ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (77)
  • Monitoring system
Collection
Keywords
  • 1
    Publication Date: 2023-07-12
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic nodal network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. During the time of deployment, a vibroseis survey took place around the Nesjavellir power plant. The here published dataset contains a subset of the downsampled DAS-recordings from the eastern fiber optic array. To save storage space, only every fourth trace was made available. The original data were downsampled from 1000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Further traces or the original data can be obtained upon request. Waveform data are available from the GEOFON data centre, under network code ZH.
    Keywords: DAS ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~110G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The STRATEGy network was a temporary seismic network in the NW Argentinean Andean Foreland. It run for about 15 months between June 2016 and August 2017 and consisted of 13 stations for the most parts. Each station contains a Lennartz LE3D/5s seismometer, an Omnirecs DataCube³ext digitizer (100 Hz sampling rate) with external GPS antenna and internal flash memory. Station 14A consisted of a Mark L-4C-3D short-period sensor. The power was supplied through an external batteries that were recharged during the day via a solar panel. The sensors were oriented to magnetic north. The header of the waveform files (NSLC-IDs) still remained in its prior form (network code ST) and haven’t been adapted to the FDSN given code. Station codes (double digits) were assigned from North to South. The last digit of the station code is either A (for their initial position of a station site) or B (the station has been moved during the networks operation time due to low quality recordings at the respective initial site). Each site was chosen on 3 criteria: (1) minimizing the depth to bedrock, (2) maximizing remoteness, and (3) maximizing security, preferentially located within sight of nearby settlements. However, one station (02A) was lost due to theft and many others experienced recording gaps due to animals chewing on cables, malfunctions of electrical parts and mainly flooding of the stations during the austral summer monsoon. The overall network geometry evolved partially due to accessibility of remote locations, maintaining similar interstation distances and focusing around the epicenter of the Mw 5.7 El Galpón earthquake 9 months prior to the network’s starttime. The smallest depths to bedrock were achieved by concentrating the sites around two major bedrock ranges and their piedmont, Cerro Colorado and Sierra de la Candelaria. Waveform data are available from the GEOFON data centre, under network code 2S.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~110G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Deployment of 10 seismometers for monitoring the induced seismicity of the Lacq gas field, France. This project focus on the analysis of the seismicity induced by anthropogenic activities (gas extraction and wastewater injection) related to the gas field, located in Lacq, France. We aim to answer the following questions: which part of the Lacq induced seismicity is generated by wastewater injection? by the mechanical evolution of the reservoir depletion? Is the seismicity confined to the (minor) faults of the reservoir or can regional tectonic faults be activated, generating large earthquakes? What scenarios of ground shaking and damages could be expected in case of a major event in the area? What is the associated seismic hazard and risk?
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; induced seismicity ; Lacq gas field ; waste water injection ; temporary seismological network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consists of a vertical borehole array equipped with 3C sensors (geophones) for the analysis of swarm earthquakes in the Western Bohemia / Vogtland area located in the German/Czech border region. A surface array is completing the 3D observation of the wave field with 3C sensors (geophones). Waveform data is available from the GEOFON data centre, under network code 6A, and is embargoed until FEB 2035.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~15T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Project SWEAP (Southwest Indian Ridge Earthquakes and Plumes), a collaborative effort led by the Alfred-Wegener-Institute, installed a network of 10 broad-band ocean bottom seismometers (OBS) along the ultraslow-spreading Oblique Supersegment of the Southwest Indian Ridge. The presented data set covers the continuous records of 8 stations of the network provided by the DEPAS instrument pool. One station of the original network could not be recovered, another one did not return data. The instruments were spaced at roughly 15 km intervals in a triangular shape network to either side of the rift axis covering about 60 km along axis between 13°E and 13.8°E and 60 km across axis between 52°S and 52.6°S. The determination of the OBS positions is described by Schmid et al. (2016). The network design was optimized for detecting and locating deep seismicity in the area. The rift valley was filled with soft silica ooze, producing considerable delay of S-phases at selected stations. Instrument deployment started during RV Polarstern cruise ANT-XXIX/2 on December 05 2012. Instrument recovery was completed during RV Polarstern cruise ANT-XXIX/8 on November 26 2013. 5 Refraction seismic lines were acquired by RV Polarstern cruise ANT-XXIX/8 from November 17 to 19 in 2013. All OBS could be synchronized with the GPS clock upon recovery such that skew values describing the clock drift are available for all stations. The non-linear clock drift of station SWE05 was determined by means of noise cross-correlations and applied to the data set. All other stations show a linear drift, which was corrected.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Ocean-bottom seismometer ; OBS ; Southwest Indian Ridge ; passive seismology ; DEPAS ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: This dataset includes five stations of an Ocean Bottom Seismometer (OBS) experiment conducted at the southern end of the Fonualei Rift and Spreading Center in the Lau Basin, southwestern Pacific. The OBS recorded continuously for 32-days on 4 components, including a hydrophone and a 3-component 4.5 Hz geophone. The experiment was conducted during RV Sonne cruise SO267, project ARCHIMEDES I.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Ocean-bottom seismometer ; OBS ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~60G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The goal of Inter-Wind is to investigate and predict the induced seismic signals of wind turbines at different locations in Southern Germany. The experiments involve various sensor types and data loggers.