ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (252)
  • 2025-2025  (3)
  • 2015-2019  (252)
  • AWI Library  (252)
Collection
  • Books  (252)
Language
Years
Year
Classification
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI G6-15-89028
    Description / Table of Contents: The book offers a modern, comprehensive, and holistic view of natural gas seepage, defined as the visible or invisible flow of gaseous hydrocarbons from subsurface sources to Earth’s surface. Beginning with definitions, classifications for onshore and offshore seepage, and fundamentals on gas migration mechanisms, the book reports the latest findings for the global distribution of gas seepage and describes detection methods. Seepage implications are discussed in relation to petroleum exploration, environmental impacts (hazards, pollution, atmospheric emissions, and past climate change), emerging scientific issues (abiotic gas and methane on Mars), and the role of seeps in ancient cultures. With an updated bibliography and an integrated analysis of available data, the book offers a new fundamental awareness - gas seepage is more widespread than previously thought and influences all of Earth’s external “spheres”, including the hydrosphere, atmosphere, biosphere, and anthroposphere.
    Type of Medium: Monograph available for loan
    Pages: XIII, 199 S. , Ill., graph. Darst.
    ISBN: 978-3-319-14600-3
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Basic Concepts and Definitions. - 1.1.1 What Gas Seepage Is, What It Is Not. - 1.1.2 A Jungle of Names: Seeps, Macroseeps, Microseepage, Microseeps, and Miniseepage. - 1.1.3 Seepage id est Migration. - 1.1.4 Microbial, Thermogenic, and Abiotic Methane. - 1.2 Significance of Seepage and Implications. - 1.2.1 Seepage and Petroleum Exploration. - 1.2.2 Marine Seepage on the Crest of the Wave. - 1.2.3 From Sea to Land. - 1.2.4 A New Vision. - References. - 2 Gas Seepage Classification and Global Distribution. - 2.1 Macro-Seeps. - 2.1.1 Gas Seeps. - 2.1.2 Oil Seeps. - 2.1.3 Gas-Bearing Springs. - 2.1.4 Mud Volcanoes. - 2.1.5 Miniseepage. - 2.1.6 The Global Distribution of Onshore Macro-Seeps. - 2.2 Microseepage. - 2.3 Marine Seepage Manifestations. - References. - 3 Gas Migration Mechanisms. - 3.1 Fundamentals. - 3.1.1 Sources and Pathways. - 3.1.2 Diffusion and Advection. - 3.2 Actual Mechanisms and Migration Forms. - 3.2.1 Bubble and Microbubble Flow. - 3.2.2 Gas Seepage Velocity. - 3.2.3 Matter Transport by Microbubbles. - 3.2.4 The Concept of Carrier Gas and Trace Gas. - References. - 4 Detecting and Measuring Gas Seepage. - 4.1 Gas Detection Methods. - 4.1.1 Above-Ground (Atmospheric) Measurements. - 4.1.2 Ground Measurements. - 4.1.3 Measurements in Aqueous Systems. - 4.2 Indirect Methods. - 4.2.1 Chemical-Mineralogical Alterations of Soils. - 4.2.2 Vegetation Changes (Geobotanical Anomalies). - 4.2.3 Microbiological Analyses of Soils. - 4.2.4 Radiometric Surveys. - 4.2.5 Geophysical Techniques. - References. - 5 Seepage in Field Geology and Petroleum Exploration. - 5.1 Seepage and Faults. - 5.2 Microseepage Applied to Areal Petroleum Exploration. - 5.2.1 Which Gas Can Be Measured?. - 5.2.2 Microseepage Methane Flux Measurements. - 5.3 Seep Geochemistry for Petroleum System Evaluation. - 5.3.1 Recognising Post-genetic Alterations of Gases. - 5.3.2 Assessing Gas Source Type and Maturity. - 5.3.3 The Presence of Undesirable Gases (CO2, H2S, N2). - 5.3.4 Helium in Seeps… for Connoisseurs. - References. - 6 Environmental Impact of Gas Seepage. - 6.1 Geohazards. - 6.1.1 Methane Explosiveness. - 6.1.2 The Toxicity of Hydrogen Sulphide. - 6.1.3 Mud Expulsions and the Degradation of Soil-Sediments. - 6.2 Stray Gas, Natural versus Man-Made. - 6.3 Hypoxia in Aquatic Environments. - 6.4 Gas Emissions to the Atmosphere. - 6.4.1 Methane Fluxes and the Global Atmospheric Budget. - 6.4.2 Ethane and Propane Seepage, a Forgotten Potential Source of Ozone Precursors. - 6.5 Natural Seepage and CO2 Geological Sequestration. - References. - 7 Seepage in Serpentinised Peridotites and on Mars. - 7.1 Seeps and Springs in Active Serpentinisation Systems. - 7.1.1 Where Abiotic Methane Is Seeping. - 7.1.2 How Abiotic Methane in Land-Based Serpentinisation Systems Is Formed. - 7.1.3 How to Distinguish Abiotic and Biotic Methane. - 7.1.4 Seepage to the Surface. - 7.1.5 Is Abiotic Gas Seepage Important for the Atmospheric Methane Budget?. - 7.2 Potential Methane Seepage on Mars. - 7.2.1 Looking for Methane on Mars. - 7.2.2 A Theoretical Martian Seepage. - References. - 8 Gas Seepage and Past Climate Change. - 8.1 Past Seepage Stronger than Today. - 8.2 Potential Proxies of Past Seepage. - 8.3 Methane and Quaternary Climate Change. - 8.3.1 Traditional Models: Wetlands versus Gas Hydrates. - 8.3.2 Adding Submarine Seeps. - 8.3.3 Considering Onshore and Offshore Seepage in Total. - 8.3.4 CH4 Isotope Signatures in Ice Cores. - 8.4 Longer Geological Time Scale Changes. - 8.4.1 The Concept of Sedimentary Organic Carbon Mobilization. - 8.4.2 Paleogene Changes. - References. - 9 Seeps in the Ancient World: Myths, Religions, and Social Development. - 9.1 Seeps in Mythology and Religion. - 9.2 Seeps in Social and Technological Development. - References. - Epilogue. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Bonn : Rheinwerk Verlag GmbH
