ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,216)
  • Elsevier  (874)
  • Frontiers  (291)
  • GEOMAR  (51)
  • IFM-GEOMAR
  • 2020-2024  (1,216)
  • 1
    Publication Date: 2024-07-03
    Description: Highlights • All investigated sites are in quiescent stage. Multi layers of clam shell debris were the ancient sediment surfaces during high methane flux. • Current fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600-800 cm sediment. • The sequestration of carbon could be 〉 50 mmol C cm-2 yr-1 under current in situ condition. Abstract Methane seepage records information of the local carbon cycle with respect to the generation, consumption and sequestration of carbon. Here presents the investigation of 7 gravity cores retrieved in 2004 during cruise SO-177 in the Haiyang 4 Area at the northern slope of the South China Sea. Porewater solutes, sulfate, methane, total alkalinity, sulfide and calcium demonstrate currently the weak seep activity. Local carbon cycling and sequestration is also revealed, that dominates by anaerobic oxidation of biogenic methane to dissolved bicarbonate inducing calcium carbonate and iron sulfide minerals (mainly pyrite) precipitation. A reactive transport model was employed to quantify the carbon cycle and budget. Model results show that current methane fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600–800 cm sediment depth. The sequestration of carbon could be 〉 50 mmol C cm−2 yr−1 under in situ condition. The observed increase of carbonate and iron sulfide minerals at ∼100 cm, however, require higher methane fluxes to shift the zone of anaerobic oxidation of methane upwards to around 1 m below the seafloor, which have occurred during sea level low stands in the geological past. The oscillation of seepage flux contributed to the formation of multiple layers of authigenic carbonates and pyrite, which indicates the high capability of carbon sink and is speculated to be induced by the dissociation of the underlying hydrates triggered by sea level drop and or temperature increase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-02
    Description: Highlights • Accurate fault model can be built even when sparse drilling wells are available. • The multiresolution fault model provides information of faults with different sizes. • Fault model provides possibility of tectonic and fluid flow analysis simultaneously. • Modelling of faults in different scales, enable more accurate well path design. • The ANN provides optimized parameters for fault detection by ant tracking algorithm. Modelling faults plays a crucial step in the chain of studies through the first phase of the hydrocarbon exploration and its following studies in reservoir engineering, simulation and field development. This study introduces an innovative and automatic integrated approach that combines seismic multi-attributes and well data for faults modelling. The proposed strategy begins with extracting fault-related seismic attributes commonly used for seismic reservoir characterization. Chaos, variance and curvature attributes, typically highlight large-scale faults that shape the structural framework of the study field. In contrast, small-scale faults, influencing subsurface fluid flow in the fractured reservoir, are modeled using the ant-tracking algorithm applied to seismic data. Small-scale and large-scale fault models, then integrated with the conventional fault model to create an integrated discrete fracture network (DFN). This DFN model incorporates information on both large-scale and small-scale faults. The proposed strategy was applied on a geologically complex petroleum field in Iran. The results, validated using Formation Micro Imager (FMI) data, demonstrate accuracy of the integrated DFN model in comparison to conventional approaches on the studied filed, particularly in capturing small-scale faults. Consequently, it can be concluded that the proposed strategy provides a viable alternative for generating accurate DFN model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-02
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-02
    Description: Highlights • New geophysical data and samples redefine submarine volcanism in Sicilian Channel. • Three dominant bands of volcanism are distinguished. • Ancient, eroded structures aligned at 120° are tied to faulted banks in the north. • Younger band of similarly aligned volcanism in the south is linked to grabens. • Youngest structures comprise small, dispersed volcanoes with distinct orientation. Abstract The origin and role of volcanism in continental rifts remains poorly understood in comparison to other volcano-tectonic settings. The Sicilian Channel (central Mediterranean Sea) is largely floored by continental crust and represents an area affected by pronounced crustal extension and strike-slip tectonism. It hosts a variety of volcanic landforms closely associated with faults, which can be used to better understand the nature and distribution of rift-related volcanism. A paucity of appropriate seafloor data in the Sicilian Channel has led to uncertainties regarding the location, volume, sources and timing of submarine volcanism. To improve on this situation, we use newly acquired geophysical data (multibeam echosounder and magnetic data, sub-bottom profiles) and dredged seafloor samples to: (i) re-assess the evidence for submarine volcanism in the Sicilian Channel and define its spatial pattern, (ii) infer the relative age and style of magmatism, and (iii) relate this to the dominant tectonic structures in the region. Quaternary rift-related volcanism has been focused at Pantelleria and Linosa, at the northwest boundaries of their respective NW-SE trending grabens. Subsidiary and older volcanic sites potentially occur at the Linosa III and Pantelleria SE seamounts, collectively representing the only sites of recent volcanism that can be directly related to the main rift process. These