ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (122)
  • 2015-2019  (122)
  • 1970-1974  (2)
  • 2018  (93)
  • 2015  (32)
  • AWI Library  (122)
Collection
  • Books  (122)
Language
Years
Year
Classification
Branch Library
Reading Room Location
  • 1
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley
    Call number: AWI A14-15-0008
    Description / Table of Contents: The cryosphere, that region of the world where water is temporarily or permanently frozen, plays a crucial role on our planet. Recent developments in remote sensing techniques, and the acquisition of new data sets, have resulted in significant advances in our understanding of all components of the cryosphere and its processes. This book, based on contributions from 40 leading experts, offers a comprehensive and authoritative overview of the methods, techniques and recent advances in applications of remote sensing of the cryosphere. Examples of the topics covered include: snow extent, depth, grain size and impurities; surface and subsurface melting; glaciers; accumulation over the Greenland and Antarctica ice sheets; ice thickness and velocities; gravimetric measurements from space; sea, lake and river ice; frozen ground and permafrost; fieldwork activities; recent and future cryosphere-oriented missions and experiments.
    Type of Medium: Monograph available for loan
    Pages: 408 Seiten , Illustrationen
    Edition: 1. edition
    ISBN: 9781118368855
    Series Statement: The cryosphere science series
    Language: English
    Note: Table of Contents: List of contributors. - Cryosphere Science: Series Preface. - Preface. - Acknowledgments. - About the companion website. - 1 Remote sensing and the cryosphere. - 1.1 Introduction. - 1.2 Remote sensing. - 1.2.1 The electromagnetic spectrum and blackbody radiation. - 1.2.2 Passive systems. - 1.2.3 Active systems. - 1.3 The cryosphere. - References. - 2 Electromagnetic properties of components of the cryosphere. - 2.1 Electromagnetic properties of snow. - 2.1.1 Visible/near-infrared and thermal infrared. - 2.1.2 Microwave region. - 2.2 Electromagnetic properties of sea ice. - 2.2.1 Visible/near-infrared and thermal infrared. - 2.2.2 Microwave region. - 2.3 Electromagnetic properties of freshwater ice. - 2.4 Electromagnetic properties of glaciers and ice sheets. - 2.4.1 Visible/near-infrared and thermal infrared. - 2.4.2 Microwave region. - 2.5 Electromagnetic properties of frozen soil. - 2.5.1 Visible/near-infrared and thermal infrared. - 2.5.2 Microwave region. - References. - Acronyms. - Websites cited. - 3 Remote sensing of snow extent. - 3.1 lntroduction. - 3.2 Visible/near-infrared snow products. - 3.2.1 The normalized difference snow index (NDSI). - 3.3 Passive microwave products. - 3.4 Blended VNIR/PM products. - 3.5 Satellite snow extent as input to hydrological models. - 3.6 Concluding remarks. - Acknowledgments. - References. - Acronyms. - Websites cited. - 4 Remote sensing of snow albedo, grain size, and pollution from space. - 4.1 Introduction. - 4.2 Forward modeling. - 4.3 Local optical properties of a snow layer. - 4.4 Inverse problem. - 4.5 Pitfalls of retrievals. - 4.6 Conclusions. - Acknowledgments. - References. - Acronyms. - Websites cited. - 5 Remote sensing of snow depth and snow water equivalent. - 5.1 Introduction. - 5.2 Photogrammetry. - 5.3 LiDAR. - 5.4 Gamma radiation. - 5.5 Gravity data. - 5.6 Passive microwave data. - 5.7 Active microwave data. - 5.8 Conclusions. - References. - Acronyms. - Websites cited. - 6 Remote sensing of melting snow and ice. - 6.1 Introduction. - 6.2 General considerations on optical/thermal and microwave sensors and techniques for remote sensing of melting. - 6.2.1 Optical and thermal sensors. - 6.2.2 Microwave sensors. - 6.2.3 Electromagnetic properties of dry and wet snow. - 6.3 Remote sensing of melting over land. - 6.4 Remote sensing of melting over Greenland. - 6.4.1 Thermal infrared sensors. - 6.4.2 Microwave sensors. - 6.5 Remote sensing of melting over Antarctica. - 6.6 Conclusions. - References. - Acronyms. - 7 Remote sensing of glaciers. - 7.1 Introduction. - 7.2 Fundamentals. - 7.3 Satellite instruments for glacier research. - 7.4 Methods. - 7.4.1 Image classification for glacier mapping. - 7.4.2 Mapping debris-covered glaciers. - 7.4.3 Glacier mapping with SAR data. - 7.4.4 Assessing glacier changes. - 7.4.5 Area and length changes. - 7.4.6 Volumetrie glacier changes. - 7.4.7 Glacier velocity. - 7.5 Glaciers of the Greenland ice sheet. - 7.5.1 Surface elevation. - 7.5.2 Glacier extent. - 7.5.3 Glacier dynamics. - 7.6 Summary. - References. - Acronyms. - Websites cited. - 8 Remote sensing of accumulation over the Greenland and Antarctic ice sheets. - 8.1 Introduction to accumulation. - 8.2 Spaceborne methods for determining accumulation over ice sheets. - 8.2.1 Microwave remote sensing. - 8.2.2 Other remote sensing techniques and combined methods. - 8.3 Airborne and ground-based measurements of accumulation. - 8.3.1 Ground-based. - 8.3.2 Airborne. - 8.4 Modeling of accumulation. - 8.5 The future for remote sensing of accumulation. - 8.6 Conclusions. - References. - Acronyms. - Website cited. - 9 Remote sensing of ice thickness and surface velocity. - 9.1 Introduction. - 9.1.1 Electrical properties of glacial ice. - 9.2 Radar principles. - 9.2.1 Radar sounder. - 9.2.2 Radar equation. - 9.3 Pulse compression. - 9.4 Antennas. - 9.5 Example results. - 9.6 SAR and array processing. - 9.7 SAR Interferometry. - 9. 