ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (6)
  • Washington, D.C. : Mineralogical Society of America  (6)
  • 2000-2004  (6)
  • 1890-1899
  • Mineralogy  (6)
  • Geodetic Measurement Systems
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: M 02.0026 / Regal 11
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Mineralogy and Geology of Natural Zeolites was published in 1977. Dr. Fred Mumpton, a leader of the natural zeolite community for more than three decades, edited the original volume. Since the time of the original MSA zeolite short course in November 1977, there have been major developments concerning almost all aspects of natural zeolites. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5, 13, and 14 detail the latest results in this important area. Until the latter part of the 20th century, zeolites were often looked upon as a geological curiosity, but they are now known to be widespread throughout the world in sedimentary and igneous deposits and in soils (Chapters 6-12). Likewise, borrowing from new knowledge gained from studies of synthetic zeolites and properties of natural zeolites, the application of natural zeolites has greatly expanded since the first zeolite volume. Chapter 15 details the use of natural zeolites for removal of ammonium ions, heavy metals, radioactive cations, and organic molecules from natural waters, wastewaters, and soils. Similarly, Chapter 16 describes the use of natural zeolites as building blocks and cements in the building industry, Chapter 17 outlines their use in solar energy storage, heating, and cooling applications, and Chapter 18 describes their use in a variety of agricultural applications, including as soil conditioners, slow-release fertilizers, soil-less substrates, carriers for insecticides and pesticides, and remediation agents in contaminated soils. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. It is our hope that this new, expanded volume will rekindle interest in this fascinating and technologically important group of minerals, in part through the 'Suggestions for Further Research' section in each chapter.
    Type of Medium: Monograph available for loan
    Pages: XIV, 654 S.
    ISBN: 0-939950-57-X , 978-0-939950-57-7
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 45
    Classification:
    Mineralogy
    Language: English
    Note: MINERALOGY Chapter 1. Crystal Structures of Natural Zeolites by Thomas Armbruster and Mickey E. Gunter, p. 1 - 68 Chapter 2. The Crystal Chemistry of Zeolites by E Passaglia and Richard A. Sheppard, p. 69 - 116 Chapter 3. Geochemical Stability of Natural Zeolites by Steve J. Chipera and John A. Apps, p. 117 - 162 Chapter 4. Isotope Geochemistry of Zeolites by Haraldur R. Karlsson, p. 163 - 206 Chapter 5. Clinoptilolite-Heulandite Nomenclature by David L. Bish and Jeremy M. Boak, p. 207 - 216 OCCURRENCE Chapter 6. Occurrence of Zeolites in Sedimentary Rocks: An Overview by Richard L. Hay and Richard A. Sheppard, p. 217 - 234 Chapter 7. Zeolites in Closed Hydrologic Systems by A Langella, Piergiulio Cappelletti, and Roberto de'Gennaro, p. 235 - 260 Chapter 8. Formation of Zeolites in Open Hydrologic Systems by Richard A. Sheppard and Richard L. Hay, p. 261 - 276 Chapter 9. Zeolites in Burial Diagenesis and Low-grade Metamorphic Rocks by Minora Utada, p. 277 - 304 Chapter 10. Zeolites in Hydrothermally Altered Rocks by Minora Utada, p. 305 - 322 Chapter 11. Zeolites in Soil Environments by Douglas W. Ming and Janis L. Boettinger, p. 323 - 346 Chapter 12. Zeolites in Petroleum and Natural Gas Reservoirs by Azuma Iijima, p. 347 - 402 PHYSICOCHEMICAL PROPERTIES Chapter 13. Thermal Behavior of Natural Zeolites by David L. Bish and J. William Carey, p. 403 - 452 Chapter 14. Cation-Exchange Properties of Natural Zeolites by Roberto T. Pabalan and F. Paul Bertetti, p. 453 - 518 APPLICATIONS Chapter 15. Applications of Natural Zeolites in Water and Wastewater Treatment by Dénes Kalló, p. 519 - 550 Chapter 16. Use of Zeolitic Tuff in the Building Industry by Carmine Colella, Maurizio de'Gennaro, and Rosario Aiello, p. 551 - 588 Chapter 17. Natural Zeolites in Solar Energy - Heating, Cooling, and Energy Storage by Dimiter I. Tchernev, p. 589 - 618 Chapter 18. Use of Natural Zeolites in Agronomy, Horticulture, and Environmental Soil Remediation by Douglas W. Ming and Earl R. Allen, p. 619 - 654
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Since the dawn of life on earth, organisms have played roles in mineral formation in processes broadly known as biomineralization. This biologically-mediated organization of aqueous ions into amorphous and crystalline materials results in materials that are as simple as adventitious precipitates or as complex as exquisitely fabricated structures that meet specialized functionalities. The purpose of this volume of Reviews in Mineralogy and Geochemistry is to provide students and professionals in the earth sciences with a review that focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.
