ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (919)
  • 2015-2019  (252)
  • 1980-1984  (647)
  • 1930-1934  (22)
  • AWI Library  (919)
Collection
Language
Years
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    København : Gyldendal
    Call number: AWI P8-18-91728
    Type of Medium: Monograph available for loan
    Pages: 230 Seiten , Illustrationen, Karten , 30 x 31 cm
    Edition: First edition, first print
    ISBN: 978-87-02-20964-8
    Language: German
    Note: Contents: Introduction. - A changing climate. - The emerging land. - The frozen past. - From ice to sea. - Plant adaptation. - Land of contrasts. - Sheep farming - now and in the future. - Methane in the Arctic. , Parallel texts in Danish and English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley Blackwell
    Call number: AWI G3-18-91739
    Type of Medium: Monograph available for loan
    Pages: xxiii, 515 Seiten , Illustrationen, Diagramme, Karten , 26 cm
    Edition: Fourth edition
    Edition: edition first published 2018
    ISBN: 9781119132783 , 9781119132790 (electronic) , 9781119132813 (electronic)
    Language: English
    Note: Contents: Preface to Fourth Edition. - Preface to Third Edition. - Preface to Second Edition. - Preface to First Edition. - Acknowledgments. - PART I THE PERIGLACIAL DOMAIN. - 1 Introduction. - 1.1 The Periglacial Concept. - 1.2 Diagnostic Criteria. - 1.3 Periglacial Environments. - 1.4 The Periglacial Domain. - 1.5 The Periglacial Domain and the Cryosphere. - 1.6 Disciplinary Considerations. - 1.6.1 The Growth of Geocryology. - 1.6.2 The Challenge of Quaternary Science. - 1.6.3 Periglacial Geomorphology or Cold-Region Geomorphology?. - 1.7 Societal Considerations. - 1.8 The Growth of Periglacial Knowledge. - 2 Periglacial Climates. - 2.1 Boundary Conditions. - 2.2 Cold Deserts. - 2.3 Regional Climates. - 2.3.1 High Arctic Climates. - 2.3.2 Continental Climates. - 2.3.3 Alpine Climates. - 2.3.4 Montane Climates. - 2.3.5 Climates of Low Annual Temperature Range. - 2.3.6 Antarctica: A Special Case. - 2.4 Snow and Ice. - 2.5 Wind. - 2.6 Ground Climates. - 2.6.1 The 'n'-Factor. - 2.6.2 The Thermal Offset. - 2.6.3 The Ground Temperature Regime. - 2.7 Periglacial Climates and Global Climate Change. - 2.7.1 Basic Facts. - 2.7.2 Why Climate-Cryosphere Interactions Accelerate Climate Warming. - 3 Periglacial Ecosystems. - 3.1 General Statement. - 3.2 Biogeographic Zonation and Major Vegetation Types. - 3.3 Adaptations to Cold, Snow, Wind and Aridity. - 3.4 The Effect of Vegetation. - 3.5 The Polar Deserts. - 3.5.1 The High Arctic Polar Deserts. - 3.5.2 The High Arctic Polar Semi-Deserts. - 3.6 The Polar Desert-Tundra Transition. - 3.7 The Low-Arctic Tundra. - 3.8 The Forest-Tundra Bioclimatic Boundary (The Tree Line). - 3.9 The Boreal Forest. - 3.10 The Alpine and Montane Ecosystems. - 3.11 Antarctica - A Special Case. - 3.12 Periglacial Ecosystems and Climate Change. - PART II FROZEN GROUND AND PERMAFROST. - 4 Ground Freezing, Permafrost and the Active Layer. - 4.1 Introduction. - 4.2 Ground Freezing. - 4.2.1 Basic Concepts. - 4.2.2 Ice Segregation. - 4.2.3 "The Frozen Fringe'. - 4.2.4 Frost Heave. - 4.3 Perennially-Frozen Ground (Permafrost). - 4.4 Moisture and Ice Within Permafrost. - 4.5 Thermal and Physical Properties. - 4.5.1 The Geothermal Regime. - 4.5.2 The TTOP Model. - 4.5.3 Physical Properties. - 4.5.4 Thermal Properties. - 4.6 Permafrost Hydrology. - 4.6.1 Aquifers. - 4.6.2 Hydrochemistry. - 4.6.3 Groundwater Icings. - 4.7 The Active Layer. - 4.7.1 Terminology. - 4.7.2 The Active-Layer Thermal Regime. - 4.7.3 