ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GEOMAR
    In:  [Software]
    Publication Date: 2021-11-09
    Description: With this script, the Meridional Overturning Circulation (MOC) can be computed from NEMO ocean-model output for the whole globe or the Atlantic (AMOC), Indic (IMOC) and Pacific (PMOC) subbasins. The MOC is computable in z- and sigma coordinates. Moreover, for nested configurations, it is possible to combine data from both host and nest grids. Finally, it is possible to take into account of that the ORCA model grid is curvilinear north of 20°N: it is possible to compute the northward velocity component from the velocity field in x- and y- directions and to sum up the meridional flux over latitudional bands instead of in x-direction. When both steps are applied, the resulting MOC shows however strong variability in meridional direction. It needs to be clarified, whether this is realistic or not. The software is provided in the form of the jupyter notebook "MOC.ipynb" which includes more informations on the possibilites of the computations and an extensive appendix section with comparisons to computations with cdftools, as well as with details on the computation of the MOC including nest data and taking the curvilinearity of the grid into account. Necessary python modules are listed at the beginning of the document.
    Type: Software , NonPeerReviewed
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 17 pp.
    Publication Date: 2021-11-04
    Description: CMSY++ is an advanced state-space Bayesian method for stock assessment that estimates fisheries reference points (MSY, Fmsy, Bmsy) as well as status or relative stock size (B/Bmsy) and fishing pressure or exploitation (F/Fmsy) from catch and (optionally) abundance data, a prior for resilience or productivity (r), and broad priors for the ratio of biomass to unfished biomass (B/k) at the beginning, an intermediate year, and the end of the time series. For the purpose of this User Guide, the whole package is referred to as CMSY++ whereas the part of the method that deals with catch-only data is referred to as CMSY (catch MSY), and the part of the method that requires additional abundance data is referred to as BSM (Bayesian Schaefer Model). Both methods are based on a modified Schaefer surplus production model (see paper cited above for more details). The main advantage of BSM, compared to other implementations of surplus production models, is the focus on informative priors and the acceptance of short and incomplete (i.e., fragmented, with missing years) abundance data. This document provides a simple step-by-step guide for researchers who want to apply CMSY++ to their own data.
    Type: Report , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2021-10-29
    Description: MSM89 – Bridgetown/Barbados – Bridgetown/Barbados 2. Wochenbericht – MARIA S. MERIAN - MSM89 20.-26.01.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2021-10-29
    Description: MSM89 – Bridgetown/Barbados – Bridgetown/Barbados 1. Wochenbericht – MARIA S. MERIAN - MSM89 14.-19.01.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GEOMAR
    In:  GEOMAR, Kiel, Germany, 2 pp.
    Publication Date: 2021-10-29
    Description: MSM89 – Bridgetown/Barbados – Bridgetown/Barbados 3. Wochenbericht – MARIA S. MERIAN - MSM89 27.01.-02.02.2020
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-29
    Description: It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric‐hydrological model WRF‐Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF‐Hydro‐tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental‐scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non‐negligible contribution of lateral terrestrial water flow to precipitation at continental scale.
    Description: Ensembles of coupled atmospheric ‐ hydrological simulations are presented for a summer season in Europe and West Africa. The model is enhanced with a water tagging procedure to evaluate the fate of land surface evaporation. The figure shows the change in continental precipitation recycling, that is the fraction of precipitation originating from land surface evaporation, induced by the consideration of lateral terrestrial water flow in the coupled simulations.
    Description: German Science Foundation
    Keywords: 551.48 ; continental scale ; coupled modelling ; ensemble ; feedback ; summer precipitation ; terrestrial hydrology
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-29
    Description: Dinitrogen (N2) fixation is a major source of bioavailable nitrogen to oligotrophic ocean communities. Yet, we have limited understanding how ongoing climate change could alter N2 fixation. Most of our understanding is based on short‐term laboratory experiments conducted on individual N2‐fixing species whereas community‐level approaches are rare. In this longer‐term in situ mesocosm study, we aimed to improve our understanding on the role of rising atmospheric carbon dioxide (CO2) and simulated deep water upwelling on N2 and carbon (C) fixation rates in a natural oligotrophic plankton community. We deployed nine mesocosms in the subtropical North Atlantic Ocean and enriched seven of these with CO2 to yield a range of treatments (partial pressure of CO2, pCO2 = 352–1025 μatm). We measured rates of N2 and C fixation in both light and dark incubations over the 55‐day study period. High pCO2 negatively impacted light and dark N2 fixation rates in the oligotrophic phase before simulated upwelling, while the effect reversed in the light N2 fixation rates in the bloom decay phase after added nutrients were consumed. Dust deposition and simulated upwelling of nutrient‐rich deep water increased N2 fixation rates and nifH gene abundances of selected clades including the unicellular diazotrophic cyanobacterium clade UCYN‐B. Elevated pCO2 increased C fixation rates in the decay phase. We conclude that elevated pCO2 and pulses of upwelling have pronounced effects on diazotrophy and primary producers, and upwelling and dust deposition modify the pCO2 effect in natural assemblages.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Exzellenzcluster Ozean der Zukunft http://dx.doi.org/10.13039/501100010783
    Description: H2020 Environment http://dx.doi.org/10.13039/100010681
    Description: Villum Foundation http://dx.doi.org/10.13039/100008398
    Description: Horizon 2020 http://dx.doi.org/10.13039/100010661
    Description: Research Foundation http://dx.doi.org/10.13039/100005930
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; subtropical North Atlantic Ocean ; N2 fixation ; C fixation
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-29
    Description: The Special Issue (SI) of Hydrological Processes features invited contributions led by women scientists at an advanced career stage who have made sustained contributions to the study of hydrological processes, advancing the field. This preface article briefly introduce the contributors and their papers.
    Keywords: 551.48 ; hydrology ; women scientists
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-07-05
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil‐root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. At all sites except one, water sources of angiosperms could be associated with soil water, while the sources of water uptake by gymnosperms were much less easily explained.
    Description: FP7 Ideas: European Research Council http://dx.doi.org/10.13039/100011199
    Description: KAW Branch‐Point project
    Description: SITES (VR)
    Description: Boise State University http://dx.doi.org/10.13039/100007233
    Description: US National Science Foundation
    Description: Leverhulme Trust through the ISO‐LAND project
    Keywords: 551.9 ; cold regions ; critical zone ; northern environments ; stable isotopes ; soil isotopes ; xylem isotopes
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-07-05
    Description: Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large ‐scale overview of the spatio‐temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically‐affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time‐variant rainfall‐runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.
    Description: Seasonal isotope and hydrogeochemical dynamics of surface‐ and groundwater in a large urban area following the dry summer of 2018, which was characterized by a temperature anomaly and precipitation deficit.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; ecohydrology ; hydrogeochemistry ; isotopes ; tracers ; urban green spaces ; urban hydrology
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...