    Type of Medium: Monograph available for loan
    Pages: xiii, 381 S.
    ISBN: 0-939950-66-9 , 978-0-939950-66-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 54
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. An Overview of Biomineralization Processes and the Problem of the Vital Effect by Steve Weiner and Patricia M. Dove, p. 1 - 30 Chapter 2. Principles of Molecular Biology and Biomacromolecular Chemistry by John S. Evans, p. 31 - 56 Chapter 3. Principles of Crystal Nucleation and Growth by James J. De Yoreo and Peter G. Vekilov, p. 57 - 94 Chapter 4. Biologically Induced Mineralization by Bacteria by Richard B. Frankel and Dennis A. Bazylinskn, p. 95 - 114 Chapter 5. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies by Jonathan Erez, p. 115 - 150 Chapter 6. Geochemical Perspectives on Coral Mineralization by Anne L. Cohen and Ted A. McConnaughey, p. 151 - 188 Chapter 7. Biomineralization Within Vesicles: The Calcite of Coccoliths by Jeremy R. Young and Karen Henriksen, p. 189 - 216 Chapter 8. Biologically Controlled Mineralization in Prokaryotes by Dennis A. Bazylinski and Richard B. Frankel, p. 217 - 248 Chapter 9. Mineralization in Organic Matrix Frameworks by Arthur Veis, p. 249 - 290 Chapter 10. Silicification: The Processes by Which Organisms Capture and Mineralize Silica by Carole C. Perry, p. 291 - 328 Chapter 11. Biomineralization and Evolutionary History by Andrew H Knoll, p. 329 - 356 Chapter 12. Biomineralization and Global Biogeochemical Cycles by Philippe Van Cappellen, p. 357 -381
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 04.0008
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: In the two decades since J. Alexander Speer's Zircon chapter in Orthosilicates (Reviews in Mineralogy, Vol. 5), much has been learned about the internal textures, trace-element and isotope geochemistry (both radiogenic and stable) and chemical and mechanical stability of zircon. The application of this knowledge and the use of zircon in geologic studies have become widespread. Today, the study of zircon exists as the pseudo-discipline of "zirconology" that involves materials scientists and geoscientists from across a range of sub-disciplines including stable and radiogenic isotopes, sedimentology, petrology, trace elements and experimental mineralogy. Zirconology has become an important field of research, so much so that coverage of the mineral zircon in a review volume that included zircon as one of many accessory minerals would not meet the needs or interests of the zirconology community in terms of depth or breadth of coverage. The sixteen chapters in this volume cover the most important aspects of zircon-related research over the past twenty-years and highlight possible future research avenues. Finch and Hanchar (Chapter 1) review the structure of zircon and other mineral (and synthetic) phases with the zircon structure. In most rock types where zircon occurs it is a significant host of the rare-earth elements, Th and U. The abundances of these elements and the form of chondrite-normalized rare-earth element patterns may provide significant information on the processes that generate igneous and metamorphic rocks. The minor and trace element compositions of igneous, metamorphic and hydrothermal zircons are reviewed by Hoskin and Schaltegger in Chapter 2. The investigation of melt inclusions in zircon is an exciting line of new research. Trapped melt inclusions can provide direct information of the trace element and isotopic composition of the melt from which the crystal formed as a function of time throughout the growth of the crystal. Thomas et a!. (Chapter 3) review the study of melt inclusions in zircon. Hanchar and Watson (Chapter 4) review experimental and natural studies of zircon saturation and the use of zircon saturation thermometry for natural rocks. Cation diffusion and oxygen diffusion in zircon is discussed by Cherniak and Watson (Chapter 5). Diffusion studies are essential for providing constraints on the quality of trace element and isotope data and for providing estimates of temperature exposure in geological environments. Zircon remains the most widely utilized accessory mineral for U- Th-Pb isotope geochronology. Significant instrumental and analytical developments over the past thirty years mean that zircon has an essential role in early Achaean studies, magma genesis, and astrobiology. Four chapters are devoted to different aspects of zircon geochronology. The first of these four, Chapter 6 by Davis et a!., reviews the historical development of zircon geochronology from the mid-1950s to the present; the following three chapters focus on particular techniques for zircon geochronology, namely ID-TIMS (Parrish and Noble, Chapter 7), SIMS (Ireland and Williams, Chapter 8) and ICP-MS (Kosier and Sylvester, Chapter 9). The application of zircon chronology in constraining sediment provenance.and the calibration ofthe geologic time-scale are reviewed by Fedo et al. (Chapter 10) and Bowring and Schmitz (Chapter 11), respectively. Other isotopic systematics are reviewed for zircon by Kinny and Maas (Chapter 12), who discuss the application of Nd-Sm and Lu-Hf isotopes in zircon to petrogenetic studies, and by Valley (Chapter 13), who discusses the importance of oxygen isotopic studies in traditional and emerging fields of geologic study. As a host of U and Th, zircon is subject to radiation damage. Radiation damage is likely responsible for isotopic disturbance and promotes mechanical instability. There is increasing interest in both the effect of radiation damage on the zircon crystal structure and mechanisms of damage and recrystallization, as well as the structure of the damaged phase. These studies contribute to an overall understanding of how zircon may behave as a waste-form for safe disposal of radioactive waste and are discussed by Ewing et a!. (Chapter 14). The spectroscopy of zircon, both crystalline and metamict is reviewed by Nadsala et a!. (Chapter 15). The final chapter, by Corfu et al. (Chapter 16), is an atlas of internal textures of zircon. The imaging of internal textures in zircon is essential for directing the acquisition of geochemical data and to the integrity of conclusions reached once data has been collected and interpreted. This chapter, for the first time, brings into one place textural images that represent common and not so common textures reported in the literature, along with brief interpretations of their significance. There is presently no comparable atlas. It is intended that this chapter will become a reference point for future workers to compare and contrast their own images against. The chapters in this volume of Reviews in Mineralogy and Geochemistry were prepared for presentation at a Short Course, sponsored by the Mineralogical Society of America (MSA) in Freiburg, Germany, April 3-4, 2003. This preceded a joint meeting of the European Union of Geology, the American Geophysical Union and the European Geophysical Society held in Nice, France, April 6-11, 2003.
    Type of Medium: Monograph available for loan
    Pages: XVII, 500 S.
    ISBN: 0-939950-65-0 , 978-0-939950-65-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 53
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structure and chemistry of zircon and zircon-group minerals by Robert J. Finch and John M. Hanchar, p. 1 - 26 Chapter 2. The composition of zircon and igneous and metamorphic petrogenesis by Paul W. O. Hoskin and Urs Schaltegger, p. 27 - 62 Chapter 3. Melt inclusions in zircon by J. B. Thomas, Robert J. Bodnar, Nobumichi Shimizu, and Craig A. Chesner, p. 63 - 88 Chapter 4. Zircon saturation thermometry by John M. Hanchar and E. Bruce Watson, p. 89 - 112 Chapter 5. Diffusion in zircon by Daniele J. Cherniak and E. Bruce Watson, p. 113 - 144 Chapter 6. Historical development of zircon geochronology by Donald W. Davis, Ian S. Williams, and Thomas E. Krogh, p. 145 - 182 Chapter 7. Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS) by Randall R. Parrish and Stephen R. Noble, p. 183 - 214 Chapter 8. Considerations in zircon geochronology by SIMS by Trevor R. Ireland and Ian S. Williams, p. 215 - 242 Chapter 9. Present trends and the future of zircon in geochronology: laser ablation ICPMS by Jan Kosler and Paul J. Sylvester, p. 243 - 276 Chapter 10. Detrital zircon analysis of the sedimentary record by Christopher M. Fedo, Keith N. Sircombe, and Robert H. Rainbird, p. 277 - 304 Chapter 11. High-precision U-Pb zircon geochronology and the stratigraphic record by Samuel A. Bowring and Mark D. Schmitz, p. 305 - 326 Chapter 12. Lu-Hf and Sm-Nd isotope systems in zircon by Peter D. Kinny and Roland Maas, p. 327 - 342 Chapter 13. Oxygen isotopes in zircon by John W. Valley, p. 343 - 386 Chapter 14. Radiation effects in zircon by Rodney C. Ewing, Alkiviathes Meldrum, LuMin Wang, William J. Weber, and L. René Corrales, p. 387 - 426 Chapter 15. Spectroscopic methods applied to zircon by Lutz Nasdala, Ming Zhang, Ulf Kempe, Gérard Panczer, Michael Gaft, Michael Andrut, and Michael Plotze, p. 427 - 468 Chapter 16. Atlas of zircon textures by Fernando Corfu, John M. Hanchar, Paul W.O. Hoskin, and Peter Kinny, p. 469 - 500
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: 11/M 01.0114