    Call number: AWI S4-16-90097
    Type of Medium: Monograph available for loan
    Pages: 467 Seiten , 1 CD-ROM , 24.5 cm
    Edition: 3., aktualisierte und erweiterte Auflage (2. Auflage im Rheinwerk Verlag)
    ISBN: 9783836237789
    Series Statement: Rheinwerk Computing
    Language: German
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Berlin : Verlag für Geowissenschaften
    Call number: AWI E1-15-89214
    Description / Table of Contents: Alfred Wegener (1880-1930) war einer der bedeutendsten deutschen Naturwissenschaftler des vergangenen Jahrhunderts. Er untersuchte die Erdatmosphäre mit Drachen und Fesselballonen, erforschte das Wesen der gefürchteten Windhosen, fuhr vier Mal auf wissenschaftliche Expeditionen nach Grönland und stellte einen Weltrekord im bemannten Ballonflug auf. In diesem Buch wird das Leben dieses vielseitigen Forschers erzählt. Daneben wird sein wissenschaftliches Hauptwerk, die Kontinentaldrifttheorie, und seine Theorie zur Entstehung der Mondkrater durch Meteoritenbombardement beleuchtet, an die er Ideen über die Entstehung der Erde selbst knüpfte.
    Type of Medium: Monograph available for loan
    Pages: 208 S. , Ill., Kt.
    Edition: 1. Aufl.
    ISBN: 978-3-9814603-0-8 , 3981460308
    Language: German
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Hamburg : maribus
    Associated volumes
    Call number: AWI G2-15-89284
    In: World ocean review
    Type of Medium: Monograph available for loan
    Pages: 151 S. , zahlr. Ill., graph. Darst., Kt.
    ISBN: 9783866482524
    Series Statement: World ocean review 4
    Language: German
    Note: Inhaltsverzeichnis: Vorwort. - Kapitel 1: Konzepte für eine bessere Welt. - Was ist Nachhaltigkeit?. - Der Wert der Natur. - Conclusio: „Nachhaltigkeit“ – ein schwer zu definierender Begriff. - Kapitel 2: Was das Meer zu leisten vermag. - Das Gute im Meer. - Der bedrohte Ozean. - Conclusio: Ökosystemleistungen des Meeres in Gefahr. - Kapitel 3: Die Politik und das Meer. - Von der Schwierigkeit, das Meer zu verwalten. - Conclusio: Das Ideal der guten Meerespolitik. - Kapitel 4: Hoffnung für den Ozean. - Fahrplan für eine nachhaltige Zukunft?. - Meeresschutz ist möglich. - Conclusio: Wie Meeresschutz funktionieren kann. - Gesamt-Conclusio. - Glossar. - Mitwirkende. - Quellenverzeichnis. - Abbildungsverzeichnis. - Index. - Abkürzungen. - Partner und Danksagung. - Impressum.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Hamburg : maribus
    Associated volumes
    Call number: AWI G2-15-89285
    In: World ocean review
    Type of Medium: Monograph available for loan
    Pages: 151 S. , zahlr. Ill, graph. Darst.
    ISBN: 9783866482531
    Series Statement: World ocean review 4
    Language: English
    Note: Contents: Preface. - Chapter 1: Concepts for a better world. - What is sustainability?. - The value of nature. - Conclusion: “Sustainability” – a difficult concept to define. - Chapter 2: How the sea serves us. - The bounty of the sea. - Oceans under threat. - Conclusion: Marine ecosystem services at risk. - Chapter 3: Politics and the oceans. - On the difficulty of governing the sea. - Conclusion: The ideal of good marine policy. - Chapter 4: Hope for the oceans. - Roadmap towards a sustainable future?. - Protecting the seas is possible. - Conclusion: How marine conservation can work. - Overall conclusion. - Glossary. - Contributors. - Bibliography. - Table of figures. - Index. - Abbreviations. - Partners and Acknowledgements. - Publication details.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: AWI Bio-17-90819
    Description / Table of Contents: The authors completed collecting and arranging plates of photomicrographs for common pollen and spores in Quaternary strata. Given China's vast territory, complex vegetation types, a variety of plants, and polen grains with similar morphology probably produced by different plant species in different regions. We have organized this book's photomicrographs of pollen grains and spores in the division of China into five regions, i.e. northwest,northern, southeast, south and southwest China. Photomicrographs of pollen grains and spores in each region are arranged by plant classification system i.e. in order of algae, bryophyte, pteridophyte, gymnosperm, and angiosperm. All 409 plates of color photomicrographs for pollen grains and spores are finally illustrated and described.