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~39GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~8GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Ireland Array is an array of 20 broadband seismometers that was operated by the Dublin Institute for Advanced Studies across the Republic of Ireland. The array comprised up to 20 stations running simultaneously, all equipped with Trillium 120PA seismometers and Taurus data loggers. The 20 stations were installed in 2010–2012. Some of the stations were moved to new locations in Ireland in the course of the operation of the array, either in order to enhance the data sampling of the island or when the old deployment sites became unsuitable. Ireland Array dramatically increased the seismic data sampling of Ireland and enabled advances and discoveries in the studies of the structure and evolution of Ireland’s crust and lithosphere, seismicity of Ireland, and mechanisms of the Paleogene intraplate volcanism in Ireland and surroundings.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~2.4TB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-22
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-06
    Description: Abstract
    Description: The project DARE proposes an integrated study of seismic site effects on the deep and elongated Messinian Rhône Canyon (French Rhône Valley). Lithological information from boreholes reaching the bedrock and preliminary geophysical campaigns indicate that the canyon can reach locally 〉500 m and may be deeply incised. The strong material contrast between the sedimentary filling and the substratum, as well as its expected confined geometry make this canyon a good candidate for generating various kinds of multi-dimensional site effects. Waveform data are available from the GEOFON data centre, under network code Y7.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Continuous passive seismic monitoring is carried out between September 2017 and December 2021 around the Theistareykir geothermal area located at the intersection between the active Northern Rift Zone and the active Tjörnes Fracture Zone in NE Iceland. This experiment, in addition to an extensive gravimetric monitoring survey, was conducted in the framework of the MicroGraviMoTiS project for a better understanding of the structures and behavior of the local geothermal system under exploitation and for further development of local and regional geothermal resources. 14 broadband stations (Trillium C-120s) recording at 200 Hz comprise the temporary network, that is installed to complement stations of the national seismological network of IMO and stations of Landsvirkjun, the National Power Company of Iceland. The stations were placed in and around the producing zone to primarily retrieve local natural and/or induced seismicity associated to the injection and production operations. The retrieved seismic data is also used for obtaining a representative 1D velocity model of the region, for computing a seismic ambient noise tomography, and for monitoring the system using coda wave interferometry techniques. Funding for this project is provided by the German Federal Ministry for Education and Research (MicroGraviMoTiS , BMBF, grant: 03G0858A), the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and Landsvirkjun. Waveform data are available from the GEOFON data center, under network code 3P, and are embargoed until December 2025.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The main aim of this project is to investigate the crustal and mantle structure beneath the Longmenshan fault zone in China, based on a very dense passive seismology profile. The Longmenshan fault zone hosted the Wenchuan earthquake of May 2008 with a magnitude (Mw) of 7.9 and the Lushan earthquake of June 2013 with a magnitude (Mw) of 6.6. It is planned to mainly use the receiver-function method, to investigate the crustal and mantle structure beneath the Longmenshan fault zone. Waveform data are available from the GEOFON data center, under network code 4O, and are embargoed until February 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Earthquake ; Receiver functions ; Crustal and mantle structure ; China ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The temporary seismic array of MySCOLAR in northern Myanmar consists of 30 broadband stations. The overall scientific goals are to understand the transition from continental collision to oceanic subduction, to quantify the partitioning of deformation in the accretionary prism, in the Burma Plate and along the strike-slip Sagaing fault system and to image the subducting Indian Plate beneath Myanmar and southwest China. The seismological analysis methods applied to this dataset will include location of local earthquakes and determining their focal mechanisms, surface wave tomography from ambient noise and earthquake data, body wave tomography from local and teleseismic earthquakes, full waveform inversion for Earth structure, receiver functions, and shear wave splitting. A subset of the stations was transmitting data in real time, and these stations contributed to real-time earthquake analysis by the Department of Meteorology and Hydrology (DMH) in Myanmar and the GEOFON earthquake monitoring service. Waveform data are available from the GEOFON data centre, under network code 6C.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Volcanic eruptions are regularly observed on the island of Fogo, Cape Verde, with an average re-occurrence interval of ca. 20 years. However, the structure and extent of the related volcanic plumbing system are not well understood. Previous studies have investigated earthquakes related to magmatic processes connected with the Fogo volcano using conventional network configurations. Seismicity has been reported to occur mainly southwest of the island of Brava while a more recent study reports on activity focussed between Brava and Fogo. Multi-array seismology has the potential to significantly reduce the localization errors of seismic events in particular for those outside a station network and to lower the detection threshold. The subject of this study is the investigation of the local volcano-related seismicity applying multi-array methods which is a unique task amongst the research activities at German universities. The scientific aims are (a) to precisely map local events to constrain the structure of and the dynamic processes within the volcanic plumbing system, (b) to image the magma source region below the Fogo volcano using reflected and backscattered waves, and (c) to localize low-frequency volcanic tremor events. Waveform data are available from the GEOFON data centre, under network code 9J, and are embargoed until February 2022.