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The review chapters in this volume were the basis for a short course on sulfate minerals sponsored by the Mineralogical Society of America (MSA) November 11-12, 2000 in Tahoe City, California, prior to the Annual Meeting of MSA, the Geological Society of America, and other associated societies in nearby Reno, Nevada. The conveners of the course (and editors of this volume of Reviews in Mineralogy and Geochemistry), Alpers, John Jambor, and Kirk Nordstrom, also organized related topical sessions at the GSA meeting on sulfate minerals in both hydrothermal and low-temperature environments. Sulfate is an abundant and ubiquitous component of Earth's lithosphere and hydrosphere. Sulfate minerals represent an important component of our mineral economy, the pollution problems in our air and water, the technology for alleviating pollution, and the natural processes that affect the land we utilize. Vast quantities of gypsum are consumed in the manufacture of wallboard, and calcium sulfates are also used in sculpture in the forms of alabaster (gypsum) and papier-mache (bassanite). For centuries, AI-sulfate minerals, or "alums," have been used in the tanning and dyeing industries, and these sulfate minerals have also been a minor source of aluminum metal. Barite is used extensively in the petroleum industry as a weighting agent during drilling, and celestine (also known as "celestite") is a primary source of strontium for the ceramics, metallurgical, glass, and television face-plate industries. Jarosite is a major waste product of the hydrometallurgical processing of zinc ores and is used in agriculture to reduce alkalinity in soils. At many mining sites, the extraction and processing of coal or metal-sulfide ores (largely for gold, silver, copper, lead, and zinc) produce waste materials that generate acid-sulfate waters rich in heavy metals, commonly leading to contamination of water and sediment. Concentrated waters associated with mine wastes may precipitate a variety of metal-sulfate minerals upon evaporation, oxidation, or neutralization. Some of these sulfate minerals are soluble and store metals and acidity only temporarily, whereas others are insoluble and improve water quality by removing metals from the water column. There is considerable scientific interest in the mineralogy and geochemistry of sulfate minerals in both high-temperature (igneous and hydrothermal) and low-temperature (weathering and evaporite) environments. The physical scale of processes affected by aqueous sulfate and associated minerals spans from submicroscopic reactions at mineral-water interfaces to global issues of oceanic cycling and mass balance, and even to extraterrestrial applications in the exploration of other planets and their satellites. In mineral exploration, minerals of the alunite-jarosite supergroup are recognized as key components of the advanced argillic (acid-sulfate) hydrothermal alteration assemblage, and supergene sulfate minerals can be useful guides to primary sulfide deposits. The role of soluble sulfate minerals formed from acid mine drainage (and its natural equivalent, acid rock drainage) in the storage and release of potentially toxic metals associated with wet-dry climatic cycles (on annual or other time scales) is increasingly appreciated in environmental studies of mineral deposits and of waste materials from mining and mineral processing. This volume compiles and synthesizes current information on sulfate minerals from a variety of perspectives, including crystallography, geochemical properties, geological environments of formation, thermodynamic stability relations, kinetics of formation and dissolution, and environmental aspects. The first two chapters cover crystallography (Chapter 1) and spectroscopy (Chapter 2). Environments with alkali and alkaline earth sulfates are described in the next three chapters, on evaporites (Chapter 3), barite-celestine deposits (Chapter 4), and the kinetics of precipitation and dissolution of gypsum, barite, and celestine (Chapter 5). Acidic environments are the theme for the next four chapters, which cover soluble metal salts from sulfide oxidation (Chapter 6), iron and aluminum hydroxysulfates (Chapter 7), jarosites in hydrometallugy (Chapter 8), and alunite-jarosite crystallography, thermodynamics, and geochronology (Chapter 9). The next two chapters discuss thermodynamic modeling of sulfate systems from the perspectives of predicting sulfate-mineral solubilities in waters covering a wide range in composition and concentration (Chapter 10) and predicting interactions between sulfate solid solutions and aqueous solutions (Chapter 11). The concluding chapter on stable-isotope systematics (Chapter 12) discusses the utility of sulfate minerals in understanding the geological and geochemical processes in both high- and low-temperature environments, and in unraveling the past evolution of natural systems through paleoclimate studies.