    Description / Table of Contents: 本书整理编排了我国第四纪地层常见的孢粉类型显微照相图版,按照西北、北方、东南、华南和西南五个大区编排,并对这些区域的现代植被、第四纪植被史做了简要概述,还重点叙述了各地区第四纪主要孢粉类型、特点以及常见孢粉种类的鉴定形态特征。共分三章,第一章为我国各地区现代植被和第四纪植被概述,重点叙述了古植被与古气候的演变历史;第二章介绍本图鉴中所列出的各地区主要第四纪孢粉类型及其特点,并对不同地区常见孢粉种类
    Type of Medium: Monograph available for loan
    Pages: 620 Seiten , zahlreiche Illustrationen
    ISBN: 9787030505682
    Language: Chinese , Latin
    Note: Contents: Preface. - Chapter 1: Overview of modern and Quaternary vegetation in China. - 1.1 Northwest region / Tang Lingyu and Shen Caiming. - 1.1.1 Overview of modern vegetation. - 1.1.1.1 Gobi desert and desert vegetation in eastern Xinjiang. - 1.1.1.2 Extremely arid desert and shrubland vegetation in the Qaidam Basin. - 1.1.1.3 Arid desert shrub and semi-shrub vegetation in the Hexi Corridor. - 1.1.1.4 Sylvosteppe or pine-oak forest in the transitional region between semi-humid and semi-arid monsoonal climate of temperate zone in the Loess Plateau. - 1.1.2 Overview of Quaternary vegetation. - 1.1.2.1 Vegetation and environment since the early Pleistocene in Qinghai. - 1.1.2.2 Holocene vegetation succession of steppe/meadow in north Xizang (Tibet). - 1.1.2.3 Vegetation and environment since the late Pleistocene in the Loess Plateau. - 1.1.2.4 Vegetation and environment since the early Pleistocene in Xinjiang. - 1.2 Northern region / Tang Lingyu and Li Chunhai. - 1.2.1 Overview of modern vegetation. - 1.2.1.1 Coniferous and broadleaved forest and meadow of temperate zone in Northeast China. - 1.2.1.2 Oak forest of river valley, Chinese pine forest, and shrub steppe in the lower valley of Liaohe River, North China plain, southern Shanxi, and central Shaanxi plain. - 1.2.2 Overview of Quaternary vegetation. - 1.2.2.1 Vegetation and environment since the early Pleistocene in North China. - 1.2.2.2 Vegetation and environment since the early Pleistocene in Northeast China. - 1.3 Southeast region / Shu Junwu and Tang Lingyu. - 1.3.1 Overview of modern vegetation. - 1.3.2 Overview of Quaternary vegetation. - 1.3.2.1 Vegetation succession since the mid-Pleistocene in Hubei. - 1.3.2.2 Vegetation and environment since the late Pleistocene in the lower valley of the Yangtze River. - 1.3 .2.3 Forest succession since the last glaciation in southeast coast of Fujian. - 1.3.2.4 Vegetation and environment since the late Pleistocene in the central Taiwan. - 1.4 South region / Mao Limi, Tang Lingyu and Shen Cairning. - 1.4.1 Overview of modern vegetation. - 1.4.1.1 Vegetation in the southern zone of middle subtropical evergreen broadleaved forest. - 1.4.1.2 Vegetation in the zone of south subtropical evergreen broadleaved forest. - 1.4.1.3 Tropical semi-evergreen monsoonal forest and tropical monsoonal forest. - 1.4.2 Overview of Quaternary vegetation. - 1.4.2.1 Vegetation in the Zhujiang delta and Chaozhou plain since the Pleistocene recorded by pollen and spores. - 1.4.2.2 Vegetation and climate since the late Pleistocene in Leizhou Peninsula and Holocene vegetation and climate in Hainan Island. - 1.4.2.3 Late Quaternary pollen and spores, vegetation and climate records in the South. - 1.4.2.4 Vegetation and climate since the late Pleistocene in Hong Kong. - 1.5 Southwest region / Shu Junwu, Tang Lingyu and Shen Caiming. - 1.5.1 Overview of modern vegetation. - 1.5.1.1 Vegetation of evergreen broadleaved forest in the Yunnan , Guizhou and western Sichuan Plateau. - 1.5.1.2 Vegetation of coniferous forest in southeast Xizang. - 1.5.2 Overview of Quaternary vegetation. - 1.5.2.1 Holocene vegetation in northwest Yunnan. - 1.5.2.2 Vegetation and monsoonal climate history since the late Pleistocene in western and south-central Yunnan. - 1.5.2.3 Holocene vegetation in western Sichuan. - 1.5.2.4 Vegetation and environment since the late Pleistocene in Guizhou. - 1.5.2.5 Vegetation and monsoonal climate history since the late Pleistocene in southeastern Xizang. - Chapter 2 Main types of Quaternary pollen and spores and their characteristics in different regions of China. - 2.1 Northwest region / Tang Lingyu and Mao Limi. - 2.1.1 Types of Quaternary pollen and spores in Northwest China. - 