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The Bransfield Strait is a seismically active extensional rift located between the Antarctic Peninsula and the South Shetland Islands. The Strait is partly located on continental crust including areas within the transition to seafloor spreading. The amphibious seismic network BRAVOSEIS is an international effort focused on the seismological research of submarine volcanoes and rift dynamics in the Bransfield Strait. This network is the onshore component of the entire network consisting of 15 broadband land stations deployed in the South Shetland Islands and Antarctic Peninsula between January 2018 and February 2020. The offshore components (network code ZX) include 9 broadband ocean bottom seismometers (OBS) across the Central Bransfield Basin and a group of 6 hydrophone moorings spanning the rift area of 200 x 100 km2, with inter-station distance of ~30 km. Additionally, a smaller offshore array consisting of 15 short-period OBSs with an aperture of 20 km and a narrow inter-station distance of ~4 km was deployed around the Orca submarine volcanic edifice south of King George Island. The data will be used to study the geodynamics of the Bransfield Strait and the evolution of the incipient rifting zone in the domain where extension has been suggested. Seismological methods will include earthquake location, source mechanism, surface wave analysis with ambient noise and earthquake data, receiver function and shear wave splitting. The results may shed light on the crustal structure and tectonic regime in the region and image the location and extent of magma accumulations related to submarine volcanic structures. Finally, the results should provide clues to assess the internal processes that occur in the submarine volcanoes of the area undergoing rifting. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until March 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-21
    Description: Abstract
    Description: The complete network consisted of 11 stations deployed on the island of Fogo, Cape Verde. Eight of the stations formed an arraywith an aperture of 700 m, deployed in the south of the island near the village of Achada Furna. Seven of the array stations were equipped with 3-component 4.5 Hz geophones, one with a Trillium Compact (broad-band) sensor. The remaing three stations were distributed across the island and equipped with Trillium Compact sensors. Data were recorded continuously from October 2015 to December 2016 with a sample rate of 200 Hz. Due to limited data storage, there are four recording gaps (20/12/2015-14/01/2016; 28/03/2016-04/04/2016; 17/06/2016-18/07/2016; 01/10/2016-18/10/2016). The network served as a pilot study for the more comprehensive study, FoMaPS, from 2017 to 2018 (FDSN code 9J), involving station deployments on Fogo and Brava. Waveform data are available from the GEOFON data centre, under network code 5M, and are embargoed until July 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-23
    Description: Abstract
    Description: IMAGE is a two year seismological experiment realized at the Reykjanes Peninsula by Philippe Jousset (GFZ Potsdam) and Gylfi P. Hersir (ISOR Iceland). Reykjanes Peninsula is located at the southwestern tip of Iceland, at the emergent part of the Mid-oceanic Ridge. This area has a high seismicity and is exploited for its high geothermal potential. The deployment is performed to carry out a local seismological study with techniques such as seismic tomography (earthquake based, e.g. Jousset et al., 2016, and ambient noise e.g., Martins et al., 2020). The aim of the seismic experiment is to monitor the seismic activity associated with the rift processes (Blank et al., 2020) and/or the induced seismicity. The network comprised 30 onland stations (GIPP) and 21 Ocean Bottom Seismometers (Lobsters, DEPAS). Onland stations were deployed from April 2014 until August 2015 and comprise 20 broadband seismic stations (Nanometrics Trillium Compact 120 s), 10 short-period sensors (Mark sensors 1 Hz) and data loggers (DATA-CUBE) with acquisition frequencies of 200 Hz. Sensors were buried 30-40 cm deep in the ground in containers. Data gaps are minimal, and occurred every 3 months when the batteries were exchanged and data downloaded from the DATA-CUBEs. OBS were deployed in August 2014 and recorded for about a year. From this dataset, a catalogue of about 2000 earthquakes could be extracted. Waveform data are available from the GEOFON data centre, under network code 4L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~3.2T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-23
    Description: Abstract
    Description: In January 2020, a swarm of earthquakes started under Thorbjorn volcano, Reykjanes, SW Iceland, associated to the uplift of up to 0.5 cm per day. Concern in Iceland was growing and the Iceland Meteorological Office suggested at that time that possibly magma intruded in the crust at shallow depth (3 to 9 km). The ruption occured on 19.03.2021. The GFZ started a seismological Hazard and Risk Team (HART), as soon as February 2020 in cooperation with IMO, ISOR and the University of Iceland. The interrogator was located in Grindavik and was connected to a standard telecom cable. This dataset comprise a selection of wave-forms recorded along an optical fibre of 21 km length. The subset consists of 40 channels at 100 Hz (spatially stacked 9x). The whole time period from January until August 2020 is covered, with a total size of 496 GB. The data is MiniSEED at 4096 bytes record length with STEIM2. Waveform data are available from the GEOFON data centre, under network code 5J. Specific full data set is available upon request to the authors.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; DAS ; fibre optics ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~500G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-02-23
    Description: Abstract
    Description: As part of project FUTUREVOLC, European volcanological supersite in Iceland: a monitoring system and network for the future, two 7-element seismic broadband arrays were installed outside the western margin of Vatnajökull glacier, Iceland. The goal was to study seismic tremor associated with floods originating in the eastern and western Skaftár cauldrons. A third temporary array was installed during the Bárðarbunga 2014-2015 volcanic eruption near the eruption site. The aim of the array installations was to discriminate between different seismic tremor sources, namely volcanic eruptions, lava flows, hydrothermal explosions and subglacial floods (jökulhlaups). The main aim of the two arrays installed on the western margin of Vatnajökull was to study their early-warning potential through the analysis of four subglacial floods observed during the study period. The seismic vibrations associated with these floods have an emergent start, are of long duration and are referred to as tremor or high-frequency noise. Due to the lack of clear discrete onsets they cannot be located using traditional earthquake location methods. Instead clusters of seismometers (called arrays) are employed to both locate the tremor