7.1 Introduction. - 9.7.2 Basic theory. - 9.7.3 Practical considerations of InSAR systems. - 9.7.4 Application of InSAR to Cryosphere remote sensing. - 9.8 Conclusions. - References. - Acronyms. - 10 Gravimetry measurements from space. - 10.1 Introduction. - 10.2 Observing the Earth's gravity field with inter-satellite ranging. - 10.3 Surface mass variability from GRACE. - 10.4 Results. - 10.5 Conclusions. - References. - Acronyms. - 11 Remote sensing of sea ice. - 11.1 Introduction. - 11.2 Sea ice concentration and extent. - 11.2.1 Passive microwave radiometers. - 11.2.2 Active microwave - scatterometry and radar. - 11.2.3 Visible and infrared. - 11.2.4 Operational sea ice analyses. - 11.3 Sea ice drift. - 11.4 Sea ice thickness and age, and snow depth. - 11.4.1 Altimetric thickness estimates. - 11.4.2 Radiometric thickness estimates. - 11.4.3 Sea ice age estimates as a proxy for ice thickness. - 11.5 Sea ice melt onset and freeze-up, albedo, melt pond fraction and surface temperature. - 11.5.1 Melt onset and freeze-up. - 11.5.2 Sea ice albedo and melt pond fraction. - 11.5.3 Sea ice surface temperature. - 11.6 Summary, challenges and the road ahead. - References. - Acronyms. - Website cited. - 12 Remote sensing of lake and river ice. - 12.1 Introduction. - 12.2 Remote sensing of lake ice. - 12.2.1 Ice concentration, extent and phenology. - 12.2.2 Ice types. - 12.2.3 Ice thickness and snow on ice. - 12.2.4 Snow/ice surface temperature. - 12.2.5 Floating and grounded ice: the special case of shallow Arctic/sub-Arctic lakes. - 12.3 Remote sensing of river ice. - 12.3.1 Ice extent and phenology. - 12.3.2 lce types, ice jams and flooded areas. - 12.3.3 Ice thickness. - 12.3.4 Surface flow velocities. - 12.3.5 Incorporating SAR-derived ice information into a GIS-based system in support of river-flow modeling and flood forecasting. - 12.4 Conclusions and outlook. - Acknowledgments. - References. - Acronyms. - Websites cited. - 13 Remote sensing of permafrost and frozen ground. - 13.1 Permafrost - an essential climate variable of the "Global Climate Observing System". - 13.2 Mountain permafrost. - 13.2.1 Remote sensing of surface features and permafrost landforms. - 13.2.2 Generation of digital elevation models. - 13.2.3 Terrain elevation change and displacement. - 13.3 Lowland permafrost - identification and mapping of surface features. - 13.3.1 Land cover and vegetation. - 13.3.2 Permafrost landforms. - 13.3.3 Landforms and processes indicating permafrost degradation. - 13.4 Lowland permafrost - remote sensing of physical variables related to the thermal permafrost state. - 13.4.1 Land surface temperature through thermal remote sensing. - 13.4.2 Freeze-thaw state of the surface soil through microwave remote sensing. - 13.4.3 Permafrost mapping with airborne electromagnetic surveys. - 13.4.4 Regional surface deformation through radar interferometry. - 13.4.5 A gravimetric signal of permafrost thaw?. - 13.5 Outlook - remote sensing data and permafrost models. - References. - Acronyms. - 14 Field measurements for remote sensing of the cryosphere. - 14.1 Introduction. - 14.2 Physical properties of interest. - 14.2.1 Surface properties. - 14.2.2 Sub-surface properties. - 14.3 Standard techniques for direct measurements of physical properties. - 14.3.1 Topography. - 14.3.2 Snow depth. - 14.3.3 Snow water equivalent and density. - 14.3.4 Temperature. - 14.3.5 Stratigraphy. - 14.3.6 Sea ice depth and ice thickness. - 14.4 New techniques for high spatial resolution measurements. - 14.4.1 Topography. - 14.4.2 Surface properties. - 14.4.3 Sub-surface properties. - 14.5 Simulating airborne and spaceborne observations from the ground. - 14.5.1 Active microwave. - 14.5.2 Passive microwave. - 14.6 Sampling strategies for remote sensing field campaigns: concepts and examples. - 14.6.1 Ice sheet campaigns. - 14.6.2 Seasonal snow campaigns. - 14.6.3 Sea ice campaigns. - 14.7 Conclusions. - References. - Acronyms. - Websites cited. - 15 Remote sensing missions and the cryosphere. - 15.1 In
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Köln : Heymanns
    Call number: AWI S5-15-0005
    Type of Medium: Monograph available for loan
    Pages: XX, 406 S. , graph. Darst.