2.1.2 Identifiable features of major Quaternary pollen and spores in Northwest China. - 2.1.2.1 Identifiable features of main Compositae pollen types. - 2.1.2.2 Identifiable features of Artemisia, Tamarix, and Zygophyllum pollen. - 2.1.2.3 Identifiable features of Rhamnus, Hippophae, and Elaeagnus pollen. - 2.1.3 Descriptions of morphological features for major Quaternary spores and pollen in Northwest China. - 2.1.3.1 Photomicrographs for major Quaternary pollen types in Northwest China. - 2.1.3.2 Descriptions of morphological features for major Quaternary pollen types in Northwest China. - 2.2 Northern region / Tang Lingyu. - 2.2.1 Types of Quaternary pollen and spores in Northern China. - 2.2.2 Identifiable features of major Quaternary pollen and spores in Northern China. - 2.2.2.1 Identification keys of pollen morphology for several saccate genera of Pinaceae. - 2.2.2.2 Identifiable features of pollen morphology for genera of Betulaceae. - 2.2.2.3 Identifiable features of tricolpate pollen from Salix and Cruciferae. - 2.2.2.4 Identifiable features of tricolpate pollen from Ranunculaceae and Labiatae. - 2.2.3 Descriptions of morphological features for major Quaternary spores and pollen in Northern China. - 2.2.3.1 Photomicrographs for major Quaternary pollen types in Northern China. - 2.2.3.2 Descriptions of morphological features for major Quaternary pollen types in Northern China. - 2.3 Southeast region / Tang Lingyu and Shu Junwu. - 2.3.1 Types of Quaternary pollen and spores in Southeast China. - 2.3.2 Identifiable features of major Quaternary pollen and spores in Southeast China. - 2.3.2.1 Identifiable features of pollen morphology for Fagaceae. - 2.3.2.2 Identification keys of pollen morphology for several genera of Fagaceae. - 2.3.2.3 Identifiable features of pollen morphology for several genera of Fagaceae. - 2.3.2.4 Identifiable features of pollen morphology for several genera of tropical and subtropical. - 2.3.3 Descriptions of morphological features for major Quaternary pollen and spores in Southeast China. - 2.3.3.1 Photomicrographs for major Quaternary pollen types in Southeast China. - 2.3.3.2 Descriptions of morphological features for major Quaternary pollen types in Southeast China. - 2.4 South region / Mao Limi and Tang Lingyu. - 2.4.1 Types of Quaternary pollen and spores in South China. - 2.4.2 Identifiable features of main Quaternary pollen and spores in South China. - 2.4.2.1 Modern distribution and paleophytogeography of Sonneratia and its identifiable features of pollen morphology. - 2.4.2.2 Modern distribution and paleoecology significance of Rhizophoraceae and its identifiable features of pollen morphology. - 2.4.3 Photomicrographs and descriptions of morphological features for major Quaternary pollen and spores in South China. - 2.4.3.1 Photomicrographs for major Quaternary pollen and spores in South China. - 2.4.3.2 Descriptions of morphological features for major Quaternary pollen and spores in South China. - 2.5 Southwest region / Tang Lingyu and Shu Junwu. - 2.5.1 Types of Quaternary pollen and spores in Southwest China. - 2.5.2 Identifiable feature of main Quaternary pollen and spores in Southwest China. - 2.5.2.1 Plant distribution and pollen features of Pinaceae in Southwest China. - 2.5.2.2 Identification keys of pollen morphology for Pinaceae. - 2.5.3 Descriptions of morphological features for major Quaternary pollen and spores in Southwest China. - 2.5.3.1 Photomicrographs for common pollen in Southwest China. - 2.5.3.2 Descriptions of morphological features for major Quaternary pollen and spores in Southwest China. - Chapter 3 Plates and descriptions of Quaternary pollen and spores in different region of China. - 3.1 Northwest region / Tang Lingyu and Mao Limi. - Spores of the pteridophyte Plates 1-3. - Gymnosperm pollen Plates 3-10. - Angiosperm pollen Plates 11-63. - 3.2 Northern region / Tang Lingyu and Li Chunhai. - Spores of the algae Plates 1-3. - Spores of the bryophyte Plate 4. - Spores of the pteridophyte Plates 5-9. - Gymnosperm pollen Plates 9-24. - Angiosperm pollen Plates 25-63. - 3.3 Southeast region / Tang Lingyu, Zhou Zhongze and