source and determine the wave type in the tremor (surface vs. body waves). The array data recorded during the Bárðarbunga eruption were used to investigate the nature of shallow, pre-eruptive, long-duration seismic tremor activity related to shallow dyke formation. The sources of the tremor were found to locate at the eruption site and under ice cauldrons which formed on the ice surface during the first weeks of the unrest. Waveform data are available from the GEOFON data centre, under network code 5L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~570G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Strokkur_1yr is a one year seismological experiment realized at the most active geyser on Iceland by Eva Eibl (University of Potsdam) in collaboration with Thomas R. Walter, Phillippe Jousset, Torsten Dahm, Masoud Allahbakhshi, Daniel Müller from GFZ Potsdam and Gylfi P. Hersir from ISOR Iceland. The geyser is part of the Haukadalur geothermal area in south Iceland, which contains numerous geothermal anomalies, hot springs, and basins (Walter et al., 2018). Strokkur is a pool geyser and has a silica sinter edifice with a water basin on top, which is about 12 m in diameter with a central tube of more than 20 m depth. The aim of the seismic experiment is to monitor eruptions of Strokkur geyser from June 2017 to June 2018 using four broadband seismic stations (Nanometrics Trillium Compact Posthole 20 s). Sensors were buried 30–40 cm deep in the ground at distances of 38.8 m (G4, SE), 47.3 m (G3, SW), 42.5 m (G2, N), and 95.5 m (G1, NE) from Strokkur center. Data gaps represent 15–44 % of the records as during the winter period maintenance intervals were longer and battery drainage was high. However, at any given time, at least one station recorded the eruptions. From this dataset, converted to MSEED using Pyrocko, a catalogue of 70,000 eruptions was determined and further investigated in Eibl et al. (2020) Waveform data are available from the GEOFON data centre, under network code 7L.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-02-08
    Description: Abstract
    Description: SMARTIE1 is a joint seismological experiment of the Karlsruhe Institute of Technology (KIT) and the Leipzig University. We installed in total 36 seismic stations as ring-like and profile-like measurements near to a single wind turbine (WT) at the Fraunhofer Institute for Chemical Technology (ICT) in Pfinztal, SW Germany, for 21 days. The main goals of this project are a better understanding of a single WT as a seismic source and the development of propagation models for the WT-induced seismic signals, depending on the geological properties. Waveform data are available from the GEOFON data centre, under network code X8 (under CC-BY 4.0 license according to GIPP-rules), and are embargoed until Jan 2020.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; induced seismic signals ; wind turbine ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Our understanding of the effects of ice on channel morphodynamics and bedload transport in northern rivers, frozen for several months, are hindered by the difficulties of ‘seeing’ through the ice. We use continuous seismic records of a small network at the Sävar River in northern Sweden to interpret processes and quantify water and sediment fluxes. We apply a seismic inversion approach to determine seasonal differences in hydraulics and bedload sediment transport under ice-covered vs. open-channel flow conditions and provide a first-order estimation of sediment flux in that Fennoscandian river. Analysis of seismic signals of ice-cracking support our visual interpretation of ice break-up timing and the main ice break-up mechanism as thermal rather than mechanical. Waveform data are available from the GEOFON data centre, under network code 8E, and are available under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Liquiñe-Ofqui fault system (LOFS) in south-central Chile provides a natural laboratory to assess the interplay between magma/hydrothermal fluid flow and crustal deformation. Understanding these processes is of paramount importance for geothermal energy exploration and seismic hazard assessment. We deployed a dense seismic network (Sielfeld et al., 2019) at the northern termination of the LOFS in south-central Chile (~38°S) between 2014 March and 2015 June. The main aim was to better understand the significance and implications of seismic activity in relation to geological information such as the complex fault-fracture network, volcanoes, and the stress field estimated from geological data. As a result, the network was designed to monitor the northern segment of the LOFS on a more regional scale rather than concentration on the activity of one volcano. The network covered a ~200‐km‐long section of the Southern Volcanic Zone, including several Holocene stratovolcanoes (Callaqui, Copahue, Caviahue Caldera, Tolhuaca, Lonquimay, Llaima, Sierra Nevada, Sollipulli, Villarrica, Quetrupillán, Lanín (La), and Mocho‐Choshuenco). Waveform data are open and available under network code 3H from the GEOFON data centre under license CC BY 4.0.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; LOFZ ; LOFS ; seismological data ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~650G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The unrest of el Hierro Islands started in 2011 with a submarine volcanic eruption. In order to better characterize unrest of El Hierro Island 9 landstations were installed on the Island of ElHierro (Figure 1) between March 2015 and June 2016. Waveform data are available from the GEOFON data centre, under network code 2L and are embargoed until Jan 2021.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; ElHierro ; seismological data ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Cliffs line many erosional coastlines. Localized failures can cause land loss and hazard, and impact ecosystems and sediment routing. Links between cliff erosion and forcing mechanisms are poorly constrained, due to limitations of classic approaches. Combining multi-seasonal seismic and drone surveys, wave, precipitation and groundwater data we study drivers and triggers of seismically detected failures along the chalk cliffs on Germany's largest island, Rügen. The network consists of four (later five) seismic stations along the 8.6 km long chalk cliff coast. Waveform data are available from the GEOFON data centre, under network code 4K, and are embargoed until Jan 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Germany ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~630G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A line of 6 broadband seismometers have been deployed across a ridge in the Hualien County (Eastern Taiwan). From March 2015 to June 2016 the network has been continuously recording waves incoming from the Taiwanese regional seismicity. During that period, more than 2000 earthquakes with magnitudes Ml〉3 and distant from less than 200km were recorded. The hill is well approximated by a triangular topography of 3600m in length by 900m in height. Waveform data are open and available from the GEOFON data centre, under network code 5K.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-02-23
