ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (1,469)
  • Humans  (543)
  • Geophysics  (452)
  • Earth Resources and Remote Sensing  (234)
  • Instrumentation and Photography  (185)
  • ASTROPHYSICS
  • Biochemistry and Biotechnology
  • FLUID MECHANICS AND HEAT TRANSFER
  • LUNAR AND PLANETARY EXPLORATION
  • Surface physics, nanoscale physics, low-dimensional systems
  • 2020-2022
  • 1995-1999  (2,883)
  • 1985-1989
  • 1999  (2,883)
Collection
Keywords
Years
  • 2020-2022
  • 1995-1999  (2,883)
  • 1985-1989
Year
  • 1
    Publication Date: 2019-08-28
    Description: A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).
    Keywords: Earth Resources and Remote Sensing
    Type: NASA/NP-1999-02-022-GSFC , NAS 1.83:02-022-GSFC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: Several objectives of NASA's Earth Science Enterprise are accomplished, and in some cases, uniquely enabled by the advantages of earth-orbiting active lidar (laser radar) sensors. With lidar, the photons that provide the excitation illumination for the desired measurement are both controlled and well known. The controlled characteristics include when and where the illumination occurs, the wavelength, bandwidth, pulse length, and polarization. These advantages translate into high signal levels, excellent spatial resolution, and independence from time of day and the sun's position. As the lidar technology has rapidly matured, ESE scientific endeavors have begun to use lidar sensors over the last 10 years. Several more lidar sensors are approved for future flight. The applications include both altimetry (rangefinding) and profiling. Hybrid missions, such as the approved Geoscience Laser Altimeter System (GLAS) sensor to fly on the ICESat mission, will do both at the same time. Profiling applications encompass aerosol, cloud, wind, and molecular concentration measurements. Recent selection of the PICASSO Earth System Science Pathfinder mission and the complementary CLOUDSAT radar-based mission, both flying in formation with the EOS PM mission, will fully exploit the capabilities of multiple sensor systems to accomplish critical science needs requiring such profiling. To round out the briefing a review of past and planned ESE missions will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 87; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-17
    Description: The Swedish microsatellite ASTRID was launched by a Russian Cosmos rocket on January 24, 1995 into a 1000 km circular orbit with 83 deg inclination. Besides the main objective of technological demonstration, imaging of energetic neutral atoms (ENAS) was attempted. The imager detected ENA in the energy range 0.1 - 140 keV utilizing two different techniques. Neutrals of the energy 13 - 140 keV were recorded by 14 solid state detectors with the total field of view 5 deg x 322 deg. For half a spin (approx. 1.5 s) of the ASTRID spacecraft, almost all of space was covered with an angular resolution 2.5 deg x 25 deg. Less energetic neutrals of approx. 0.1 - 70 keV were converted on a graphite target into secondary particles which then were detected by a microchannel plate with 32 anodes. A fraction of primary neutrals was directly reflected towards the sensor. This technique provided the total ENA flux with an angular resolution 4.6 deg x 11.5 deg. The instrument weight is 3.13 kg. Successful operation of the instrument during the first 5 weeks of the mission provided the first ENA images of the ring current at low altitudes.
    Keywords: Geophysics
    Type: ENA Imaging of Planetary Magnetospheres; IRF-SR-259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: Two aspects of the cloud ice parameterization in the Goddard Cumulus Ensemble Model cloud physics parameterization are examined: the conversion of cloud ice to snow by depositional growth, designated PSFI, and the saturation adjustment scheme. The original formulation of PSFI is shown to produce excessive conversion of cloud ice to snow because of an implicit assumption that the relative humidity is 100% with respect to water even though the air may actually be quite less humid. Two possible corrections to this problem are proposed, the first involving application of a relative humidity dependent correction factor to the original formulation of PSFI, and the second involving a new formulation of PSFI based on the equation for depositional growth of cloud ice. The sensitivity of these formulations of PSFI to the assumed masses of the ice particles is examined. Possible problems associated with using a saturation adjustment scheme for cloud ice are discussed and simulations of a squall line with and without application of the adjustment scheme for ice are compared.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in 1995 July. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40 cm apertures can be combined pairwise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 microns and active delay lines with a range of +/-38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.
    Keywords: Instrumentation and Photography
    Type: Astrophysical Journal; 510; 505-521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.