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Bremerhaven [u.a.] : Alfred-Wegener-Institut
    Call number: AWI S6-17-91076
    Type of Medium: Monograph available for loan
    Pages: 108 Seiten , Illustrationen, graphische Darstellungen
    Language: German
    Note: Der richtige Standort - ein Grußwort / Gotthilf Hempel. - Vorwort / Karin Lochte, Bernhard Diekmann. - Die Entwicklung der Forschungsstelle Potsdam / Hans-Wolfgang Hubberten, Klaus Dethloff, Bernhard Diekmann, Diedrich Fritzsche. - Die Entwicklung der Atmosphärenforschung / Klaus Dethloff, Markus Rex, Roland Neuber, Annette Rinke, Dörthe Handorf, Marion Maturilli, Christoph Ritter, Peter von der Gathen, Ralph Lehmann, Wolfgang Dorn, Ingo Wohltmann. - Die Entwicklung der Periglazialforschung: Rückblick und Ausblick / Guido Grosse, Hans-Wolfgang Hubberten. - Die AWIPEV-Station auf Spitzbergen / Roland Neuber, Marion Maturilli, Christoph Ritter. - Permafrost-Langzeit-Observatorien in Sibirien und auf Spitzbergen / Julia Boike, Anne Morgenstern, Guido Grosse. - Küstenforschung im Nordwesten Kanadas / Michael Fritz, Hugues Lantuit. - Das Atmosphärenobservatorium Palau - Polarforschung in den Tropen / Markus Rex, Katrin Müller. - Zum Nordpol auf einer Eisscholle - Teilnahme an der Driftstation NP-35 / Marion Maturilli, Jürgen Gräser. - Polarer Ozonverlust im Klimawandel / Markus Rex, Peter von der Gathen, Ralph Lehmann, Ingo Wohltmann. - Vom grünen Laserstrahl zur Mikrophysik des Aerosols / Christoph Ritter, Marion Maturilli, Roland Neuber. - Wie können arktische Klimaänderungen das Wetter und Klima in Mitteleuropa beeinflussen? / Dörthe Handorf, Klaus Dethloff, Annette Rinke, Ralf Jaiser, Wolfgang Dorn, Heidrun Matthes. - Permafrost im Wandel - Regionaler Fokus, globale Bedeutung / Jens Strauss, Josefine Lenz, Thomas Schneider von Deimling, Frank Günther, Lutz Schirrmeister. - Arktischer Klimawandel und terrestrische Ökosysteme / Ulrike Herzschuh, Thomas Laepple, Hanno Meyer, Kathleen Stoof-Leichsenring, Heike Zimmermann, Laura Epp, Stefan Kruse, Boris Biskaborn, Diedrich Fritzsche, Birgit Heim, Bernhard Diekmann. - Das EU-Projekt PAGE21 / Hans-Wolfgang Hubberten, Julia Boike, Hugues Lantuit, Leen Kaisa Viitanen. - ICOP 2016 / Karina Schollän, Hans-Wolfgang Hubberten. - Nationale und internationale Sekretariate. - Potsdamer Nachwuchs. - Impressum.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley Blackwell
    Call number: AWI G3-18-91739
    Type of Medium: Monograph available for loan
    Pages: xxiii, 515 Seiten , Illustrationen, Diagramme, Karten , 26 cm
    Edition: Fourth edition
    Edition: edition first published 2018
    ISBN: 9781119132783 , 9781119132790 (electronic) , 9781119132813 (electronic)
    Language: English
    Note: Contents: Preface to Fourth Edition. - Preface to Third Edition. - Preface to Second Edition. - Preface to First Edition. - Acknowledgments. - PART I THE PERIGLACIAL DOMAIN. - 1 Introduction. - 1.1 The Periglacial Concept. - 1.2 Diagnostic Criteria. - 1.3 Periglacial Environments. - 1.4 The Periglacial Domain. - 1.5 The Periglacial Domain and the Cryosphere. - 1.6 Disciplinary Considerations. - 1.6.1 The Growth of Geocryology. - 1.6.2 The Challenge of Quaternary Science. - 1.6.3 Periglacial Geomorphology or Cold-Region Geomorphology?. - 1.7 Societal Considerations. - 1.8 The Growth of Periglacial Knowledge. - 2 Periglacial Climates. - 2.1 Boundary Conditions. - 2.2 Cold Deserts. - 2.3 Regional Climates. - 2.3.1 High Arctic Climates. - 2.3.2 Continental Climates. - 2.3.3 Alpine Climates. - 2.3.4 Montane Climates. - 2.3.5 Climates of Low Annual Temperature Range. - 2.3.6 Antarctica: A Special Case. - 2.4 Snow and Ice. - 2.5 Wind. - 2.6 Ground Climates. - 2.6.1 The 'n'-Factor. - 2.6.2 The Thermal Offset. - 2.6.3 The Ground Temperature Regime. - 2.7 Periglacial Climates and Global Climate Change. - 2.7.1 Basic Facts. - 2.7.2 Why Climate-Cryosphere Interactions Accelerate Climate Warming. - 3 Periglacial Ecosystems. - 3.1 General Statement. - 3.2 Biogeographic Zonation and Major Vegetation Types. - 3.3 Adaptations to Cold, Snow, Wind