    Edition: 9. Aufl.
    ISBN: 9783452281500
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: AWI G6-18-91326
    Type of Medium: Monograph available for loan
    Pages: 279 Seiten , Diagramme, Karten
    ISBN: 9783110402421
    Language: English
    Note: Contents: Preface. - Acknowledgements. - 1 Introduction. - 1.1 Origin and characters of silicon and its isotopes. - 1.2 A brief description of silicon geochemistry. - 1.3 The history of silicon isotope studies. - 2 Analytical methods of silicon isotope composition. - 2.1 Gas source isotope ratio mass spectrometric analysis of silicon isotopes. - 2.2 Multi-collector inductively coupled plasma mass spectrometric (MC-ICPMS) analysis of silicon isotopes. - 2.3 Secondary ion mass spectrometry analyses. - 2.4 Standards and reference materials for silicon isotope measurement. - 2.5 Comparison of different methods on silicon isotope analyses. - 3 Mechanisms of silicon isotope fractionation. - 3.1 The thermodynamic silicon isotope exchange fractionation. - 3.2 Kinetic fractionation of silicon isotopes. - 4 Distribution of silicon isotopes in nature. - 4.1 Silicon isotope compositions of extraterrestrial materials. - 4.2 Silicon isotope distribution in lithosphere. - 4.3 Silicon isotope compositions of soils. - 4.4 Hydrosphere. - 4.5 Biosphere. - 5 Several aspects of silicon isotope applications. - 5.1 Studies on global silicon cycle. - 5.2 Silicon isotope studies on environmental variation of ocean. - 5.3 Studies on mechanisms of absorption, transportation and precipitation of silicon in plant growth processes. - 5.4 Studies on silicon source and genesis of ore deposits. - References. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Series available for loan
    Series available for loan
    Akureyri : International Arctic Science Committee
    Associated volumes
    Call number: AWI P5-18-91643
    In: IASC ... bulletin, 2018
    Type of Medium: Series available for loan
    Pages: 84 Seiten , Illustrationen, graphische Darstellungen, Karten
    ISBN: 978-9935-24-372-0
    ISSN: 1654-7594
    Series Statement: IASC Bulletin 2018
    Language: English
    Note: CONTENTS: PREFACE. - 1 IASC Internal Development. - IASC Organization. - IASC Council. - IASC Executive Committee. - IASC Secretariat. - ISIRA. - IASC Medal 2018. - 2 IASC Working Groups. - Cross-Cutting Activities. - Atmosphere Working Group (AWG). - Cryosphere Working Group (CWG). - Marine Working Group (MWG). - Social and Human Working Group (SHWG). - Terrestrial Working Group (TWG). - 3 Arctic Science Summit Week 2017. - Upcoming ASSWs. - 4 Data and Observations. - Arctic Data Committee (ADC). - Sustaining Arctic Observing Networks (SAON). - 5 Partnerships. - Arctic Council. - Asian Forum for Polar Sciences (AFoPS). - Association of Polar Early Career Scientists (APECS). - Circumpolar Health Research Network (CirchNet). - European Polar Board (EPB). - Forum of Arctic Research Operators (FARO). - International Arctic Social Sciences Association (IASSA). - International Association of Cryospheric Sciences (IACS). - International Council for the Exploration of the Sea (ICES). - The International Permafrost Association (IPA). - The Pacific Arctic Group (PAG). - The Scientific Committee on Antarctic Research (SCAR). - University of the Arctic (UArctic). - WCRP Climate and Cryosphere (CliC). - 6 Capacity Building. - IASC Fellowship Program. - CAFF-IASC Fellowship. - Fellows’ Voices. - Overview of Supported Early Career Scientists.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Call number: AWI P5-18-91710
    Type of Medium: Monograph available for loan
    Pages: 24 S. , Ill.