    Keywords: Instrumentation and Photography
    Type: Space THz Technology; Mar 16, 1999 - Mar 18, 1999; Charlottesville, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Observations of energetic neutral atoms (ENA) in the energy range 26- 52 keV are reported from four occasions during geomagnetically disturbed periods. The data were acquired by the ENA imager flown on the Swedish microsatellite Astrid in a 1000 km circular orbit with 83 deg inclination. The ENA imager separates charged particles from neutrals through an electrostatic deflection system in the energy range between 0.1 and 114 keV. ENA images obtained from vantage points in the polar cap and in the afternoon magnetic local time (MLT) hours looking into the antisunward hemisphere show intense ENA fluxes (approx. 10(exp 4)/sq cm sr s over 26-37 keV) coming from the dusk region and low altitudes (approx. 300 km). The morphology shows no relation to local magnetic field excluding the possibility of charged particle detection. It is concluded that the source of these ENAs are precipitating/mirroring ions from the ring current/trapped radiation interacting with the exobase on auroral L-shells and in the dusk region. The observed ENA fluxes show a relation with Kp and Dst geomagnetic indices. The observed ENA spectrum from a geomagnetic storm on February 8, 1995, is investigated in more detail and compared to the parent ion spectrum obtained by the Defense Meteorological Satellite Project (DMSP) satellite, Fl2, during the same period on L = 6 +/- 2 around dusk. The observed ENA spectral slope is used to derive the parent ion spectral temperature. The derived ion temperatures range is 3.0 - 6.0 keV for H and 4.5 - 8.5 keV for O. The higher of these ion temperatures comes closest in agreement to the extrapolated DMSP spectrum leading us to favor O over H as the species of the detected ENAS. It is shown that the detected ENAs must have been produced at L greater than or equal to 6 to reach the detector without atmospheric attenuation and that the main energy dependence of the ENA spectrum, apart from the parent ion spectrum, is governed by the energy dependence of the charge exchange cross section between ions and exospheric oxygen.
    Keywords: Geophysics
    Type: ENA Imaging of Planetary Magnetospheres; IRF-SR-259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: The purpose of this project was to determine the suitability of measuring active deformation of volcanoes in Alaska using Interferometric Synthetic Aperture Radar (INSAR) techniques. Work sponsored by this grant supported one graduate student (for almost 2 years) and one postdoc (for several months), and has resulted in two published peer-reviewed papers and a front-page article in EOS. An additional paper is in review and a fourth is in preparation. An additional paper in preparation was based in part on research supported by this grant and in part by a successor grant from NASA's Solid Earth Natural Hazards program. Over the course of this research, we documented measurable uplift of Trident volcano in the Katmai group, conducted a systematic study of the change in phase coherence over time on volcanic surfaces, and measured and modeled the spectacular 1.5 m deflation of Okmok caldera associated with its 1997 eruption. We also generated initial interferograms spanning the 1996 seismic swarm of Akutan volcano; however, during the period covered by this project we were not able to remove topography. That has been done under the subsequent funding and a paper is now in preparation. This report summarizes work done under two separate contracts because both were based on the same proposal to NASA's ADRO (Application Development and Research Opportunity) program. The first year was funded out of a grant from NASA Headquarters and the second and third years out of a grant through Goddard. The work, however, was a continuous three year effort.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: The NOAA/NASA Pathfinder Program was initially designed to assure that certain key remote sensing data sets of particular significance to global change research were scientifically validated, consistently processed and made readily available to the research community at minimal cost. Through this Program the National Snow and Ice Data Center (NSIDC), University of Colorado has successfully processed, archived and distributed the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) Level 3 (EASE-Grid format) Pathfinder data sets for the period 1978 to 1999. These data are routinely distributed to approximately 150 researchers through various media including CD-ROM, 8 mm tape, ftp and the EOS Information Management System (IMS). At NSIDC these data are currently being applied in the development and validation of algorithms to derive snow water equivalent (NASA NAG5-6636), the mapping of frozen ground and the detection of the onset of melt over ice sheets, sea ice and snow cover. The EASE-Grid format, developed at NSIDC in conjunction with the SMMR-SSM/I Pathfinder project has also been applied to Advanced Very High Resolution Radiometer (AVHRR) and TOVS Pathfinder data, as well as ancillary data such as digital elevation, land cover classification and several in situ data sets. EASE-Grid will also be used for all land products derived from the NASA EOS AMSR-E instrument.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...