long-lived polygenetic volcanic landforms have been shaped by magmatism that is directly correlated with extensional faulting and buried igneous bodies. Older volcanic landforms, sharing a similar scale and alignment, occur to the north at Nameless Bank and Adventure Bank. These deeply eroded volcanoes have likely been inactive since the Pliocene and are probably related to earlier stages of crustal thinning and underlying feeder structures in the northern region of the Sicilian Channel. Along a similar alignment, Pinne Bank, SE Pinne Bank and Cimotoe in the northern Sicilian Channel lack a surface volcanic signature but are associated with intrusive bodies or deeply buried volcanic rock masses. Terrible Bank, in the same region, also shows evidence of ancient, polygenetic magmatism, but was subject to significant erosion and lacks a prominent alignment. The much younger volcanism at Graham Volcanic Field and along the northern Capo-Granitola-Sciacca Fault Zone differs markedly from that observed in the other study areas. Here, the low-volume and scattered volcanic activity is driven by shallow-water mafic magma eruptions, which gave rise to small individual cones. These sites are associated with large fault structures away from the main rift axis and may have a distinct magmatic origin. Dispersed active fluid venting occurs across both ancient and young volcanic sites in the region and is directly associated with shallow magmatic bodies within tectonically-controlled basins. Our study provides the foundation for an updated tectonic and magmatic framework for the Sicilian Channel, and for future detailed chronological and geochemical assessment of the sources and evolution of magmatic processes in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-02
    Description: The Western Tropical Atlantic Ocean (WTAO) is crucial for understanding CO2 dynamics due to inputs from major rivers (Amazon and Orinoco), substantial rainfall from the Intertropical Convergence Zone (ITCZ), and CO2-rich waters from equatorial upwelling. This study, spanning 1998 to 2018, utilized sea surface temperature (SST) and sea surface salinity (SSS) data from the PIRATA buoy at 8°N 38°W to reconstruct the surface marine carbonate system. Empirical models derived TA and DIC from SSS, with subsequent estimation of pH and fCO2 from TA, DIC, SSS, and SST data. Linear trend analysis showed statistically significant temporal trends: DIC and fCO2 increased and pH decreased, although DIC did not show any trend after data was de-seasoned. Rainfall analysis revealed distinct dry (July to December) and wet (January to June) seasons, aligning with lower and higher freshwater influence, respectively. TA, DIC, and pH correlated positively with SSS, exhibiting higher values during the dry season and lower values during the wet season. Conversely, fCO2 correlated positively with SST, showcasing higher values during the wet season and lower values during the dry season. This emphasizes the influential roles of SSS and SST variability in CO2 solubility within the region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-02
    Description: Highlights • Ankaramites are Ca-rich and Ni-poor porphyritic basalts that are common in oceanic arcs. • Melt inclusions from Kibblewhite Volcano show similar compositions to ankaramites. • Ankaramite is a primary magma component in oceanic arcs. • Interaction between melt and mantle can produce ankaramitic melts. • Harzburgite formed by melt-mantle interactions is the source of high-Mg andesites. Abstract Ankaramites, which are clinopyroxene-rich basalts with primitive whole-rock compositions (Mg# 〉65), are common in oceanic arcs and are characterized by high whole-rock CaO/Al2O3 (〉1.0) ratios and olivine crystals with anomalously low nickel contents (〈0.2 wt% NiO). These geochemical characteristics cannot be explained by the melting of ordinary mantle peridotite. However, their origin is critical for understanding the formation of primary magmas in oceanic arcs. Here, we investigated olivine-hosted melt inclusions (MIs) from ankaramites and magnesian andesites of the Kibblewhite Volcano in the Kermadec arc. The MIs from the ankaramites have similar major and trace element characteristics to the host rocks, indicating that the ankaramites did not result from an accumulation of mafic minerals but rather represent the primary magma in the Kibblewhite Volcano. The MIs from the magnesian andesites were hosted in forsteritic olivine xenocrysts with a wide range of NiO contents (Fo90–92; 0.13–0.39 wt% NiO) and have similar major element compositions to the ankaramites but exhibit a wide range of CaO/Al2O3 (0.85–1.54). The trace element characteristics of the MIs from the magnesian andesites do not match those of the host rocks, indicating that they are not primary melts of the magnesian andesites but primitive basaltic melts generated before the magnesian andesites formed. Interestingly, the CaO/Al2O3 ratio of MIs from the magnesian andesites was negatively correlated with the NiO content of their host olivines. This correlation suggests that the composition of the primary basaltic magmas of the Kibblewhite Volcano changed continuously from peridotite-derived to ankaramitic. This correlation could not be explained by grain-scale process, crustal anatexis, or contribution of slab-derived carbonate-rich fluids. Instead, we propose that this correlation can be explained by the interaction of the ascending primary basaltic melts with the lithospheric mantle. During melt-mantle interaction, the assimilation of clinopyroxene and fractionation of olivine and orthopyroxene caused the CaO/Al2O3 ratio to increase in the melt and the Ni content to decrease. Furthermore, because the magnesian andesites have low CaO/Al2O3 ratios and could be derived from a clinopyroxene-poor mantle lithology, the interaction between the melt and mantle may also be closely related to the origin of the magnesian andesites at Kibblewhite Volcano. This interpretation provides a new perspective on the origin of the oceanic arc ankaramites and why primary andesitic and basaltic magmas coexist in the Kibblewhite Volcano.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-02