    Edition: Stand: September 2015
    Language: German
    Note: Inhaltsverzeichnis: Vorwort. - Einleitung. - 1. Strategische Ziele der Arktisforschung. - 2. Die zentralen Fragen der Arktisforschung. - 2.1. Vergangenheit, Gegenwart und Zukunft des Klimawandels in der Arktis. - 2.2. Beitrag des grönländischen Inlandeises zur Meeresspiegelerhöhung. - 2.3. Rückgang des arktischen Meereises. - 2.4. Permafrost und Gashydrate als unbekannte Größen im Klimasystem. - 2.5. Anpassung polarer Organismen an die arktische Umwelt im Wandel. - 2.6. Chancen und Risiken zunehmender wirtschaftlicher Nutzung der Arktis. - 3. Stand der deutschen Polarforschung. - 3.1. Partner der deutschen Arktisforschung. - 3.2. Regionale Schwerpunkte der deutschen Arktisforschung. - 3.3. Positionierung im internationalen Umfeld. - 4. Umsetzung der Arktisforschungsstrategie. - 4.1. Forschung für Nachhaltigkeit. - 4.2. Wissenstransfer in die Gesellschaft. - 4.3. Technologietransfer. - 4.4. Nachwuchsförderung. - Anmerkungen. - Impressum.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley Blackwell
    Call number: AWI G3-18-91739
    Type of Medium: Monograph available for loan
    Pages: xxiii, 515 Seiten , Illustrationen, Diagramme, Karten , 26 cm
    Edition: Fourth edition
    Edition: edition first published 2018
    ISBN: 9781119132783 , 9781119132790 (electronic) , 9781119132813 (electronic)
    Language: English
    Note: Contents: Preface to Fourth Edition. - Preface to Third Edition. - Preface to Second Edition. - Preface to First Edition. - Acknowledgments. - PART I THE PERIGLACIAL DOMAIN. - 1 Introduction. - 1.1 The Periglacial Concept. - 1.2 Diagnostic Criteria. - 1.3 Periglacial Environments. - 1.4 The Periglacial Domain. - 1.5 The Periglacial Domain and the Cryosphere. - 1.6 Disciplinary Considerations. - 1.6.1 The Growth of Geocryology. - 1.6.2 The Challenge of Quaternary Science. - 1.6.3 Periglacial Geomorphology or Cold-Region Geomorphology?. - 1.7 Societal Considerations. - 1.8 The Growth of Periglacial Knowledge. - 2 Periglacial Climates. - 2.1 Boundary Conditions. - 2.2 Cold Deserts. - 2.3 Regional Climates. - 2.3.1 High Arctic Climates. - 2.3.2 Continental Climates. - 2.3.3 Alpine Climates. - 2.3.4 Montane Climates. - 2.3.5 Climates of Low Annual Temperature Range. - 2.3.6 Antarctica: A Special Case. - 2.4 Snow and Ice. - 2.5 Wind. - 2.6 Ground Climates. - 2.6.1 The 'n'-Factor. - 2.6.2 The Thermal Offset. - 2.6.3 The Ground Temperature Regime. - 2.7 Periglacial Climates and Global Climate Change. - 2.7.1 Basic Facts. - 2.7.2 Why Climate-Cryosphere Interactions Accelerate Climate Warming. - 3 Periglacial Ecosystems. - 3.1 General Statement. - 3.2 Biogeographic Zonation and Major Vegetation Types. - 3.3 Adaptations to Cold, Snow, Wind and Aridity. - 3.4 The Effect of Vegetation. - 3.5 The Polar Deserts. - 3.5.1 The High Arctic Polar Deserts. - 3.5.2 The High Arctic Polar Semi-Deserts. - 3.6 The Polar Desert-Tundra Transition. - 3.7 The Low-Arctic Tundra. - 3.8 The Forest-Tundra Bioclimatic Boundary (The Tree Line). - 3.9 The Boreal Forest. - 3.10 The Alpine and Montane Ecosystems. - 3.11 Antarctica - A Special Case. - 3.12 Periglacial Ecosystems and Climate Change. - PART II FROZEN GROUND AND PERMAFROST. - 4 Ground Freezing, Permafrost and the Active Layer. - 4.1 Introduction. - 4.2 Ground Freezing. - 4.2.1 Basic Concepts. - 4.2.2 Ice Segregation. - 4.2.3 "The Frozen Fringe'. - 4.2.4 Frost Heave. - 4.3 Perennially-Frozen Ground (Permafrost). - 4.4 Moisture and Ice Within Permafrost. - 4.5 Thermal and Physical Properties. - 4.5.1 The Geothermal Regime. - 4.5.2 The TTOP Model. - 4.5.3 Physical Properties. - 4.5.4 Thermal Properties. - 4.6 Permafrost Hydrology. - 4.6.1 Aquifers. - 4.6.2 Hydrochemistry. - 4.6.3 Groundwater Icings. - 4.7 The Active Layer. - 4.7.1 Terminology. - 4.7.2 The Active-Layer Thermal Regime. - 4.7.3 The Transient Layer. - 4.7.4 The Stefan Equation. - 5 Permafrost Distribution and Stability. - 5.1 Introduction. - 5.2 Controls over Permafrost Distribution. - 5.2.1 Relief and Aspect. - 5.2.2 Rock Type. - 5.2.3 Vegetation. - 5.2.4 Snow Cover. - 5.2.5 Fire. - 5.2.6 Lakes and Surface Water Bodies. - 5.3 Spatial Extent of Permafrost and Frozen Ground. - 5.3.1 Latitudinal Permafrost. - 5.3.2 Alpine (Mountain) Permafrost. - 5.3.3 Montane Permafrost. - 5.3.4 Seasonally-Frozen Ground. - 5.4 Sub-Sea and Relict Permafrost. - 5.4.1 Sub-Sea Permafrost. - 5.4.2 Relict (Terrestrial) Permafrost. - 5.5 Permafrost and Ecosystems. - 5.6 Permafrost Monitoring and Mapping. - 5.6.1 CALM and GTN-P (TSP). - 5.6.2 BTS and Mountain Permafrost Probability Mapping. - 5.7 Climate Warming and Permafrost. - 5.7.1 Evidence for Warming Permafrost. - 5.7.2 Evidence for Thawing Permafrost. - 6 Ground Ice and Cryostratigraphy. - 6.1 Introduction. - 6.2 Quantitative Parameters. - 6.3 Epigenetic, Syngenetic and Polygenetic Permafrost. - 6.4 Classification. - 6.4.1 The Russian Approach. - 6.4.2 The North American Approach. - 6.5 Main Ground Ice Types. - 6.5.1 Pore Ice. - 6.5.2 Segregated Ice. - 6.5.3 Intrusive Ice. - 6.5.4 Vein Ice. - 6.5.5 Other Types of Ice. - 6.6 Ice Distribution. - 6.6.1 Amounts. - 6.6.2 Distribution with Depth. - 6.6.3 Ice in Bedrock. - 6.6.4 Ice in Poorly-Lithified Sediments. - 6.7 Cryostratigraphy and Cryolithology. - 6.7.1 Cryostructural Analysis. - 6.7.2 Cryostructures of Epigenetic and Syngenetic Permafrost. - 6.7.3 Thaw Unconformities. - 6.7.4 Aggradational Ice. - 6.7.5 Icy Bodies and Ice, Sand and Soil Pseudomorphs. - 6.8 Ice Crystallography. - 6.9 Ice Geochemistry. - 6.10 Massive Ice and Massive-Icy Bodies. - 6.10.1 Nature and Extent. - 6.10.2 Intra-Sedimental Ice. - 6.10.3 Buried Glacier Ice. - 6.11 Cryostratigraphy and Past Environments. - 7 Aggradational Permafrost Landforms. - 7.1 Introduction. - 7.2 How Does Permafrost Aggrade?. - 7.2.1 The Illisarvik Drained-Lake Experiment. - 7.3 Thermal-Contraction-Crack Polygons. - 7.3.1 Coefficients of Thermal Expansion and Contraction. - 7.3.2 Ice, Sand and Soil ('Ground') Wedges. - 7.3.3 Development of the Polygon Net. - 7.3.4 Polygon Morphology. - 7.3.5 Controls over Cracking. - 7.3.6 Climatic Significance. - 7.4 Ice and Sand Wedges. - 7.4.1 Epigenetic Wedges. - 7.4.2 Syngenetic Wedges. - 7.4.3 Anti-Syngenetic Wedges. - 