ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13,121)
  • American Chemical Society  (12,833)
  • Blackwell Science Ltd  (184)
  • Annual Reviews
  • 2005-2009  (9,952)
  • 1970-1974  (3,169)
  • Energy, Environment Protection, Nuclear Power Engineering  (13,121)
Collection
  • Articles  (13,121)
Years
Year
Journal
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Observed responses of upland-oak vegetation of the eastern deciduous hardwood forest to changing CO2, temperature, precipitation and tropospheric ozone (O3) were derived from field studies and interpreted with a stand-level model for an 11-year range of environmental variation upon which scenarios of future environmental change were imposed. Scenarios for the year 2100 included elevated [CO2] and [O3] (+385 ppm and +20 ppb, respectively), warming (+4°C), and increased winter precipitation (+20% November–March). Simulations were run with and without adjustments for experimentally observed physiological and biomass adjustments.Initial simplistic model runs for single-factor changes in CO2 and temperature predicted substantial increases (+191% or 508 g C m−2 yr−1) or decreases (−206% or −549 g C m−2 yr−1), respectively, in mean annual net ecosystem carbon exchange (NEEa≈266±23 g C m−2 yr−1 from 1993 to 2003). Conversely, single-factor changes in precipitation or O3 had comparatively small effects on NEEa (0% and −35%, respectively). The combined influence of all four environmental changes yielded a 29% reduction in mean annual NEEa. These results suggested that future CO2-induced enhancements of gross photosynthesis would be largely offset by temperature-induced increases in respiration, exacerbation of water deficits, and O3-induced reductions in photosynthesis. However, when experimentally observed physiological adjustments were included in the simulations (e.g. acclimation of leaf respiration to warming), the combined influence of the year 2100 scenario resulted in a 20% increase in NEEa not a decrease. Consistent with the annual model's predictions, simulations with a forest succession model run for gradually changing conditions from 2000 to 2100 indicated an 11% increase in stand wood biomass in the future compared with current conditions.These model-based analyses identify critical areas of uncertainty for multivariate predictions of future ecosystem response, and underscore the importance of long term field experiments for the evaluation of acclimation and growth under complex environmental scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Global climates are changing rapidly and biological responses are becoming increasingly apparent. Here, we use empirical abundance patterns across an altitudinal gradient and predicted altitudinal range shifts to estimate change in total population size relative to distribution area in response to climate warming. Adopting this approach we predict that, for nine out of 12 species of regionally endemic birds, total population size will decline more rapidly than distribution area with increasing temperature. Two species showed comparable loss and one species exhibited a slower decline in population size with change in distribution area. Population size change relative to distribution area was greatest for those species that occurred at highest density in the middle of the gradient. The disproportional loss in population size reported here suggests that extinction risk associated with climate change can be more severe than that expected from decline in distribution area alone. Therefore, if we are to make accurate predictions of the impacts of climate change on the conservation status of individual species, it is crucial that we consider the spatial patterns of abundance within the distribution and not just the overall range of the species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Species distributions are already affected by climate change. Forecasting their long-term evolution requires models with thoroughly assessed validation. Our aim here is to demonstrate that the sensitivity of such models to climate input characteristics may complicate their validation and introduce uncertainties in their predictions. In this study, we conducted a sensitivity analysis of a process-based tree distribution model Phenofit to climate input characteristics. This analysis was conducted for two North American trees which differ greatly in their distribution and eight different types of climate input for the historic period which differ in their spatial (local or gridded data) and temporal (daily vs. monthly) resolution as well as their type (locally recorded, extrapolated or simulated by General Circulation Models). We show that the climate data resolution (spatial and temporal) and their type, highly affect the model predictions. The sensitivity analysis also revealed, the importance, for global climate change impact assessment, of (i) the daily variability of temperatures in modeling the biological processes shaping species distribution, (ii) climate data at high latitudes and elevations and (iii) climate data with high spatial resolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land-use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop- and climate-dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O-N yr−1 using the newly derived EFs, as opposed to 6 796 t N2O-N yr−1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8–9 kg N2O-N ha−1 yr−1 and are estimated here as 6.25–8.75 kg N2O-N ha−1 yr−1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O-N ha−1 yr−1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate- and land-use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The effects of atmospheric nitrogen (N) deposition on organic matter decomposition vary with the biochemical characteristics of plant litter. At the ecosystem-scale, net effects are difficult to predict because various soil organic matter (SOM) fractions may respond differentially. We investigated the relationship between SOM chemistry and microbial activity in three northern deciduous forest ecosystems that have been subjected to experimental N addition for 2 years. Extractable dissolved organic carbon (DOC), DOC aromaticity, C : N ratio, and functional group distribution, measured by Fourier transform infrared spectra (FTIR), were analyzed for litter and SOM. The largest biochemical changes were found in the sugar maple–basswood (SMBW) and black oak–white oak (BOWO) ecosystems. SMBW litter from the N addition treatment had less aromaticity, higher C : N ratios, and lower saturated carbon, lower carbonyl carbon, and higher carboxylates than controls; BOWO litter showed opposite trends, except for carbonyl and carboxylate contents. Litter from the sugar maple–red oak (SMRO) ecosystem had a lower C : N ratio, but no change in DOC aromaticity. For SOM, the C : N ratio increased with N addition in SMBW and SMRO ecosystems, but decreased in BOWO; N addition did not affect the aromaticity of DOC extracted from mineral soil. All ecosystems showed increases in extractable DOC from both litter and soil in response to N treatment. The biochemical changes are consistent with the divergent