The Transient Layer. - 4.7.4 The Stefan Equation. - 5 Permafrost Distribution and Stability. - 5.1 Introduction. - 5.2 Controls over Permafrost Distribution. - 5.2.1 Relief and Aspect. - 5.2.2 Rock Type. - 5.2.3 Vegetation. - 5.2.4 Snow Cover. - 5.2.5 Fire. - 5.2.6 Lakes and Surface Water Bodies. - 5.3 Spatial Extent of Permafrost and Frozen Ground. - 5.3.1 Latitudinal Permafrost. - 5.3.2 Alpine (Mountain) Permafrost. - 5.3.3 Montane Permafrost. - 5.3.4 Seasonally-Frozen Ground. - 5.4 Sub-Sea and Relict Permafrost. - 5.4.1 Sub-Sea Permafrost. - 5.4.2 Relict (Terrestrial) Permafrost. - 5.5 Permafrost and Ecosystems. - 5.6 Permafrost Monitoring and Mapping. - 5.6.1 CALM and GTN-P (TSP). - 5.6.2 BTS and Mountain Permafrost Probability Mapping. - 5.7 Climate Warming and Permafrost. - 5.7.1 Evidence for Warming Permafrost. - 5.7.2 Evidence for Thawing Permafrost. - 6 Ground Ice and Cryostratigraphy. - 6.1 Introduction. - 6.2 Quantitative Parameters. - 6.3 Epigenetic, Syngenetic and Polygenetic Permafrost. - 6.4 Classification. - 6.4.1 The Russian Approach. - 6.4.2 The North American Approach. - 6.5 Main Ground Ice Types. - 6.5.1 Pore Ice. - 6.5.2 Segregated Ice. - 6.5.3 Intrusive Ice. - 6.5.4 Vein Ice. - 6.5.5 Other Types of Ice. - 6.6 Ice Distribution. - 6.6.1 Amounts. - 6.6.2 Distribution with Depth. - 6.6.3 Ice in Bedrock. - 6.6.4 Ice in Poorly-Lithified Sediments. - 6.7 Cryostratigraphy and Cryolithology. - 6.7.1 Cryostructural Analysis. - 6.7.2 Cryostructures of Epigenetic and Syngenetic Permafrost. - 6.7.3 Thaw Unconformities. - 6.7.4 Aggradational Ice. - 6.7.5 Icy Bodies and Ice, Sand and Soil Pseudomorphs. - 6.8 Ice Crystallography. - 6.9 Ice Geochemistry. - 6.10 Massive Ice and Massive-Icy Bodies. - 6.10.1 Nature and Extent. - 6.10.2 Intra-Sedimental Ice. - 6.10.3 Buried Glacier Ice. - 6.11 Cryostratigraphy and Past Environments. - 7 Aggradational Permafrost Landforms. - 7.1 Introduction. - 7.2 How Does Permafrost Aggrade?. - 7.2.1 The Illisarvik Drained-Lake Experiment. - 7.3 Thermal-Contraction-Crack Polygons. - 7.3.1 Coefficients of Thermal Expansion and Contraction. - 7.3.2 Ice, Sand and Soil ('Ground') Wedges. - 7.3.3 Development of the Polygon Net. - 7.3.4 Polygon Morphology. - 7.3.5 Controls over Cracking. - 7.3.6 Climatic Significance. - 7.4 Ice and Sand Wedges. - 7.4.1 Epigenetic Wedges. - 7.4.2 Syngenetic Wedges. - 7.4.3 Anti-Syngenetic Wedges. - 7.4.4 Growth and Deformation of Wedges. - 7.5 Organic Terrain. - 7.5.1 Palsas. - 7.5.2 Peat Plateaus. - 7.6 Frost Mounds. - 7.6.1 Perennial-Frost Mounds. - 7.6.2 Hydraulic (Open) System Pingos. - 7.6.3 Hydrostatic (Closed) System Pingos. - 7.6.4 Other Perennial-Frost Mounds. - 7.6.5 Seasonal-Frost Mounds. - 7.6.6 Hydrolaccoliths and Other Frost-Induced Mounds. - 8 Thermokarst Processes and Landforms. - 8.1 Introduction. - 8.2 Thawing Ground. - 8.2.1 Thaw Strain and Thaw Settlement. - 8.2.2 Potential Depths of Soil Freezing and Thawing. - 8.2.3 The Development of Thermokarst. - 8.3 Causes of Thermokarst. - 8.3.1 General Comments. - 8.3.2 Specific Causes. - 8.4 Thaw-Related Processes. - 8.4.1 Thermokarst Subsidence (Thaw Settlement). - 8.4.2 Thermal Erosion. - 8.4.3 Other Processes. - 8.5 Thermokarst Sediments and Structures. - 8.5.1 Involuted Structures. - 8.5.2 Retrogressive-Thaw-Slumps and Debris-Flow Deposits. - 8.5.3 Ice-Wedge Pseudomorphs and Composite-Wedge Casts. - 8.5.4 Ice, Silt, Sand and Gravel Pseudomorphs. - 8.6 Thermokarst Landscapes. - 8.6.1 The Alas-Thermokarst Relief of Central Yakutia. - 8.6.2 The Western North American Arctic. - 8.6.3 The Ice-Free Areas of Continental