ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (104,253)
  • Data
  • 1975-1979  (104,253)
  • Geosciences  (90,158)
  • Electrical Engineering, Measurement and Control Technology  (14,095)
Collection
  • Books  (3)
  • Articles  (104,253)
  • Data
Years
Year
Journal
  • 1
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The deep-tow instrument package of Scripps Institution of Oceanography provides a unique opportunity to delineate small-scale features of a size comparable to those features usually described from ancient deep-sea fan deposits. On Navy Fan, the deep-tow side-scanning sonar readily detected steep channel walls and steps and terraces within channels. The most striking features observed in side-scan are large crescentic depressions commonly occurring in groups. These appear to be large scours or flutes carved by turbidity currents. Four distinct acoustic facies were mapped on the basis of qualitative assessment of reflectivity of 4 kHz reflection profiles. There is a distinct increase in depth of acoustic penetration, number of sub-bottom reflectors, and reflector continuity from the upper fan-valley to the lower fan. These changes are accompanied by a decrease in surface relief.Navy Fan is made up of three active sectors. The active upper fan is dominated by a single channel with prominent levees that decrease in height downstream. The active mid-fan region or suprafan is where sand is deposited. Well defined distributary channels with steps, terraces, and other mesotopography terminate in depositional lobes. Interchannel areas are rough, containing giant scours as well as other relief. The active lower fan accumulates mud and silt and is without resolvable surface morphology.The morphological features seen on Navy Fan other than levees, interchannel areas, and lobes are principally erosional. The distributary channels are up to 0.5 km wide and 5–15 m deep. Such features, because of their large size and low relief, are rarely completely exposed or easily detectable in ancient rock sequences. Some flute-shaped scours are larger than channels in cross section but many are 5-30 m across and 1-2 m deep. If observed in ancient rocks transverse to palaeo-current direction, they would perhaps be indistinguishable from channels. Surface sediment distribution combined with fan morphology can be used to relate modern sediments to facies models for ancient fan sediments. Gravel and sand occur in the upper valley, massive sand beds in the mid-fan distributary channels, classical complete Bouma sequences on depositional lobes, incomplete Bouma sequences (lacking division a) on the lower mid-fan, and Bouma sequence with lenticular shape or other limited extent on mid-fan interchannel areas and on levees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Microcrystalline dolomite and related carbonate minerals have been forming throughout the Quaternary in shallow ephemeral alkaline lakes on the coastal plain of the Coorong area in southern Australia. These Coorong dolomites differ significantly from sabkha-type dolomites. They form in areas where evaporation rates during summer months exceed groundwater inflow rates to a series of alkaline lakes. This results in the lakes becoming desiccated during summer months. Brines resulting from this drying phase are then refluxed out of the system into seaward-flowing groundwaters of an unconfined coastal aquifer. Dolomites and other fine-grained carbonates remain behind, whilst saline and sulphate evaporite minerals are flushed out of the system. Progressive restriction by sedimentation in and around the Holocene coastal dolomite lakes results in an upward-shoaling sedimentary cycle. Basal sediments which formed in a restricted marine environment pass upwards to lacustrine dolomites or magnesites exhibiting desiccation and groundwater resurgence structures such as mudcracks and teepees. The upper Proterozoic Skillogallee Dolomite Formation, an early rift basin unit of the Adelaide Supergroup, contains dolomites which show many of the features characteristic of the peculiar groundwater hydrology which plays an important role in Coorong dolomite genesis. These features include aphanitic dolomites which lack relict saline or sulphate evaporite minerals. The Skillogallee Dolomite Formation in some areas overlies an earlier dolomitic unit, informally named the Callanna Beds, typified by abundant pseudomorphs after sulphate minerals. Sabkha style dolomites characterizing the Callanna Beds are replaced up-section by the Coorong-type dolomite of the Skillogallee Dolomite Formation. This implies the development of an increasingly more active groundwater regime. The ultimate source and mode of concentration of the necessary Mg required to form both the modern and ancient dolomites remain imperfectly understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Soft-sediment deformation features occur commonly on parts of intertidal sand bodies in Cobequid Bay, Bay of Fundy. These features are small- to intermediate-sized, slump-like bodies, 1-3 m2 in area and located on the crest and upper stoss side of ebb megaripples. External modification of these slumps indicates that they formed before complete emergence. The deformed cross-bedding within these bodies extends to a depth of 0.15-0.35 m and shows that deformation occurred during slumping and flowage of liquefied sand down the megaripple stoss side. Field evidence and calculations strongly indicate that this liquefaction results from the impact of 0.1-0.3 m high waves breaking against the megaripple lee faces. Neither rapid drawdown of the water level nor earthquake shocks are reasonable alternative explanations.Indigenous wave activity provides an attractive substitute to tectonism as an explanation of soft-sediment deformation in ancient shallow-water sediments. Slow wave-induced compaction may also account for the relative scarcity of deformation structures in shallow marine sandstones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 26 (1979), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: An extensive sequence of small patch-reefs occurs within the middle member of the Upper Coralline Limestone Formation (Upper Miocene) in western Malta. In the lower horizons of the Tal Pitkal Member these structures are lensoidal in cross section and are surrounded by coarse flanking biosparites. Towards the top of the member they become more irregular