microbial responses observed in these systems. Extracellular oxidative enzyme activity has declined in the BOWO and SMRO ecosystems while activity in the SMBW ecosystem, particularly in the litter horizon, has increased. In all systems, enzyme activities associated with the hydrolysis and oxidation of polysaccharides have increased. At the ecosystem scale, the biochemical characteristics of the dominant litter appear to modulate the effects of N deposition on organic matter dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Effective measures to counter the rising levels of carbon dioxide in the Earth's atmosphere require that we better understand the functioning of the global carbon cycle. Uncertainties about, in particular, the terrestrial carbon cycle's response to climate change remain high. We use a well-known stochastic inversion technique originally developed in nuclear physics, the Metropolis algorithm, to determine the full probability density functions (PDFs) of parameters of a terrestrial ecosystem model. By thus assimilating half-hourly eddy covariance measurements of CO2 and water fluxes, we can substantially reduce the uncertainty of approximately five model parameters, depending on prior uncertainties. Further analysis of the posterior PDF shows that almost all parameters are nearly Gaussian distributed, and reveals some distinct groups of parameters that are constrained together. We show that after assimilating only 7 days of measurements, uncertainties for net carbon uptake over 2 years for the forest site can be substantially reduced, with the median estimate in excellent agreement with measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: To estimate how tree photosynthesis modulates soil respiration, we simultaneously and continuously measured soil respiration and canopy photosynthesis over an oak-grass savanna during the summer, when the annual grass between trees was dead. Soil respiration measured under a tree crown reflected the sum of rhizosphere respiration and heterotrophic respiration; soil respiration measured in an open area represented heterotrophic respiration. Soil respiration was measured using solid-state CO2 sensors buried in soils and the flux-gradient method. Canopy photosynthesis was obtained from overstory and understory flux measurements using the eddy covariance method. We found that the diurnal pattern of soil respiration in the open was driven by soil temperature, while soil respiration under the tree was decoupled with soil temperature. Although soil moisture controlled the seasonal pattern of soil respiration, it did not influence the diurnal pattern of soil respiration. Soil respiration under the tree controlled by the root component was strongly correlated with tree photosynthesis, but with a time lag of 7–12 h. These results indicate that photosynthesis drives soil respiration in addition to soil temperature and moisture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Atmospheric change may affect plant phenolic compounds, which play an important part in plant survival. Therefore, we studied the impacts of CO2 and O3 on the accumulation of 27 phenolic compounds in the short-shoot leaves of two European silver birch (Betula pendula Roth) clones (clones 4 and 80). Seven-year-old soil-grown trees were exposed in open-top chambers over three growing seasons to ambient and twice ambient CO2 and O3 concentrations singly and in combination in central Finland.Elevated CO2 increased the concentration of the phenolic acids (+25%), myricetin glycosides (+18%), catechin derivatives (+13%) and soluble condensed tannins (+19%) by increasing their accumulation in the leaves of the silver birch trees, but decreased the flavone aglycons (−7%) by growth dilution. Elevated O3 increased the concentration of 3,4′-dihydroxypropiophenone 3-β-d-glucoside (+22%), chlorogenic acid (+19%) and flavone aglycons (+4%) by inducing their accumulation possibly as a response to increased oxidative stress in the leaf cells. Nevertheless, this induction of antioxidant phenolic compounds did not seem to protect the birch leaves from detrimental O3 effects on leaf weight and area, but may have even exacerbated them. On the other hand, elevated CO2 did seem to protect the leaves from elevated O3 because all the O3-derived effects on the leaf phenolics and traits were prevented by elevated CO2. The effects of the chamber and elevated CO2 on some compounds changed over time in response to the changes in the leaf traits, which implies that the trees were acclimatizing to the altered environmental conditions. Although the two clones used possessed different composition and concentrations of phenolic compounds, which could be related to their different latitudinal origin and physiological characteristics, they responded similarly to the treatments. However, in some cases the variation in phenolic concentrations caused by genotype or chamber environment was much larger than the changes caused by either elevated CO2 or O3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L−1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We took advantage of the distinctive system-level measurement capabilities of the Biosphere 2 Laboratory (B2L) to examine the effects of prolonged exposure to elevated [CO2] on carbon flux dynamics, above- and belowground biomass changes, and soil carbon and nutrient capital in plantation forest stands over 4 years. Annually coppiced stands of eastern cottonwoods (Populus deltoides) were grown under ambient (400 ppm) and two levels of elevated (800 and 1200 ppm) atmospheric [CO2] in carbon and N-replete soils of the Intensive Forestry Mesocosm in the B2L. The large semiclosed space of B2L uniquely enabled precise CO2 exchange measurements at the near ecosystem scale. Highly controllable climatic conditions within B2L also allowed for reproducible examination of CO2 exchange under different scales in space and time. Elevated [CO2] significantly stimulated whole-system maximum net CO2 influx by an average of 21% and 83% in years 3 and 4 of the experiment. Over the 4-year experiment, cumulative belowground, foliar, and total aboveground biomass increased in both elevated [CO2] treatments. After 2 years of growth at elevated [CO2], early season stand respiration was decoupled from CO2 influx aboveground, presumably because of accelerated fine root production from stored carbohydrates in the coppiced system prior to canopy development and to the increased soil carbohydrate status under elevated [CO2] treatments. Soil respiration was stimulated by elevated [CO2] whether measured at the system level in the undisturbed soil block, by soil collars in situ, or by substrate-induced respiration in vitro. Elevated [CO2] accelerated depletion of soil nutrients, phosphorus, calcium and potassium, after 3 years of growth, litter removal, and coppicing, especially in the upper soil profile, although total N showed no change. Enhancement of above- and belowground biomass production by elevated [CO2] accelerated carbon cycling through the coppiced system and did not sequester additional carbon in the soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...