Antarctica. - 8.7 Ice-Wedge Thermokarst Relief. - 8.7.1 Low-Centred Polygons. - 8.7.2 High-Centred Polygons. - 8.7.3 Badland Thermokarst Relief. - 8.8 Thaw Lakes and Depressions. - 8.8.1 Lakes and Taliks. - 8.8.2 Morphology. - 8.8.3 Growth and Drainage. - 8.8.4 Oriented Thaw Lakes. - Part III Periglacial Geomorphology. - 9 Cold-Climate Weathering. - 9.1 Introduction. - 9.2 General Weathering Facts. - 9.3 Freezing and Thawing Indices. - 9.4 Rock (Frost?) Shattering. - 9.4.1 Frost Action and Ice Segregation. - 9.4.2 Insolation and Thermal Shock. - 9.4.3 Perspective. - 9.5 Chemical Weathering. - 9.5.1 Karkevagge. - 9.5.2 Solution and Karstification. - 9.5.3 Salt Weathering. - 9.6 Cryogenic Weathering. - 9.6.1 Cryogenic Disintegration. - 9.6.2 The Coefficient of Cryogenic Contrast. - 9.6.3 Physico-Chemical Changes. - 9.6.4 Problematic Phenomena. - 9.7 Cryobiological Weathering. - 9.8 Rates of Cold-Climate Bedrock Weathering. - 9.9 Cryosols and Cryopedology. - 9.9.1 Cryosols. - 9.9.2 Classification. - 9.9.3 Cryosolic Micromorphology. - 10 Mass-Wasting Processes and Active-Layer Phenomena. - 10.1 Introduction. - 10.2 Slow Mass-Wasting Processes. - 10.2.1 Solifluction. - 10.2.2 Frost Creep. - 10.2.3 Gelifluction. - 10.2.4 Solifluction Deposits and Phenomena. - 10.3 Rapid Mass-Wasting Processes. - 10.3.1 Active-Layer-Detachment Slides. - 10.3.2 Debris Flows, Slush Flows and Avalanches. - 10.3.3 Rockfall. - 10.4 Snow Hydrology and Slopewash Processes. - 10.4.1 Snow Hydrology and Snowbanks. - 10.4.2 Surface and Subsurface Wash. - 10.5 Active-Layer Phenomena. - 10.5.1 Frost Heaving. - 10.5.2 Bedrock Heave. - 10.5.3 Upward Heaving of Stones and Objects. - 10.5.4 Stone Tilting. - 10.5.5 Ne
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI Bio-19-92601
    Description / Table of Contents: Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of ‘taxonomics’. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.
    Type of Medium: Series available for loan
    Pages: 26 Seiten , Illustrationen
    ISSN: 2045-2322
    Series Statement: Scientific Reports / Springer Nature 8, 6893
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-84/4
    In: CRREL Report, 84-4
    Description / Table of Contents: Ice problems developed in the Sault Ste. Marie, Michigan, portion of the St. Marys River because of winter navigation. Passing ships and natural influences moved ice from Soo Harbor into Little Rapids Cut in sufficient quantities to jam, cause high water in the harbor, and prevent further ship passage. After physical model and engineering studies, two ice booms with a total span of 1375 ft (419 m) with a 250-ft (76-m) navigation opening between were installed at the head of Little Rapids Cut in 1975. A modest field study program on the booms was conducted for the ensuring four winters to determine ice and boom interaction and the effects of ship passages on the system. Forces on some anchors were recorded and supplemental data were taken by local personnel. Several reports have been written about the booms' early operations. This paper presents four-year summary of the main effects of the booms on ice and ship interaction and vice versa. Throughout the four winter seasons, the small quantities of ice lost over and between the booms were manageable. Ships usually passed through the boom without influencing the boom force levels, but at time they brought about large changes. One boom needed strengthening, and artificial islands were added for upstream ice stability. Coast Guard icebreakers were also a necessary part of winter navigation in this area.