in form. Extensive biostrome developments occur in association with the later structures but unlike the patch-reefs they were killed off periodically by episodes of exposure.The resistance of these structures to wave action is verified by the presence of extensive mollusc borings both in patch-reefs and biostromes. The initial binders within both structures are considered to be stromatolitic algae. Early diagenetic rims were also precipitated around allochems and added further strength to the frame work. Within this framework pelleted micrites accumulated which contrast strongly with the sparite cements of the flanking sediments.The organic framebuilders were finally killed off by a particularly strong episode of submarine erosion, with the subsequent establishment of an oolite shoal over the entire region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 25 (1978), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: About 4100 samples of suspended matter were collected by filtration of surface ocean waters in three large regions on the western sides of oceans and two on the eastern sides. Comparison of results shows that the non-combustible fraction (chiefly detrital clays and silts with some siliceous and calcareous skeletal debris) generally dominates along the western sides of oceans, where large contributions of solid detrital sediment are made by rivers that drain much of the adjacent continents. The combustible fraction also is important off these rivers, but it is more important (both relative to the non-combustible fraction and in absolute terms) along the eastern sides of oceans, where upwelling is intense.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Sandstone mounds occur in some shallow marine heterolithic deposits from the Late Precambrian Stangenes Formation (N. Norway) and the Cambro-Ordovician Crozon Formation (N. W. France) and Cabos Series (N.W. Spain). The sediments displaying the mounds accumulated in partially protected tidal flat/ lagoonal environments immediately before and during major transgressions.The mounds are erosional features typically occurring on the tops of sheet sandstones (ca. 50–500 mm thick) some of which may have a storm washover origin. Mound genesis related to periodic emergence and late stage run-off is supported by their intimate association with mudcracks and other very shallow water features (e.g. bidirectional current-formed structures, wave ripples, ladder and interference patterns, mudflakes, etc.). Variation in mound morphology suggests that post-depositional dissection began as elongate ridge-gully couplets with secondary erosion of the ridge flanks leading to the development of more characteristic hemispherical geometries. Emergence may have been a function of tidal fluctuations and/or subsidence of storm surge events.Facies sequences point to the repeated filling of these inshore environments by storm washovers superimposed on ambient tidal conditions which possibly resulted from the progressive decay of beach barriers during transgression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 25 (1978), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Hurricane washover fans from the Texas Gulf Coast exhibit large-scale rhomboid bed forms developed on washover deposits of fine sand with varying shell content. Washover processes inferred from aerial photographs, storm characteristics, and physical settings suggest that these bed forms are the product of (1) storm surge flooding or (2) high wind shear stress.Multiple bed forms, including large-scale rhombs, are responsible for sedimentary structures preserved in washover deposits. Proximal channels exhibit scour and fill sequences capped by mud drapes. Mid-channel fan deposits also have scour bases marked by shell lags which are overlain by horizontal laminations and foreset and backset laminae. Distal fan sediments are relatively shell free and are interbedded with tidal flat deposits characterized by bioturbated, alternating sand and mud laminae.Rhomboidal patterns can form on the free surface of water in response to five processes: (1) wave interference from two externally independent sources, (2) wave interference from refraction of a single set of wave fronts, (3) standing oblique waves caused by bed roughness elements, (4) standing oblique waves formed at channel boundaries and channel transitions, and (5) wind stress. Geologically, standing oblique waves from unidirectional nearly supercritical flow is probably the most important process in rhomboid bed form development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 25 (1978), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A sedimentological study of Quaternary sediments from the northwestern part of the Barents Sea shows that their composition is controlled by the underlying Mesozoic bedrock and that very little sediment has been supplied from outside sources.The Quaternary sediments consist of Pleistocene glacial clays (moraines) and Holocene gravel, sand and mud, derived by erosion of the clay-rich moraines, which again have been derived from underlying Mesozoic rocks.On the shallow Spitsbergen Bank (30-100 m depth) we find a high energy facies of bioclastic carbonate sand and gravel and lag deposits of Mesozoic rock fragments from the underlying moraine. 14C-datings of the bioclastic carbonates (Molluscs and Barnacles) suggest that soft bottom conditions with Mya truncata prevailed in early Holocene time, succeeded by a hard bottom high energy environment with Barnacles in the last 2000-3000 years. This may be due to a southward movement of the oceanic polar front into the Spitsbergen Bank due to colder climate in Late Holocene (subatlantic) time, which at present day produces strong bottom currents down to 100 m depth.On the Spitsbergen Bank carbonate sedimentation has succeeded glacial sedimentation as a result of withdrawal of clastic sediment supply in Holocene time and high organic productivity because of upwelling. A similar mechanism may have been operating during earlier glaciations, i.e. in Late Precambrian time to produce an association of glacial and carbonate sediments although the biological precipitation was different at that time. In Late Precambrian time precipitation or carbonate by algaes may have occurred in colder water on the shelves due to higher saturation of carbonate in the sea water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...