    Type of Medium: Monograph available for loan
    Pages: xiii, 608 S.
    ISBN: 0-939950-52-9 , 978-0-939950-52-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 40
    Classification:
    Mineralogy
    Note: Chapter 1. The Crystal chemistry of Sulfate Minerals by Frank C. Hawthorne, Servey V. Krivovichev, and Peter C. Burns, p. 1 - 112 Chapter 2. X-ray and Vibrational Spectroscopy of Sulfate in Earth Materials by Satish C. B. Myneni, p. 113 - 172 Chapter 3. Sulfate Minerals in Evaporite Deposits by Ronald J. Spencer, p. 173 - 192 Chapter 4. Barite-Celestine Geochemistry and Environments of Formation by Jeffrey S. Hanor, p. 193 - 276 Chapter 5. Precipitation and Dissolution of Alkaline Earth Sulfates: Kinetics and Surface Energy by A. Hina and G. H. Nancollas, p. 277 - 302 Chapter 6. Metal-sulfate Salts from Sulfide Mineral Oxidation by John L. Jambor, D. Kirk Nordstrom, and Charles N. Alpers, p. 303 - 350 Chapter 7. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters by J. M. Bigham and D. Kirk Nordstrom, p. 351 - 404 Chapter 8. Jarosites and Their Application in Hydrometallurgy by John E. Dutrizac and John L. Jambor, p. 405 - 452 Chapter 9. Alunite-Jarosite Crystallography, Thermodynamics, and Geochemistry by R. E. Stoffregen, C. N.. Alpers, and John L. Jambor, p. 453 - 480 Chapter 10. Solid-Solution Solubilities and Thermodynamics: Sulfates, Carbonates and Halides by Pierre Glynn, p. 481 - 512 Chapter 11. Predicting Sulfate-Mineral Solubility in Concentrated Waters by Carol Ptacek and David Blowes, p. 513 - 540 Chapter 12. Stable Isotope Systematics of Sulfate Minerals by Robert R. Seal, II, Charles N. Alpers, and Robert O. Rye, p. 541 - 602
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 01.0314
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The first half-century of X-ray crystallography, beginning with the elucidation of the sodium chloride structure in 1914, was devoted principally to the determination of increasingly complex atomic topologies at ambient conditions. The pioneering work of the Braggs, Pauling, Wyckoff, Zachariasen and many other investigators revealed the structural details and underlying crystal chemical principles for most rock-forming minerals (see, for example, Crystallography in North America, edited by D. McLachlan and J. P. Glusker, NY, American Crystallographic Association, 1983). These studies laid the crystallographic foundation for modem mineralogy. The past three decades have seen a dramatic expansion of this traditional crystallographic role to the study of the relatively subtle variations of crystal structure as a function of temperature, pressure, or composition. Special sessions on "High temperature crystal chemistry" were first held at the Spring Meeting of the American Geophysical Union (April 19, 1972) and the Ninth International Congress of Crystallography (August 30, 1972). The Mineralogical Society of America subsequently published a special 11-paper section of American Mineralogist entitled "High Temperature Crystal Chemistry," which appeared as Volume 58, Numbers 5 and 6, Part I in July-August, 1973. The first complete three-dimensional structure refinements of minerals at high pressure were completed in the same year on calcite (Merrill and Bassett, Acta Crystallographica B31, 343-349, 1975) and on gillespite (Hazen and Burnham, American Mineralogist 59, 1166-1176, 1974). Rapid advances in the field of non-ambient crystallography prompted Hazen and Finger to prepare the monograph Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure (New York: Wiley, 1982). At the time, only about 50 publications documenting the three-dimensional variation of crystal structures at high temperature or pressure had been published, though general crystal chemical trends were beginning to emerge. That work, though increasingly out of date, remained in print until recently as the only comprehensive overview of experimental techniques, data analysis, and results for this