    Description: Abstract
    Description: We propose to investigate the structure and evolution of the Main Pamir Thrust (MPT) with a high-density seismological array. The MPT, with its surface expression along the east-west trending Alai Valley, marks the northern boundary of the Pamir. The Alai Valley, separating the Pamir and the Tien Shan, constitutes the last vestige of a formerly continuous basin that linked the Tarim and the Tajik Basins. The MPT manifests itself as a place of high seismic activity with frequently occurred disastrous earthquakes. The array is about 50 km long, consisted of 90 three-component geophones (stations G?? and C??) and 10 Trillium-Compact seismometers (stations T??), and equipped with 100 CUBE dataloggers. We will construct a high-resolution receiver function profile to image the MPT and accurately locate the local earthquakes associated with the MPT. Funded by BMBF, within the framework of CaTeNA project – Climatic and Tectonic Natural Hazards in Central Asia. Waveform data are available from the GEOFON data centre, under network code 7A and are embargoed until Jan 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Extensive passive seismic monitoring was carried out between September 2017 and September 2018 over the Los Humeros geothermal field in Mexico. This experiment, in addition to several geophysical, geological, and geochemical surveys was conducted in the framework of the European H2020 and Mexican CONACyT-SENER project GEMex for a better understanding of the structures and behavior of the local geothermal system currently under exploitation, and for investigating future development areas. 25 broadband stations (22 Trillium C-120s and 3 Trillium C-20 PH) recording at 200 Hz, and 20 short period stations (Mark L-4C-3D) recording at 100 Hz comprised the network which is sub-divided into two sub-networks. An inner and denser (~1.6-2 km inter-station distance) pseudo-rhomboidal array (27 stations) was laid out to cover the producing zone and retrieve local seismicity mainly associated to injection and production operations, and to comply with beamforming of ambient noise and time reverse imaging techniques. An outer and sparser (~5 km minimum spacing) array was placed at around 30 km radius surrounding the inner network, and was mainly dedicated to larger scale imaging techniques, such as seismic ambient noise tomography, and regional earthquakes tomography. The GEMex project is supported by the European Union’s Horizon 2020 programme for Research and Innovation under grant agreement No 727550 and the Mexican Energy Sustainability Fund CONACYT-SENER, project 2015-04-68074. Waveform data are available from the GEOFON data centre, under network code 6G and are embargoed until Jan 2023.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Earthquake Early Warning and Rapid Response Systems (EEWRRS) should be a viable complement to other disaster risk reduction strategies, particularly in economically developing countries. The „Early Warning and Impact Forecasting“ group (GFZ, section 2.6) is actively involved in the development of novel strategies to develop scientific and technological solutions that may be efficiently applied in countries with limited resources. The proposed solution includes a risk estimation module that extracts from a portfolio of precomputed impact scenarios those matching the characterization of the event detected by an optimized real-time monitoring network. The real-time network integrates both local, on-site components based on low-cost, smart sensor platforms, as well as regional, sparse strong-motion stations. This hybrid solution allows for the optimization of the lead-time and is tailored to the seismotectonic features of the considered region. A prototype EEWRR System is being developed for the Kyrgyz Republic, with the support of the partner CAIAG and in collaboration with the Ministry of Emergency Solutions of the Government of the Kyrygz Republic (MES). Waveform data are available from the GEOFON data centre, under network code AD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Building monitoring and decentralized, on-site Earthquake Early Warning system for the Kyrgyz capital Bishkek. Several low cost sensors equipped with MEMS accelerometers have been installed in eleven buildings within the urban area of the city. The different sensing units communicate with each other via wireless links and the seismic data are streamed in real-time to data centres at GFZ and the Central Asian Institute for Applied Geoscience (CAIAG) using internet. Since each sensing unit has its own computing capabilities, software for data processing can be installed to perform decentralised actions. In particular, each sensing unit can perform event detection tasks and run software for on-site early warning. If a description for the vulnerability of the building is uploaded to the sensing unit, this can be exploited to introduce the expected probability of damage in the early-warning protocol customized for a specific structure. Waveform data are available from the GEOFON data centre, under network code KD.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 〉1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The MI-DAM project will develop a robust, low-cost, and adaptable system that includes an early warning element and time-variable fragility functions. The system will continuously monitor the health of hydroelectric dams and the surrounding slopes, undertake on-site processing of recordings by multi-parameter sensors, and forward the most relevant information to response centers (e.g., civil protection). As an example, the project will focus on the Toktogul dam in Central Kyrgyzstan. Waveform data are available from the GEOFON data centre, under network code 1M, and is embargoed until Aug 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-02-23
    Description: Abstract