    Type of Medium: Series available for loan
    Pages: iv, 18 Seiten , Illustrationen
    Series Statement: CRREL Report 84-4
    Language: English
    Note: CONTENTS Abstract Preface Introduction St. Marys River Ice problems Remedial measures Field studies Highlights, trends, and major findings Modifications to boom Maximum forces Ship traffic Characteristics Effect of boom forces Effect on ice Conclusion Literature cited Appendix A: Ice boom forces
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-84/7
    In: CRREL Report, 84-7
    Description / Table of Contents: Experiments were conducted in CRREL's refrigerated flume facility to examine the two-dimensional force distribution of a floating, fragmented ice cover restrained by a boom in a simulated river channel. To determine the force distribution, a vertically walled channel, instrumented for measuring normal and tangential forces, and an instrumented restraining boom were installed in a 40.0- by 1.3-m flume. Two sizes of polyethylene blocks and two similar sizes of fresh-water ice blocks were tested using water velocities ranging from 10 to 30 cm/s. The forces measured at the instrumented boom leveled off with increasing cover length. The contribution of the increasing shear forces developed along theshorelines to this leveling off in the data was clearly evident. The shear coefficients of the polyethylene blocks averaged 0.43, and the freshwater ice averaged 0.044. The normal force measured along the instrumented shoreline could not be related simply by a K coefficient to the longitudinal force; another expression was required, with a term being a function of the cover thickness and independent of the undercover shear stress or cover length. By adding this term, good agreement was then found between the measured and predicted values of the boom forces and the shoreline normal and shear forces
    Type of Medium: Series available for loan
    Pages: iv, 22 Seiten , Illustrationen
    Series Statement: CRREL Report 84-7
    Language: English
    Note: CONTENTS Abstract Preface Introduction Experiments Test flume facility Experimental apparatus Experimental procedure Results Plastic versus freshwater ice Shoreline forces Boom forces Average shear stress under ice cover Internal forces Discussion Data scatter Summary and conclusions Literature cited Appendix A: Experimental results
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Series available for loan
    Series available for loan
    Offenbach/M. : Deutscher Wetterdienst
    Associated volumes
    Call number: ZSP-652-102
    In: Promet, Heft 102
    Description / Table of Contents: In diesem Heft sind Beiträge zusammengestellt, die wichtige Prozesse im arktischen Klimasystem beschreiben und die sich auf Prozesse in der Atmosphäre konzentrieren. Die Vorgänge und Veränderungen in der Arktis sind gekoppelt mit dem globalen Klimasystem. Dabei gehen die Wirkungen in beide Richtungen. Großräumige atmosphärische Fernwirkungen, wie Arktische Oszillation (AO), Nordatlantische Oszillation (NAO) oder Pazifik-Nordamerika-Oszillation (PNA), sind Beispiele dieser Kopplungen. Diese beeinflussen die Arktis und die mittleren Breiten und werden andererseits in ihrer Ausprägung von Vorgängen in beiden Regionen beeinflusst. Große ozeanische Strömungssysteme („Conveyor Belt“) verbinden alle Weltmeere. Ein Zweig führt über den Golfstrom und den Nordatlantischen Strom bis in den Arktischen Ozean, wo die Wassermassen durch Abkühlung und Eisbildung modifiziert werden und zum großen Teil als Tiefenwasser in den Nordatlantik zurückkehren und somit zum Antrieb der thermohalinen Zirkulation (THC) beitragen. Aus der Arktis mit der transpolaren Drift durch die Framstraße treibendes Meereis beeinflusst über die Arktis hinaus den Salzgehalt und die Dichteschichtung im Nordatlantik. Abschmelzende Gletscher erhöhen den Meeresspiegel weltweit. Die Arktis ist also kein isoliertes System. Das Wechselspiel aller Komponenten des arktischen Klimasystems miteinander und mit dem globalen Klimasystem ist zu komplex und umfangreich, als dass es in einem Prometheft umfassend abgehandelt werden kann. Wir beschränken uns hier daher auf die Diskussion wichtiger Prozesse in der Atmosphäre und der Wechselwirkung zwischen der Atmosphäre und dem Meereis.