7.4.4 Growth and Deformation of Wedges. - 7.5 Organic Terrain. - 7.5.1 Palsas. - 7.5.2 Peat Plateaus. - 7.6 Frost Mounds. - 7.6.1 Perennial-Frost Mounds. - 7.6.2 Hydraulic (Open) System Pingos. - 7.6.3 Hydrostatic (Closed) System Pingos. - 7.6.4 Other Perennial-Frost Mounds. - 7.6.5 Seasonal-Frost Mounds. - 7.6.6 Hydrolaccoliths and Other Frost-Induced Mounds. - 8 Thermokarst Processes and Landforms. - 8.1 Introduction. - 8.2 Thawing Ground. - 8.2.1 Thaw Strain and Thaw Settlement. - 8.2.2 Potential Depths of Soil Freezing and Thawing. - 8.2.3 The Development of Thermokarst. - 8.3 Causes of Thermokarst. - 8.3.1 General Comments. - 8.3.2 Specific Causes. - 8.4 Thaw-Related Processes. - 8.4.1 Thermokarst Subsidence (Thaw Settlement). - 8.4.2 Thermal Erosion. - 8.4.3 Other Processes. - 8.5 Thermokarst Sediments and Structures. - 8.5.1 Involuted Structures. - 8.5.2 Retrogressive-Thaw-Slumps and Debris-Flow Deposits. - 8.5.3 Ice-Wedge Pseudomorphs and Composite-Wedge Casts. - 8.5.4 Ice, Silt, Sand and Gravel Pseudomorphs. - 8.6 Thermokarst Landscapes. - 8.6.1 The Alas-Thermokarst Relief of Central Yakutia. - 8.6.2 The Western North American Arctic. - 8.6.3 The Ice-Free Areas of Continental Antarctica. - 8.7 Ice-Wedge Thermokarst Relief. - 8.7.1 Low-Centred Polygons. - 8.7.2 High-Centred Polygons. - 8.7.3 Badland Thermokarst Relief. - 8.8 Thaw Lakes and Depressions. - 8.8.1 Lakes and Taliks. - 8.8.2 Morphology. - 8.8.3 Growth and Drainage. - 8.8.4 Oriented Thaw Lakes. - Part III Periglacial Geomorphology. - 9 Cold-Climate Weathering. - 9.1 Introduction. - 9.2 General Weathering Facts. - 9.3 Freezing and Thawing Indices. - 9.4 Rock (Frost?) Shattering. - 9.4.1 Frost Action and Ice Segregation. - 9.4.2 Insolation and Thermal Shock. - 9.4.3 Perspective. - 9.5 Chemical Weathering. - 9.5.1 Karkevagge. - 9.5.2 Solution and Karstification. - 9.5.3 Salt Weathering. - 9.6 Cryogenic Weathering. - 9.6.1 Cryogenic Disintegration. - 9.6.2 The Coefficient of Cryogenic Contrast. - 9.6.3 Physico-Chemical Changes. - 9.6.4 Problematic Phenomena. - 9.7 Cryobiological Weathering. - 9.8 Rates of Cold-Climate Bedrock Weathering. - 9.9 Cryosols and Cryopedology. - 9.9.1 Cryosols. - 9.9.2 Classification. - 9.9.3 Cryosolic Micromorphology. - 10 Mass-Wasting Processes and Active-Layer Phenomena. - 10.1 Introduction. - 10.2 Slow Mass-Wasting Processes. - 10.2.1 Solifluction. - 10.2.2 Frost Creep. - 10.2.3 Gelifluction. - 10.2.4 Solifluction Deposits and Phenomena. - 10.3 Rapid Mass-Wasting Processes. - 10.3.1 Active-Layer-Detachment Slides. - 10.3.2 Debris Flows, Slush Flows and Avalanches. - 10.3.3 Rockfall. - 10.4 Snow Hydrology and Slopewash Processes. - 10.4.1 Snow Hydrology and Snowbanks. - 10.4.2 Surface and Subsurface Wash. - 10.5 Active-Layer Phenomena. - 10.5.1 Frost Heaving. - 10.5.2 Bedrock Heave. - 10.5.3 Upward Heaving of Stones and Objects. - 10.5.4 Stone Tilting. - 10.5.5 Ne
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Call number: AWI G6-18-91956
    Description / Table of Contents: Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1–500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.