crystallographic sub-discipline. This Reviews in Mineralogy and Geochemistry volume was conceived as an updated version of Comparative Crystal Chemistry. A preliminary chapter outline was drafted at the Fall 1998 American Geophysical Union meeting in San Francisco by Ross Angel, Robert Downs, Larry Finger, Robert Hazen, Charles Prewitt and Nancy Ross. In a sense, this volume was seen as a "changing of the guard" in the study of crystal structures at high temperature and pressure. Larry Finger retired from the Geophysical Laboratory in July, 1999, at which time Robert Hazen had shifted his research focus to mineral-mediated organic synthesis. Many other scientists, including most of the authors in this volume, are now advancing the field by expanding the available range of temperature and pressure, increasing the precision and accuracy of structural refinements at non-ambient conditions, and studying ever more complex structures. The principal objective of this volume is to serve as a comprehensive introduction to the field of high-temperature and high-pressure crystal chemistry, both as a guide to the dramatically improved techniques and as a summary of the voluminous crystal chemical literature on minerals at high temperature and pressure. The book is largely tutorial in style and presentation, though a basic knowledge of X-ray crystallographic techniques and crystal chemical principles is assumed. The book is divided into three parts. Part I introduces crystal chemical considerations of special relevance to non-ambient crystallographic studies. Chapter 1 treats systematic trends in the variation of structural parameters, including bond distances, cation coordination, and order-disorder with temperature and pressure, while Chapter 2 considers P-V-T equation-of-state formulations relevant to x-ray structure data. Chapter 3 reviews the variation of thermal displacement parameters with temperature and pressure. Chapter 4 describes a method for producing revealing movies of structural variations with pressure, temperature or composition, and features a series of "flip-book" animations. These animations and other structural movies are also available as a supplement to this volume on the Mineralogical Society of America web site at RiMG041 Programs. Part II reviews the temperature- and pressure-variation of structures in major mineral groups. Chapter 5 presents crystal chemical systematics of high-pressure silicate structures with six-coordinated silicon. Subsequent chapters highlight temperature- and pressure variations of dense oxides (Chapter 6), orthosilicates (Chapter 7), pyroxenes and other chain silicates (Chapter 8), framework and other rigid-mode structures (Chapter 9), and carbonates (Chapter 10). Finally, the variation of hydrous phases and hydrogen bonding are reviewed in Chapter 11, while molecular solids are summarized in Chapter 12. Part III presents experimental techniques for high-temperature and high-pressure studies of single crystals (Chapters 13 and 14, respectively) and polycrystalline samples (Chapter 15). Special considerations relating to diffractometry on samples at non-ambient conditions are treated in Chapter 16. Tables in these chapters list sources for relevant hardware, including commercially available furnaces and diamond-anvil cells. Crystallographic software packages, including diffractometer operating systems, have been placed on the Mineralogical Society web site for this volume. This volume is not exhaustive and opportunities exist for additional publications that review and summarize research on other mineral groups. A significant literature on the high-temperature and high-pressure structural variation of sulfides, for example, is not covered here. Also missing from this compilation are references to a variety of studies of halides, layered oxide superconductors, metal alloys, and a number of unusual silicate structures.
    Type of Medium: Monograph available for loan
    Pages: viii, 596 S.
