to more tolerable environmental conditions, robust NNS populations and naïve native species to newcomers. Seasonality is an important aspect of ecological studies and must be taken into account, as omissions could potentially distort our understanding of the dynamics of ecosystems and prevent the detection of NNS.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR
    Publication Date: 2024-07-08
    Description: FS Maria S Merian – MSM129/2 07.06.2024 – 06.07.2024 St. John’s (Kanada) – Reykjavik (Island) 4. Wochenbericht (24.06. – 30.06.2024)
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-08
    Description: Background: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. Results: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii’s trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. :Conclusions Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids’ increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-05
    Description: Automatic seismic data interpretation is a significant method in the exploration of geophysics. Complexities of the subsurface structures and the subsurface wave propagation media, make the decision-making process difficult in seismic data interpretation. Nevertheless, the extent of related knowledge and using the expert system method in seismic data interpretation can mitigate this problem. An expert system is a knowledge-based system that applies its knowledge in a complex and specific area and acts as an expert end-user consultant. This study investigates the design of an ANFIS expert system for mud diapirs detection with seismic data analysis in Gorgan plain. This method was applied to seismic attributes from a complex geological mud diapir bearing structure from south of the Caspian Sea. The south of the Caspian Sea is one of the richest area as petroleum reserves, and the Gorgan plain has various mud diapirs, which act as indicators of hydrocarbon reservoirs. The expert system design process to identify mud diapirs on seismic sections was modeled in two approaches including manual and automatic seismic data interpretation. In the first approach, the experience of the expert was collected by manual interpretation of training data and used to create a knowledge base and inference of the expert system in the second approach. The validation verified the accuracy of this method with an average accuracy of 90.1% according to using minimum knowledge to develop a knowledge base of the designed ANFIS expert system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2024-06-28
    Description: Earth System Literacy offers a rich matrix of narratives about (planet) Earth, World and Humans when interwoven with cultural artefacts (e.g. arts, history). Anthropogenic global change locks them together in a unifying framework. By making a distinction between reproduction, work (ergon, Greek) and civicness, there are narratives that convey what characterises the human condition today, including the material, social and historic settings of the Anthropocene.
    Description: Published
    Description: 445–449
    Keywords: Anthropocene ; Earth System Literacy ; Narratives ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-28
    Description: Animals have a deep evolutionary relationship with microbial symbionts, such that individual microbes or an entire microbial community can diverge alongside the host. Here, we explore these host-microbe relationships in Echinometra, a sea urchin genus that speciated with the Isthmus of Panama and throughout the Indo-West Pacific. We find that the eggs from five Echinometra species generally associate with a species-specific bacterial community and that the relatedness of these communities is largely congruent with host phylogeny. Microbiome divergence per million years was higher in more recent speciation events than in older ones. We, however, did not find any bacterial groups that displayed co-phylogeny with Echinometra. Together, these findings suggest that the evolutionary relationship between Echinometra and their microbiota operates at the community level. We find no evidence suggesting that the associated microbiota is the evolutionary driver of Echinometra speciation. Instead, divergence between Echinometra and their microbiota is likely the byproduct of ecological, geographic, and reproductive isolations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-06-27
    Description: An interactive (multi-access) global identification key (OncIdent) has been developed for the pelagic marine microcopepod family Oncaeidae and made accessible online. Details of the general approach and development of the key are given in Bottger-Schnack and Schnack (J Nat Hist 49:2727-2741, 2015). After beta-testing, new additions include illustrations for all species and feature attributes considered, plus a textual summary of each species' feature states in the key. Additional taxonomic notes are given where required, highlighting morphological or molecular genetic peculiarities or problems, with links to large data bases leading directly to more comprehensive information about each species. The present paper briefly reviews the taxonomic background for key construction, summarizes the opportunities and limitations of the current online version OncIdent2.0, and provides guidance for its practical use.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...