and Aridity. - 3.4 The Effect of Vegetation. - 3.5 The Polar Deserts. - 3.5.1 The High Arctic Polar Deserts. - 3.5.2 The High Arctic Polar Semi-Deserts. - 3.6 The Polar Desert-Tundra Transition. - 3.7 The Low-Arctic Tundra. - 3.8 The Forest-Tundra Bioclimatic Boundary (The Tree Line). - 3.9 The Boreal Forest. - 3.10 The Alpine and Montane Ecosystems. - 3.11 Antarctica - A Special Case. - 3.12 Periglacial Ecosystems and Climate Change. - PART II FROZEN GROUND AND PERMAFROST. - 4 Ground Freezing, Permafrost and the Active Layer. - 4.1 Introduction. - 4.2 Ground Freezing. - 4.2.1 Basic Concepts. - 4.2.2 Ice Segregation. - 4.2.3 "The Frozen Fringe'. - 4.2.4 Frost Heave. - 4.3 Perennially-Frozen Ground (Permafrost). - 4.4 Moisture and Ice Within Permafrost. - 4.5 Thermal and Physical Properties. - 4.5.1 The Geothermal Regime. - 4.5.2 The TTOP Model. - 4.5.3 Physical Properties. - 4.5.4 Thermal Properties. - 4.6 Permafrost Hydrology. - 4.6.1 Aquifers. - 4.6.2 Hydrochemistry. - 4.6.3 Groundwater Icings. - 4.7 The Active Layer. - 4.7.1 Terminology. - 4.7.2 The Active-Layer Thermal Regime. - 4.7.3 The Transient Layer. - 4.7.4 The Stefan Equation. - 5 Permafrost Distribution and Stability. - 5.1 Introduction. - 5.2 Controls over Permafrost Distribution. - 5.2.1 Relief and Aspect. - 5.2.2 Rock Type. - 5.2.3 Vegetation. - 5.2.4 Snow Cover. - 5.2.5 Fire. - 5.2.6 Lakes and Surface Water Bodies. - 5.3 Spatial Extent of Permafrost and Frozen Ground. - 5.3.1 Latitudinal Permafrost. - 5.3.2 Alpine (Mountain) Permafrost. - 5.3.3 Montane Permafrost. - 5.3.4 Seasonally-Frozen Ground. - 5.4 Sub-Sea and Relict Permafrost. - 5.4.1 Sub-Sea Permafrost. - 5.4.2 Relict (Terrestrial) Permafrost. - 5.5 Permafrost and Ecosystems. - 5.6 Permafrost Monitoring and Mapping. - 5.6.1 CALM and GTN-P (TSP). - 5.6.2 BTS and Mountain Permafrost Probability Mapping. - 5.7 Climate Warming and Permafrost. - 5.7.1 Evidence for Warming Permafrost. - 5.7.2 Evidence for Thawing Permafrost. - 6 Ground Ice and Cryostratigraphy. - 6.1 Introduction. - 6.2 Quantitative Parameters. - 6.3 Epigenetic, Syngenetic and Polygenetic Permafrost. - 6.4 Classification. - 6.4.1 The Russian Approach. - 6.4.2 The North American Approach. - 6.5 Main Ground Ice Types. - 6.5.1 Pore Ice. - 6.5.2 Segregated Ice. - 6.5.3 Intrusive Ice. - 6.5.4 Vein Ice. - 6.5.5 Other Types of Ice. - 6.6 Ice Distribution. - 6.6.1 Amounts. - 6.6.2 Distribution with Depth. - 6.6.3 Ice in Bedrock. - 6.6.4 Ice in Poorly-Lithified Sediments. - 6.7 Cryostratigraphy and Cryolithology. - 6.7.1 Cryostructural Analysis. - 6.7.2 Cryostructures of Epigenetic and Syngenetic Permafrost. - 6.7.3 Thaw Unconformities. - 6.7.4 Aggradational Ice. - 6.7.5 Icy Bodies and Ice, Sand and Soil Pseudomorphs. - 6.8 Ice Crystallography. - 6.9 Ice Geochemistry. - 6.10 Massive Ice and Massive-Icy Bodies. - 6.10.1 Nature and Extent. - 6.10.2 Intra-Sedimental Ice. - 6.10.3 Buried Glacier Ice. - 6.11 Cryostratigraphy and Past Environments. - 7 Aggradational Permafrost Landforms. - 7.1 Introduction. - 7.2 How Does Permafrost Aggrade?. - 7.2.1 The Illisarvik Drained-Lake Experiment. - 7.3 Thermal-Contraction-Crack Polygons. - 7.3.1 Coefficients of Thermal Expansion and Contraction. - 7.3.2 Ice, Sand and Soil ('Ground') Wedges. - 7.3.3 Development of the Polygon Net. - 7.3.4 Polygon Morphology. - 7.3.5 Controls over Cracking. - 7.3.6 Climatic Significance. - 7.4 Ice and Sand Wedges. - 7.4.1 Epigenetic Wedges. - 7.4.2 Syngenetic Wedges. - 7.4.3 Anti-Syngenetic Wedges. - 7.4.4 Growth and Deformation of Wedges. - 7.5 Organic Terrain. - 7.5.1 Palsas. - 7.5.2 Peat Plateaus. - 7.6 Frost Mounds. - 7.6.1 Perennial-Frost Mounds. - 7.6.2 Hydraulic (Open) System Pingos. - 7.6.3 Hydrostatic (Closed) System Pingos. - 7.6.4 Other Perennial-Frost Mounds. - 7.6.5 Seasonal-Frost Mounds. - 7.6.6 Hydrolaccoliths and Other Frost-Induced Mounds. - 8 Thermokarst Processes and Landforms. - 8.1 Introduction. - 8.2 Thawing Ground. - 8.2.1 Thaw Strain and Thaw Settlement. - 8.2.2 Potential Depths of Soil Freezing and Thawing. - 8.2.3 The Development of Thermokarst. - 8.3 Causes of Thermokarst. - 8.3.1 