    ISBN: 0-939950-53-7 , 978-0-939950-53-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 41
    Classification:
    Mineralogy
    Language: English
    Note: Contents of Part I. p. vii - viii Part I: Characterization and Interpretation of Structural Variations with Temperature and Pressure Chapter 1. Principles of Comparative Crystal Chemistry by Robert M. Hazen, Robert T. Downs, and Charles T. Prewitt, p. 1 - 34 Chapter 2. Equations of State by Ross J. Angel, p. 35 - 60 Chapter 3. Analysis of Harmonic Displacement Factors by Robert T. Downs, p. 61 - 88 Chapter 4. Animation of Crystal Structure Variations with Pressure, Temperature and Composition by Robert T. Downs and P.J. Heese, p. 89 - 118 Part II: Variation of Structures with Temperature and Pressure Contents of Part II. p. 119 - 122 Chapter 5. Systematics of High-Pressure Silicate Structures by Larry W. Finger and Robert M. Hazen, p. 123 - 156 Chapter 6. Comparative Crystal Chemistry of Dense Oxide Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 157 - 186 Chapter 7. Comparative Crystal Chemistry of Orthosilicate Minerals by Joseph R. Smyth, Steven D. Jacobsen, and Robert M. Hazen, p. 187 - 210 Chapter 8. Chain and Layer Silicates at High Temperatures and Pressures by Hexiong Yang and Charles T. Prewitt, p. 211 - 256 Chapter 9. Framework Structures by Nancy L. Ross, p. 257 - 288 Chapter 10. Structural Variations in Carbonates by Simon A.T. Redfern, p. 289 - 308 Chapter 11. Hydrous Phases and Hydrogen Bonding at High Pressure by Charles T. Prewitt and John B. Parise, p. 309 - 334 Chapter 12. Molecular Crystals by Russell J. Hemley and Przemyslaw Dera, p. 335 - 420 Part III: Experimental Techniques Contents of Part III. p. 421 - 424 Chapter 13. High-Temperature Devices and Environmental Cells for X-ray and Neutron Diffraction Experiments by Ronald C. Peterson and Hexiong Yang, p. 425 - 444 Chapter 14. High-Pressure Single-Crystal Techniques by Ronald Miletich, David R. Allan, and Werner F. Kuhs, p. 445 - 520 Chapter 15. High-Pressure and High-Temperature Powder Diffraction by Yingwei Fei and Yanbin Wang, p. 521 - 558 Chapter 16. High-Temperature­High-Pressure Diffractometry by Ross J. Angel, Robert T. Downs, and Larry W. Finger, p. 559 - 596
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 00.0603
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Phase transformations occur in most types of materials, including ceramics, metals, polymers, diverse organic and inorganic compounds, minerals, and even crystalline viruses. They have been studied in almost all branches of science, but particularly in physics, chemistry, engineering, materials science and earth sciences. In some cases the objective has been to produce materials in which phase transformations are suppressed, to preserve the structural integrity of some engineering product, for example, while in other cases the objective is to maximise the effects of a transformation, so as to enhance properties such as superconductivity, for example. A long tradition of studying transformation processes in minerals has evolved from the need to understand the physical and thermodynamic properties of minerals in the bulk earth and in the natural environment at its surface. The processes of interest have included magnetism, ferroelasticity, ferroelectricity, atomic ordering, radiation damage, polymorphism, amorphisation and many others-in fact there are very few minerals which show no influence of transformation processes in the critical range of pressures and temperatures relevant to the earth. As in all other areas of science, an intense effort has been made to tum qualitative understanding into quantitative description and prediction via the simultaneous development of theory, experiments and simulations. In the last few years rather fast progress has been made in this context, largely through an interdisciplinary effort, and it seemed to us to be timely to produce a review volume for the benefit of the wider scientific community which summarises the current state of the art. The selection of transformation processes covered here is by no means comprehensive, but represents a coherent view of some of the most important processes which occur specifically in minerals.
    Type of Medium: Monograph available for loan
    Pages: x, 361 S.
    ISBN: 0-939950-51-0 , 978-0-939950-51-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 39
    Classification:
    Mineralogy
    Note: Chapter 1. Rigid unit modes in framework structures by Martin T. Dove, Kostya O. Trachenko, Matthew G. Tucker, David A. Keen, p. 1 - 34 Chapter 2. Strain and elasticity at structural phase transitions in minerals by Michael A. Carpenter, p. 35 - 64 Chapter 3. Mesoscopic twin patterns in ferroelastic and co-elastic minerals by Ekard K. H. Salje, p. 65 - 84 Chapter 4. High-pressure structural phase transitions by Ross J. Angel, p. 85 - 104 Chapter 5. Order-disorder phase transitions by Simon A. T. Redfern, p. 105 - 134 Chapter 6. Phase transformations induced by solid solution by Peter J. Heaney, p. 134 - 174 Chapter 7. Magnetic transitions in minerals by Richard J. Harrison, p. 175 - 202 Chapter 8. NMR spectroscopy of phase transitions in minerals by Brian L. Phillips, p. 203 - 240 Chapter 9. Insights into phase transformations from Mössbauer spectroscopy by Catherine A. McCammon, p. 241 - 264 Chapter 10. Hard mode spectroscopy of phase transitions by Ulli Bismayer, p. 265 - 284 Chapter 11. Synchrotron studies of phase transformations by John B. Parise, p. 285 - 318 Chapter 12. Radiation-induced amorphization by Rodney C. Ewing, Aikiviathes Meldrum, LuMin Wang, and ShiXin Wang, p. 319 - 362
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...