    Type of Medium: Series available for loan
    Pages: 92 Seiten , Illustrationen, Diagramme, Karten
    ISSN: 0340-4552
    Series Statement: Promet Heft 102
    Language: German
    Note: Inhalt Vorwort „Zu diesem Heft“ / B. BRÜMMER 1. Athmosphärische Bedingungen und Energiehaushalt der Arktis im Jahresgang / B. BRÜMMER 2. Regionale und globale Wechselwirkung zwischen arktischem Meereis und der atmosphärischen Zirkulation / K. DETHLOFF, A. RINKE, D. HANDORF, R. JAISER, W. DORN, A. SOMMERFELD 3. Arktische Verstärkung und Wolken / M. WENDISCH, A. EHRLICH 4. Arktische Zyklonen: Häufigkeit und Wirkung auf das Meereis / B. BRÜMMER 5. Polare Kaltluftausbrüche / M. GRYSCHKA 6. Arktische Polynjen / S. WILLMES, G. HEINEMANN, A. PREUSSER 7. Turbulente Energie- und Impulsflüsse in der atmosphärischen Grenzschicht über dem polaren Ozean / C. LÜPKES, A. SCHMITT, V. GRYANIK 8 Der katabatische Wind über Grönland / G. HEINEMANN Buchbesprechung Examina im Jahr 2017
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Köln : Carl Heymanns Verlag
    Call number: AWI S5-18-91862
    Type of Medium: Monograph available for loan
    Pages: XXV, 2377 Seiten , 19 cm
    Edition: 5. Auflage
    ISBN: 9783452287168
    Series Statement: Heymanns Taschenkommentare zum gewerblichen Rechtsschutz
    Uniform Title: Gemeinschaftsmarkenverordnung
    Former Title: 1.-4. Auflage unter dem Titel: Gemeinschaftsmarkenverordnung
    Language: German
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-201-84/33
    In: CRREL Report, 84-33
    Description / Table of Contents: A small-scale experimental study was conducted to characterize the magnitude and nature of ice forces during continuous crushing of ice against a rigid, vertical, cylindrical structure. The diameter of the structure was varied from 50 to 500 mm, the relative velocity from 10 to 210 mm/s, and the ice thickness from 50 to 80 mm. The ice tended to fail repetitively, with the frequency of failure termed the characteristic frequency. The characteristic frequency varied linearly with velocity and to a small extent with structure diameter. The size of the damage zone was 10 to 50% of the ice thickness, with an average value of 30%. The maximum and mean normalized ice forces were strongly dependent on the aspect ratio (structure diameter/ice thickness). The forces increased significantly with decreasing aspect ratio, but were constant for large aspect ratios. The maximum normalized forces appeared to be independent of strain rate. The effect of velocity on the normalized ice forces depended on structure diameter. The mean effective pressure or specific energy of ice crushing depended on both aspect ratio and ice-structure relative velocity. The energy required to crush the ice for the one failure cycle was obtained from the ice force records for each test, and was compared to the energy calculated from an idealized sawtooth shape for the force record, the maximum force, velocity and characteristic frequency data. Originator - supplied keywords included: Cold regions, Cold regions construction, Cylindrical test structures, Ice, Ice crushing, Ice forces, and Test facilities.
    Type of Medium: Series available for loan
    Pages: vi, 47 Seiten , Illustrationen
    Series Statement: CRREL Report 84-33
    Language: English
    Note: Contents Abstract Preface Nomenclature Introduction Test objectives Experimental setup and procedures Facilities Test fixture Data acquisiton system Ice sheets Measurement of ice properties Daily test summary Experimental results and discussion Observations Ice force records Frequency of ice force variations Discussion Maximum crushing forces Mean effective pressure or specific energy of ice in crushing Failure energy of ice Ratio of maximum force to mean force Summary and conclusions Literature cited Appendix A: Data for continuous crushing tests
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Köln : Carl Heymanns Verlag
    Call number: AWI S5-19-92101
    Type of Medium: Monograph available for loan
    Pages: XXI, 311 Seiten , Illustrationen
    ISBN: 9783452291295 , 3452291294
    Language: German
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: ZSP-SCAR-570-6
    In: Antarctic Research Report to SCAR, No. 6
    Type of Medium: Series available for loan
    Pages: 38 Seiten
    ISSN: 0179-0072
    Series Statement: National Antarctic Research Report to SCAR 6
    Language: English
    Note: Contents: Membership of the National Committee on Antarctic Research in the Federal Republic of Germany. - Introduction. - Stations. - I. Record of Activities (past and ongoing), April 83-October 84. - II. Planned Activities, October 84-October 85. - References.
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...