General Comments. - 8.3.2 Specific Causes. - 8.4 Thaw-Related Processes. - 8.4.1 Thermokarst Subsidence (Thaw Settlement). - 8.4.2 Thermal Erosion. - 8.4.3 Other Processes. - 8.5 Thermokarst Sediments and Structures. - 8.5.1 Involuted Structures. - 8.5.2 Retrogressive-Thaw-Slumps and Debris-Flow Deposits. - 8.5.3 Ice-Wedge Pseudomorphs and Composite-Wedge Casts. - 8.5.4 Ice, Silt, Sand and Gravel Pseudomorphs. - 8.6 Thermokarst Landscapes. - 8.6.1 The Alas-Thermokarst Relief of Central Yakutia. - 8.6.2 The Western North American Arctic. - 8.6.3 The Ice-Free Areas of Continental Antarctica. - 8.7 Ice-Wedge Thermokarst Relief. - 8.7.1 Low-Centred Polygons. - 8.7.2 High-Centred Polygons. - 8.7.3 Badland Thermokarst Relief. - 8.8 Thaw Lakes and Depressions. - 8.8.1 Lakes and Taliks. - 8.8.2 Morphology. - 8.8.3 Growth and Drainage. - 8.8.4 Oriented Thaw Lakes. - Part III Periglacial Geomorphology. - 9 Cold-Climate Weathering. - 9.1 Introduction. - 9.2 General Weathering Facts. - 9.3 Freezing and Thawing Indices. - 9.4 Rock (Frost?) Shattering. - 9.4.1 Frost Action and Ice Segregation. - 9.4.2 Insolation and Thermal Shock. - 9.4.3 Perspective. - 9.5 Chemical Weathering. - 9.5.1 Karkevagge. - 9.5.2 Solution and Karstification. - 9.5.3 Salt Weathering. - 9.6 Cryogenic Weathering. - 9.6.1 Cryogenic Disintegration. - 9.6.2 The Coefficient of Cryogenic Contrast. - 9.6.3 Physico-Chemical Changes. - 9.6.4 Problematic Phenomena. - 9.7 Cryobiological Weathering. - 9.8 Rates of Cold-Climate Bedrock Weathering. - 9.9 Cryosols and Cryopedology. - 9.9.1 Cryosols. - 9.9.2 Classification. - 9.9.3 Cryosolic Micromorphology. - 10 Mass-Wasting Processes and Active-Layer Phenomena. - 10.1 Introduction. - 10.2 Slow Mass-Wasting Processes. - 10.2.1 Solifluction. - 10.2.2 Frost Creep. - 10.2.3 Gelifluction. - 10.2.4 Solifluction Deposits and Phenomena. - 10.3 Rapid Mass-Wasting Processes. - 10.3.1 Active-Layer-Detachment Slides. - 10.3.2 Debris Flows, Slush Flows and Avalanches. - 10.3.3 Rockfall. - 10.4 Snow Hydrology and Slopewash Processes. - 10.4.1 Snow Hydrology and Snowbanks. - 10.4.2 Surface and Subsurface Wash. - 10.5 Active-Layer Phenomena. - 10.5.1 Frost Heaving. - 10.5.2 Bedrock Heave. - 10.5.3 Upward Heaving of Stones and Objects. - 10.5.4 Stone Tilting. - 10.5.5 Ne
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Call number: AWI G6-18-91326
    Type of Medium: Monograph available for loan
    Pages: 279 Seiten , Diagramme, Karten
    ISBN: 9783110402421
    Language: English
    Note: Contents: Preface. - Acknowledgements. - 1 Introduction. - 1.1 Origin and characters of silicon and its isotopes. - 1.2 A brief description of silicon geochemistry. - 1.3 The history of silicon isotope studies. - 2 Analytical methods of silicon isotope composition. - 2.1 Gas source isotope ratio mass spectrometric analysis of silicon isotopes. - 2.2 Multi-collector inductively coupled plasma mass spectrometric (MC-ICPMS) analysis of silicon isotopes. - 2.3 Secondary ion mass spectrometry analyses. - 2.4 Standards and reference materials for silicon isotope measurement. - 2.5 Comparison of different methods on silicon isotope analyses. - 3 Mechanisms of silicon isotope fractionation. - 3.1 The thermodynamic silicon isotope exchange fractionation. - 3.2 Kinetic fractionation of silicon isotopes. - 4 Distribution of silicon isotopes in nature. - 4.1 Silicon isotope compositions of extraterrestrial materials. - 4.2 Silicon isotope distribution in lithosphere. - 4.3 Silicon isotope compositions of soils. - 4.4 Hydrosphere. - 4.5 Biosphere. - 5 Several aspects of silicon isotope applications. - 5.1 Studies on global silicon cycle. - 5.2 Silicon isotope studies on environmental variation of ocean. - 5.3 Studies on mechanisms of absorption, transportation and precipitation of silicon in plant growth processes. - 5.4 Studies on silicon source and genesis of ore deposits. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Call number: AWI G6-18-91956
    Description / Table of Contents: Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1–500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.