    Description: Highlights • Alkaline magmas of the TLTF island chain result from a subduction-modified mantle source and two-stage partial melting. • The role of mantle source and parental melt composition for high Cu-Au mineral potentials is important but limited. • A shallow crustal magma reservoir is key for epithermal ore formation. Abstract The Tabar-Lihir-Tanga-Feni (TLTF) island chain in northeastern Papua New Guinea formed by tectonic and alkaline to shoshonitic magmatic activity since the Pliocene. Several volcanic centers are Cusingle bondAu mineralized including the world-class Ladolam Au deposit and Conical Seamount south of Lihir. The latter has been recognized as a juvenile analogue to the Ladolam deposit located on-shore. Whereas the mineralization at Conical Seamount is reasonably well studied, the specific magmatic processes that promote epithermal mineralization at this seamount but not at others are poorly understood. Here, we present new petrological and geochemical data from Conical Seamount, and compare them with those from the barren (unmineralized) Edison, Tubaf and New World seamounts nearby. We focus on whole rock compositions and major and trace element analysis of melt inclusions and minerals including clinopyroxene, sulfide and magnetite. We combine our observations with modelled constraints on mantle source composition and partial melting as well as magma evolution. A first-stage melting leaves a residual mantle source enriched in Au. Second-stage melting of a previously subduction-metasomatized mantle generally promotes the transfer and concentration of metals and volatiles in the ascending melts. These magmas are unlikely to control ore formation as all seamounts show evidence for similar mantle sources and parental melt composition. However, the presence of a shallow crustal magma chamber is unique to Conical Seamount. It is characterized by frequent melt replenishments and extensive magma fractionation leading to sulfide and magmatic volatile saturation. These specific magma chamber processes lead to the pre-enrichment of the magma in chalcophile elements including Au, while sulfide saturation coeval with magmatic volatile exsolution provide the way for an effective Au transfer from the magmatic to the epithermal system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2024-07-01
    Description: The Skagerrak basin represents the main sink area for fine-grained sediment in the North Sea region and constitutes a natural deposition centre for sediments that are supplied from the Atlantic, the Baltic Sea and the surrounding continental margins and coasts. However, the exact sources and their proportional contributions to the North Sea sediments and to the Skagerrak deposits are not well understood.To trace the predominant sources of the sediment and to gain a better understanding of the sedimentary processes in the North Sea and the Skagerrak basin, radiogenic Sr, Nd, and Hf isotope signatures and clay mineral compositions of the detrital clay fraction of surface sediment samples from the North Sea, the Scandinavian margins and the Baltic Sea were measured.The results indicate that the major source for Skagerrak clay-size sediments is the northern North Sea but Scandinavia as well as the southern North Sea including the southern England coast also contribute material. Seabed and coastal erosion in the northern North Sea are enhanced by the inflowing Atlantic Currents, which provide the Skagerrak with high amounts of clay size sediments. In contrast, the southern North Sea, the Baltic Sea and mid-European rivers such as Weser, Elbe and Ems are only minor contributors. As Skagerrak deposits are dominated by clay sized material (up to 60%), the reconstructed sediment processes related to this study deviate from findings in previous sediment budget studies, which were based on both clay and silt fraction and indicated predominant influences from the southern North Sea. These results highlight that coastal and seabed erosion in the North Sea is a previously underestimated source of fine-grained sediments for depocenters in the entire North Sea.With regard to climate change, the global sea-level rise will likely enhance erosional processes and can therefore significantly influence the sediment budget of the entire North Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-07-01
    Description: Highlights • First successful in situ DGT application in the deep ocean. • DGT-lability of dissolved (〈0.2 μm) Cu, Ni, Cd, Mn, As, V, REY differs depending on chemical speciation. • REY in deep ocean water can be almost quantitatively assessed with DGT. • Low Cu availability reflects dominating organic speciation. Abstract Geochemical behaviour and bio-availability of trace metals are closely related to their physical fractionation and chemical speciation. The DGT speciation technique allows the challenging assessment of labile concentrations of Mn, Cd, Cu, Ni, V, As, and REY in ocean waters. In this first deep-water in situ study of DGT-lability, we demonstrate the approach in bottom waters of the Clarion-Clipperton Zone in the central NE Pacific. In the dissolved fraction (〈0.2 μm), 70% to 100% of Cd, Ni, V, and REY, but only 25% of Cu and less than 50% of As were determined, reflecting their prevailing dominance of organic vs. inorganic complexation. This study demonstrates the applicability and sensitivity of DGT-passive samplers for trace metals as a suitable technique in monitoring of anthropogenic activities, such as deep seabed mining, as well as for natural process studies in abyssal environments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...