    Type of Medium: Dissertations
    Pages: xxi, 197 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Contents: 1 General introduction. - 1.1 Challenges of isotope-based temperature reconstructions. - 1.2 Thesis overview. - 1.3 Author contributions. - 2 Theoretical background. - 2.1 The isotopic composition of firn and ice. - 2.1.1 Fractionation of water isotopologues. - 2.1.2 Relationship with temperature. - 2.1.3 Measuring of the isotopic composition. - 2.2 Processes within the firn column. - 2.2.1 The firn column of polar ice sheets. - 2.2.2 The density of firn. - 2.2.3 The temperature profile of firn. - 2.2.4 Vapour diffusion in firn. - 2.3 Internal climate variability. - 3 Regional climate signal vs.local noise: a two-dimensional view of water isotopes. - 3.1 Introduction. - 3.2 Data and methods. - 3.3 Results. - 3.3.1 Trench isotope records. - 3.3.2 Single-profile representativity. - 3.3.3 Mean trench profiles. - 3.3.4 Spatial correlation structure. - 3.3.5 Statistical noise model. - 3.4 Discussion. - 3.4.1 Local noise vs. regional climate signal. - 3.4.2 Representativity of isotope signals. - 3.4.3 Implications. - 3.5 Conclusions. - 3.6 Appendix A: Derivation of noise model. - 3.6.1 Definitions. - 3.6.2 Derivation of model correlations. - 3.6.3 Estimation of parameters. - 3.7 Appendix B: Noise level after diffusion. - 4 Constraints on post-depositional isotope modifications in east antarctic firn. - 4.1 Introduction. - 4.2 Data and methods. - 4.2.1 Sampling and measurements. - 4.2.2 Trench depth scale. - 4.2.3 Spatial variability of trench profiles. - 4.2.4 Quantification of downward advection, densification and diffusion. - 4.2.5 Statistical tests. - 4.3 Results. - 4.3.1 Comparison of T15 and T13 isotope data. - 4.3.2 Expected isotope profile changes. - 4.3.3 Temporal vs. spatial variability. - 4.4 Discussion. - 4.4.1 Densification, diffusion and stratigraphic noise. - 4.4.2 Additional post-depositional modifications. - 4.5 Conclusions. - 5 On the similarity and apparent cycles of isotope variations. - 5.1 Introduction. - 5.2 Data and Methods. - 5.2.1 Data. - 5.2.2 Spectral analysis. - 5.2.3 Rice’s formula. - 5.2.4 Cycle length and amplitude estimation. - 5.2.5 Model for vertical isotope profiles. - 5.3 Results. - 5.3.1 Spectral analysis of isotope profiles. - 5.3.2 Theoretical and observed cycle length. - 5.3.3 Illustrative examples. - 5.3.4 Depth dependency of cycle length. - 5.3.5 Simulated vs. observed isotope variations. - 5.4 Discussion and summary. - 5.5 Conclusions. - 5.6 Appendix A: Input sensitivity. - 5.7 Appendix B: Additional results. - 5.8 Appendix C: Spectral significance testing. - 6 Timescale-dependency of antarctic isotope variations. - 6.1 Introduction. - 6.2 Data and methods. - 6.2.1 DML and WAIS isotope records. - 6.2.2 Spectral model. - 6.2.3 Timescale-dependent signal-to-noise ratio. - 6.2.4 Effects of diffusion and time uncertainty. - 6.2.5 Present-day temperature decorrelation. - 6.3 Results. - 6.3.1 Illustration of model approach. - 6.3.2 DML and WAIS isotope variability. - 6.4 Discussion. - 6.4.1 Interpretation of noise spectra. - 6.4.2 Interpretation of signal spectra. - 6.4.3 Signal-to-noise ratios. - 6.4.4 Differences between DML and WAIS. - 6.5 Conclusions. - 7 Declining temperature variability from LGM to holocene. - 8 General discussion and conclusions. - 8.1 Short-scale spatial and temporal isotope variability. - 8.1.1 Local spatial variability. - 8.1.2 Seasonal to interannual variability. - 8.1.3 Spatial vs. temporal variability. - 8.2 Extension to longer scales. - 8.2.1 Spatial vs. temporal variability on interannual timescales. - 8.2.2 Holocene and longer timescales. - 8.3 Concluding remarks and outlook. - Bibliography. - A Methods to: declining temperature variability from lgm to holocene. - A.1 Temperature proxy data. - A.2 Model-based temperature and variability change. - A.3 Temperature recalibration of proxy records. - A.3.1 Recalibration of ice-core records. - A.3.2 Recalibration of marine records. - A.4 Variance and variance ratio estimation. - A.5 Noise correction. - A.5.1 Testing effect of noise correction. - A.6 Effect of ecological adaption and bioturbation. - A.7 Effect of proxy sampling locations. - B Layering of surface snow and firn: noise or seasonal signal?. - B.1 Introduction. - B.2 Materials and methods. - B.2.1 Firn-core density profiles. - B.2.2 Trench density profiles. - B.2.3 Dielectric profiling and density estimates. - B.2.4 Comparison of DEP and CT density. - B.2.5 Ion measurements. - B.3 Results. - B.3.1 2-D trench density data. - B.3.2 Spatial correlation structure. - B.3.3 Comparison of mean density, isotope and impurity profiles. - B.3.4 Spectral analysis of vertical density data. - B.4 Discussion. - B.4.1 Spatial variability. - B.4.2 Representativeness of single profiles. - B.4.3 Seasonal cycle in snow density. - B.4.4 Density layering in firn and impurities. - B.5 Conclusions. - Acknowledgements - Danksagung.