    Type of Medium: Dissertations
    Pages: xxi, 197 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Contents: 1 General introduction. - 1.1 Challenges of isotope-based temperature reconstructions. - 1.2 Thesis overview. - 1.3 Author contributions. - 2 Theoretical background. - 2.1 The isotopic composition of firn and ice. - 2.1.1 Fractionation of water isotopologues. - 2.1.2 Relationship with temperature. - 2.1.3 Measuring of the isotopic composition. - 2.2 Processes within the firn column. - 2.2.1 The firn column of polar ice sheets. - 2.2.2 The density of firn. - 2.2.3 The temperature profile of firn. - 2.2.4 Vapour diffusion in firn. - 2.3 Internal climate variability. - 3 Regional climate signal vs.local noise: a two-dimensional view of water isotopes. - 3.1 Introduction. - 3.2 Data and methods. - 3.3 Results. - 3.3.1 Trench isotope records. - 3.3.2 Single-profile representativity. - 3.3.3 Mean trench profiles. - 3.3.4 Spatial correlation structure. - 3.3.5 Statistical noise model. - 3.4 Discussion. - 3.4.1 Local noise vs. regional climate signal. - 3.4.2 Representativity of isotope signals. - 3.4.3 Implications. - 3.5 Conclusions. - 3.6 Appendix A: Derivation of noise model. - 3.6.1 Definitions. - 3.6.2 Derivation of model correlations. - 3.6.3 Estimation of parameters. - 3.7 Appendix B: Noise level after diffusion. - 4 Constraints on post-depositional isotope modifications in east antarctic firn. - 4.1 Introduction. - 4.2 Data and methods. - 4.2.1 Sampling and measurements. - 4.2.2 Trench depth scale. - 4.2.3 Spatial variability of trench profiles. - 4.2.4 Quantification of downward advection, densification and diffusion. - 4.2.5 Statistical tests. - 4.3 Results. - 4.3.1 Comparison of T15 and T13 isotope data. - 4.3.2 Expected isotope profile changes. - 4.3.3 Temporal vs. spatial variability. - 4.4 Discussion. - 4.4.1 Densification, diffusion and stratigraphic noise. - 4.4.2 Additional post-depositional modifications. - 4.5 Conclusions. - 5 On the similarity and apparent cycles of isotope variations. - 5.1 Introduction. - 5.2 Data and Methods. - 5.2.1 Data. - 5.2.2 Spectral analysis. - 5.2.3 Rice’s formula. - 5.2.4 Cycle length and amplitude estimation. - 5.2.5 Model for vertical isotope profiles. - 5.3 Results. - 5.3.1 Spectral analysis of isotope profiles. - 5.3.2 Theoretical and observed cycle length. - 5.3.3 Illustrative examples. - 5.3.4 Depth dependency of cycle length. - 5.3.5 Simulated vs. observed isotope variations. - 5.4 Discussion and summary. - 5.5 Conclusions. - 5.6 Appendix A: Input sensitivity. - 5.7 Appendix B: Additional results. - 5.8 Appendix C: Spectral significance testing. - 6 Timescale-dependency of antarctic isotope variations. - 6.1 Introduction. - 6.2 Data and methods. - 6.2.1 DML and WAIS isotope records. - 6.2.2 Spectral model. - 6.2.3 Timescale-dependent signal-to-noise ratio. - 6.2.4 Effects of diffusion and time uncertainty. - 6.2.5 Present-day temperature decorrelation. - 6.3 Results. - 6.3.1 Illustration of model approach. - 6.3.2 DML and WAIS isotope variability. - 6.4 Discussion. - 6.4.1 Interpretation of noise spectra. - 6.4.2 Interpretation of signal spectra. - 6.4.3 Signal-to-noise ratios. - 6.4.4 Differences between DML and WAIS. - 6.5 Conclusions. - 7 Declining temperature variability from LGM to holocene. - 8 General discussion and conclusions. - 8.1 Short-scale spatial and temporal isotope variability. - 8.1.1 Local spatial variability. - 8.1.2 Seasonal to interannual variability. - 8.1.3 Spatial vs. temporal variability. - 8.2 Extension to longer scales. - 8.2.1 Spatial vs. temporal variability on interannual timescales. - 8.2.2 Holocene and longer timescales. - 8.3 Concluding remarks and outlook. - Bibliography. - A Methods to: declining temperature variability from lgm to holocene. - A.1 Temperature proxy data. - A.2 Model-based temperature and variability change. - A.3 Temperature recalibration of proxy records. - A.3.1 Recalibration of ice-core records. - A.3.2 Recalibration of marine records. - A.4 Variance and variance ratio estimation. - A.5 Noise correction. - A.5.1 Testing effect of noise correction. - A.6 Effect of ecological adaption and bioturbation. - A.7 Effect of proxy sampling locations. - B Layering of surface snow and firn: noise or seasonal signal?. - B.1 Introduction. - B.2 Materials and methods. - B.2.1 Firn-core density profiles. - B.2.2 Trench density profiles. - B.2.3 Dielectric profiling and density estimates. - B.2.4 Comparison of DEP and CT density. - B.2.5 Ion measurements. - B.3 Results. - B.3.1 2-D trench density data. - B.3.2 Spatial correlation structure. - B.3.3 Comparison of mean density, isotope and impurity profiles. - B.3.4 Spectral analysis of vertical density data. - B.4 Discussion. - B.4.1 Spatial variability. - B.4.2 Representativeness of single profiles. - B.4.3 Seasonal cycle in snow density. - B.4.4 Density layering in firn and impurities. - B.5 Conclusions. - Acknowledgements - Danksagung.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...