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Bremerhaven : Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Call number: AWI A4-19-92164
    Type of Medium: Monograph available for loan
    Pages: 86 Seiten , Illustrationen, Diagramme, Karten
    Edition: Redaktioneller Stand Januar 2018
    Series Statement: Im Fokus / Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Language: German
    Note: INHALT: EDITORIAL. - Auf den Spuren des Wandels: Forschung an den Brennpunkten unseres Planeten. - SCHWERPUNKTTHEMA. - Hotspot Arktis – wenn das Eis verschwindet. - OZEANOGRAPHIE. - E-Mails vom Filchner-Schelfeis. - MEEREISVORHERSAGE. - Wenn zwei sich „streiten“. - KLIMAMODELLIERUNG. - Stets die richtige Maschenweite. - HYDROAKUSTIK. - Der Sound des Ozeans. - OZEANOGRAPHIE. - Der Wärme-Pulsschlag des Nordatlantiks. - OZEANOGRAPHIE. - Wohin wandert der Rieseneisberg vom Larsen C-Schelfeis?. - ATMOSPHÄRENFORSCHUNG. - Per Anhalter in die Arktis. - KLIMAMODELLIERUNG. - Die Stärken des Rechnens. - FERNERKUNDUNG. - Die Lücken im Blick. - ATMOSPHÄRENFORSCHUNG. - Die Ozon-Story. - MEEREISPHYSIK. - Messungen aus der Vogelperspektive. - FORSCHUNGSVERBUND. - Den Klimawandel vor der Haustür verstehen. - INFOGRAFIK. - Einblicke in das Klima der Vergangenheit. - MEERESSPIEGELANSTIEG. - Eis weg - Land unter!. - IMPRESSUM.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Bremerhaven : Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research
    Call number: AWI A4-19-92165
    Type of Medium: Monograph available for loan
    Pages: 86 Seiten , Illustrationen, Diagramme, Karten
    Edition: January 2018
    Series Statement: Im Fokus / Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
    Language: German
    Note: TABLE OF CONTENTS: EDITORIAL. - Tracking Changes: research at our planet’s hotspots. - FOCUS TOPIC. - Hotspot Arktic - when the ice disappears. - OCEANOGRAPHY. - E-mails from the Filchner Ice Shelf. - SEA-ICE FORECASTING. - Great minds don’t always think alike. - CLIMATE MODELLING. - Always the right scale. - HYDROACOUSTICS. - The Music of the Ocean. - OCEANOGRAPHY. - The Pulse of Heat in the North Atlantic. - OCEANOGRAPHY. - Where is the giant iceberg from the Larsen C Ice Shelf heading?. - ATMOSPHERIC RESEARCH. - Hitchhiking across the arctic. - CLIMATE MODELLING. - The benefits of model. - REMOTE SENSING. - Minding the gaps. - ATMOSPHERIC RESEARCH. - The Ozone Story. - SEA-ICE PHYSICS. - A bird’s eye view of the ice. - RESEARCH NETWORK INITIATIVE. - Understanding the climate change on your own doorstep. - INFOGRAPHIC. - Decoding the Earth ́s climate history. - SEA LEVEL RISE. - Melting ice flooded shores. - MASTHEAD.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    [Santiago de Compostela] : Grupo de Investigación "Ciencia do Sistema Terra"
    Call number: AWI G3-19-92358
    Type of Medium: Monograph available for loan
    Pages: 117 Seiten , Illustrationen
    ISBN: 978-84-606-9215-7
    Series Statement: Monografías del Grupo de Investigación "Ciencia do Sistema Terra (GI-1553)-USC" 2
    Language: Spanish
    Note: Índice Presentación Observaciones geomorfológicas sobre icings y ampollas de hielo en Reindalen (78°N), Nordenskjold Land, Svalbard Nuevas evidencias de la existencia de permafrost en Tierra del Fuego (Argentina): régimen térmico del glaciar rocoso activo del Cerro Krund Surface NMR survey on Hansbreen glacier, Hornsund, SW Spitzberg (Norway) Permafrost y anomalias geotermicas en isla Decepcion (Antartida). Primeros resultados del área del abanico aluvial del Monte Irizar Glacial, periglacial and eolian landforms in the Cerro Campanario (the Andes, 35°S) , In spanischer und englischer Sprache , Zusammenfassungen in spanischer und englischer Sprache
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...