    Description: DESTRESS is a Horizon-2020 supported project (Topic: Demonstration of renewable electricity and heating/cooling technologies) that is concerned with creating EGS (enhanced geothermal systems) for the more economical, sustainable and environmentally responsible exploitation of underground heat. The international consortium, representing academic, geothermal sites and industry, will utilize the latest developments in the use of hydraulic, chemical and thermal treatments for enhancing the productivity of geothermal reservoirs, with considerable interaction with various interests groups and the thorough assessment of the associated risk, in particular that associated with induced seismicity. The GFZ workgroup "Early warning and Impact Forecasting" is involved in the exposure modelling, vulnerability analysis and building monitoring of communities near geothermal production facilities, making use of tools developed both in previous and ongoing projects. Waveform data are available from the GEOFON data centre, under network code 2D, and are embargoed until Aug 2024.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Pamir-Hindu Kush region of Tajikistan and NE Afghanistan stands out due to its worldwide unique zone of intense intermediate depth seismicity, accommodating frequent Mw 7+ earthquakes with hypocenters reaching down to 250 km depth. With this network we aim to collect data allowing to characterize the active deformation within the Hindu Kush mountains and the Tajik-Afghan basin at the northwestern tip of the India-Asia collision zone. The network consists 15 sites (14 stations in Afghanistan, 1 station in Tajikistan), situated on top of the nest of intermediate depth seismicity and further west in the Afghan platform. The stations are equipped with short period Mark seismometers and Cube data recorders. Waveform data are available from the GEOFON data centre, under network code 4C, and are embargoed until 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Sarez Pamir aftershock seismic network was installed two months after the 7 December 2015, Mw7.2 Sarez Pamir earthquake in the eastern Pamir highland of Tajikistan. In the first recording period until September 2016, the stations were distributed along the Sarez-Karakul fault system. In September 2016 part of the stations were moved into the southern Pamir. In total the network consisted of eight stations on 13 sites, equipped with broad band, 3-component seismometers of type Trillium Compact. The data were recorded using Earth Data recorders (EDR), recording was continuous at a sample rate of 100Hz.The principal aim of the network was to record the aftershock sequence of the Sarez earthquake and to augment the coeval East Pamir China seismic network and the earlier TIPAGE and TIPTIMON seismic networks. Waveform data are available from the GEOFON data centre, under network code 9H, and are embargoed until January 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~90G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The East Pamir seismic network was located on the eastern flank of the Pamir highlands and the in the foreland of the adjacent Tarim Basin of western China. It was in operation between August 2015 and May 2017 and consisted of 30 broad band, 3-component seismometers of type Güralp CMG-3ESP or Nanometrics Trillium 120. The data were recorded using Earth Data PS6-24 "EDL" recorders, continuously at a sample rate of 100Hz, with an average station distance of ~20km. The network was designed to augment the earlier TIPAGE and TIPTIMON seismic networks.The principal aim of the network was to characterize the current deformation field in the region. It further recorded the 2015 M7.2 Sarez earthquake. Waveform data are available from the GEOFON data centre, under network code 8H, and are embargoed until January 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The aim of this temporary experiment is to monitor the interaction between crustal fluids and earthquake occurrence. Two sites have been initially investigated: one is in the eastern sector of the Pollino mountain range, located at the border of Southern Apennines chain and Calabrian arc and the other is Mefite d'Ansanto moffete, one of the largest non-volcanic CO_2 emission in the world and located in Irpinia area, in the southern Apennines. The seismicity in the eastern sector of the Pollino range is very low except for a deep (〉20km) earthquake swarm which started in the middle of September 2017 and lasted for some weeks with events up to Ml=2.7. The Mefite d'Ansanto site sits at the northern end of the northern fault activated by the M_w 6.8 Irpinia earthquake in 1980 and in the well-known thermal anomaly area of the Mt. Forcuso. A ~10km radius area around Mefite steems out for a very low seismicity rate compared with the high seismicity activity of this portion of Southern Apennines. In the frame of a long-term collaborative efforts made by the German Research Centre for Geoscience (GFZ) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in the Pollino area a temporary network has been deployed to analyze the low earthquakes rate, the seismogenic structures and a possible signature of interaction with fluids redistribution within the crust. The temporary network consists of 3 seismic stations equipped with Trillium compact 120 sec. sensors and DCube digitizers using also CCube modules for real time data transmission. One single station with similar hardware has been used also to monitor the Mefite d'Ansanto in the Irpinia area with similar aim. Data is available from the GEOFON data centre, under network code YZ, and is embargoed until three years after the end of the experiments.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1600MB/month
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-07-31
    Description: Abstract
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 ARCHIVING ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; seismology
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary seismic network was installed in Sri Lanka for a time period of 13 months. The stations were equipped with Earth Data EDR-210 digital recorders and Trillium 120 PA, Güralp C3E and Güralp CMG-3ESP broadband sensors. Main aim of the network is to shed light on the crustal and upper mantle structure beneath the island. Also local seismic activity is studied.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary installation has been realized in the Netherlands, in the region of the Groningen gas field. The objective of this installation is to test the usage of a conventional array layout for detection of microseismicity. The region of the Groningen gas field is an excellent test ground, since the operating company NAM (Nederlandse Aardolie Maatschappij) installed a multitude of shallow borehole stations from 2014 to 2017, of which 65 – in addition to the already existing shallow borehole stations installed by KNMI (Koninklijk Nederlands Meteorologisch Instituut) – were already online during the time of measurement, thus ensuring an earthquake catalogue that is complete down to low magnitudes during the time of array installation. The site for the installation was decided together with local parties involved in the seismicity monitoring, i.e. KNMI and NAM, and was located close to the village of Wittewierum. Stations were installed from the 12th of July 2016 to the 29th of August 2016 (49 days). The array was composed of 9 stations. The array was constructed in three concentric rings of 75 m, 150 m and 225 m diameter including a central station, but the geometry had to be adapted to the local conditions. Each station consisted of a broadband sensor (Trillium 120 s), an acquisition system (CUBE datalogger), a battery, and a GPS antenna. The entire system was installed at ~1 m depth (apart from GPS and transmission antennas), requiring only the digging of shallow holes, one for the installation of a thin concrete plate and the sensor, another one for a box containing the remaining instrumentation. The array stations recorded continuously with little outages; only station WAR1 stopped recording on the 22nd of August and station WAR7 stopped recording from 20th to 22nd of August. Waveform data is available from the GEOFON data centre, under network code 1C, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~30G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consistes in 6 stations surronding the fumarole field at Lastarria volcano. These stations were operative during one month with the final purpose of detect changes in the hydrothermal system triggered by passing of seismic waves produced by artificial explosions. Waveform data are available from the GEOFON data centre, under network code 2G, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 9 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The experiments are performed down the Edward Bailey valley, in the Renland peninsula, Scoresby Sund, Greenland. General purpose: ambient seismic noise recordings are obtained to characterize the geometry/structure of the valley the geometry/structure of the glaciers the microseismicity of the glacier, the friction process, crack orientation and mechanisms the seismic activity of glacial rivers, the relation between hydrological flow and noise spectrum the localization and characterization of sub-glacial flow from surface recordings. Seismic stations were composed of 3C broadband Trillium compact seismometer, a Cube datalogger and a 12V (D-cell types, stacked) battery pack.The experiment splits into three surveys performed at three different sites, one after the other, from july to august 2016. In the first experiment, we deploy 11 stations, 9 of them on a flat sandy area covering, partly, immobile ice that seems to be blocked between the Bailey Glacier (upstream) and the Apusinikajik glacier (downstream). The 9 sensors are placed a few hundreds of meters from the Apusinikajik lateral front, the last 2 are placed on the glacier next to the collapsing front. In the second and third experiment (chronologically speaking), we deploy 10 and 8 stations, respectively. Each deployment is performed along a Bailey valley transect. The first one intercepts the front-end of the glacier and the sub-glacial river exit (flow of several m3/s). The second transect is performed some 850m upstream. Waveform data are available from the GEOFON data centre, under network code 3H, and are embargoed until summer of 2019.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 30 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Halmahera island belongs to the North Moluccas province (Maluku Utara), Indonesia. This K-shaped island is located in the eastern part of the Moluccas Sea, the only active arc-arc collision complex on the Earth. The western arm of the K forms a volcanic arc due to the former subduction of the Moluccas Sea plate underneath Halmahera. The region is characterized by intense seismic activity at crustal, intermediate depth, and along the subducting plate. At crustal level the Halmahera seismicity along the two eastern arms of the K show strike-slip faulting style. In November 2015 a localized intense and energetic seismic activity started around Jailolo volcano in the West Halmahera Regency. The seismic sequence intermittently lasted until February 2016 and hundreds of events were felt by the population and several buildings were destroyed and damaged by the shaking. The largest shocks of the sequence have been located by global agencies (GEOFON and GCMT) showing normal faulting style. The temporal evolution of the seismicity seems to be more swarm-like type activity instead of mainshock-aftershock sequence. In spring 2016 a research project has been funded by the German's Humanitarian Aid program in collaboration with BMKG, Indonesia, with the goal of understanding the origin of the intense seismic activity and the related hazard. In summer 2016 we instrumented the area with a dense seismic network composed of 29 short period and 6 broad-band seismometers. The instruments deployment aims at characterizing the seismicity of the Jailolo region in relationship with the 2015-2016 seismic activity. The network will help to understand the seismo-tectonic of the area and the relation between seismicity and the volcanic activity at Jailolo volcano and possible link with the 2015-2016 swarm. Should the seismic activity intensify as in November 2015, we can record it and narrow down the underlying physical mechanisms. Waveform data are available from the GEOFON data centre, under network code 7G, and are embargoed until the end of 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 900GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Strong earthquakes cause transient perturbations of the near Earth’s surface system. These include the widespread landsliding and subsequent mass movement and the loading of rivers with sediments. In addition, rock mass is shattered during the event, forming cracks that affect rock strength and hydrological conductivity. Often overlooked in the immediate aftermath of an earthquake, these perturbations can represent a major part of the overall disaster with an impact that can last for years before restoring to background conditions. Thus, the relaxation phase is part of the seismically induced change by an earthquake and needs to be monitored in order to understand the full impact of earthquakes on the Earth system. Early June 2015, shortly after the April 2015 Mw7.9 Gorkha earthquake, we installed an array of 12 seismometers and geophones and 6 weather stations in the upper Bhotekoshi catchment, covering an area of ~50 km2. The seismic network was optimized for the monitoring of Earth surface processes (landsliding, mass wasting river processes, debris flows) and for the monitoring of properties of the shallow subsurface by coda analysis. To achieve the latter aim and to probe different scales and depths, seismometers were installed with inter-station distances from about 80m to 9km. In particular, in each of two locations close to the Bhotekoshi river, three seismometers were installed in small arrays with inter-station distances of about 100m. The seismic array is part of a wider data acquisition strategy including hydrometric measurements and high resolution optical (RapidEye) and radar imagery (TanDEM TerraSAR-X). Waveform data is available from the GEOFON data centre, under network code XN, and is embargoed until Jan 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Over 500 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The KISS network was installed in the frame of the "Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system" project and recorded data between summer 2015 and summer 2016 in one of the world's largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~320G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The TOMO-ETNA experiment was focused on the base of generation and acquisition of seismic signal (active and passive) at Mt. Etna volcano and surrounding area. The terrestrial campaign consists in the deployment of 80 short-period three-component seismic stations (June 15 to July24), 17 Broadband seismometers (June 15 to October 30) provided by Helmholtz Centre Potsdam (GFZ) German Research Centre for Geosciences using the German Geophysical Instrument Pool Potsdam (GIPP Gerätepool Geophysik), and the coordination with 133 permanent seismic station belonging to the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV) of Italy. This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes were recorded. Until July the Oceanographic Vessel “Sarmiento de Gamboa” and the hydrographic vessel “Galatea” were responsible for the offshore activities, that included deployment of OBSs, and several marine activities. The vessel “Aegaeo” performed additional seismic, magnetic and gravimetric experiments until the end of November 2014. This experiment was part of the “Task 5.3 - Mt. Etna structure” of the “EU MED-SUV Project” concerned with the investigation of Mt. Etna volcano (seismic tomography experiment - TOMO-ETNA) by means of passive and active refraction/reflection seismic methods. It focused on the investigation of Etna’s roots and surrounding areas by means of passive and active seismic methods. Therefore, this experiment included activities both on-land and offshore with the main objective to obtain a new high-resolution tomography in order to improve the 3D image of the crustal structures existing beneath the Etna volcano and the northeast Sicily (Peloritani - Nebrodi chain) up to the Aeolian Islands. Waveform data are open and available from the GEOFON data centre, under network code 1T.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: About 140 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The network consists of 5 stations covering the volcanic cone flanks. These stations were operative during one year with the final purpose of detect likely changes in the seismic activity of Lascar after the 2014 Iquique earthquake. Waveform data are available from the GEOFON data centre, under network code 8E, and are embargoed until 001 2019.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: Greater than 40 GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A seismological experiment was started in July 2014 in and around the East Eifel Volcanic Field, Germany. Following two unusually deep micro-earthquakes in September 2013 (about 40 km depth) a seismic network was installed to record more local seismic events in order to better understand the seismicity and dynamics of this region. Ten recording stations of the GFZ GIPP (Geophysical Instrument Pool Potsdam at Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences) and three recording stations of the KIT KABBA (Karlsruhe BroadBand Array at Karlsruhe Institute of Technology) were placed between the permanent stations of the state earthquake survey (Landeserdbebendienst). Altogether about 18-20 short-period and broadband stations could be used to study the seismicity up to August 2016. This dataset is unique concerning the station density in this region and allows determination of hypocenter parameters with high precision and accuracy, estimation of the local crustal and upper mantle structure as well as using array techniques for wavelengths of about 10-50 km. After August 2016 the network was reconfigured and continuously updated by KIT-GPI and LGB. Waveform data is available from the GEOFON data centre, under network code 1P, and is fully open.
    Keywords: Seismicity ; Eifel region ; Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~250G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: On 1st April, 23:46:50 UTC, an Mw 8.1 earthquake ruptured offshore northern Chile, near the town of Pisagua northwest of Iquique, followed one day later by a Mw7.6 event, both events in the centre of the Integrated Plate boundary Observatory Chile (IPOC). These earthquakes occurred within a seismic gap left behind by two great earthquakes devastating the northern Chilean and southern Peruvian coast about 140 years ago in 1868 and 1877. The segment inbetween, about 500 km long, was the only one along the Chilean subduction zone that has not ruptured within the last century. The earthquakes were recorded by the IPOC multi-parameter stations plus several additional off-line strong- and weak-motion instruments. A network of GPS monuments covering the onshore region deformed by the earthquake was measured just weeks before the event by GFZ scientists. Taking advantage of the long history of preceding work, presence of the permanent multi-parameter network and excellent knowledge of GFZ scientists of the region, a 20 short-period seismograph network was installed to complement the existing pre- and co-seismic data sets. This campaign was the first case for the „HAzard-Risk-Team (HART)“ initiative of GFZ. Stations operated from mid April 2014, i.e. shortly after the mainshock, to January 2016.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Central Andes ; local seismicity ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~110G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-02-08
    Description: Abstract
    Description: We carried out a passive seismic experiment formed by 50 broadband and short-period stations with an interstation distance of 3-4 km. These stations were in operation for 22 months, from 06/2013 to 05/2015. The seismic array (TRANSCORBE) was deployed in a linear configuration of 170 km length in a NW-SE direction. The southern edge of the prolife is located near the Mediterranean coast in Mazarrón (Murcia) crossing the Alhama de Murcia fault and the Cazorla Mountain range in the north. The main goal of this project is to study the crustal and upper mantle structures under the Eastern Betics mountain ranges and their variations along the different geological domains. It probes, from southeast to northwest, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The proposed scientific work includes the analysis of the data using mainly P and S receiver functions, and velocity and attenuation tomographic techniques. The study area has undergone a complex tectonic evolution where slow WNW-ESE oblique convergence of Iberian and African plates coexists with a rapid westward rollback of a subducting slab. The inter-station distance allows us obtaining high-resolution images of the crustal structure essential to understand the tectonic evolution of the area and how the deformation produced by these processes is distributed among the involved geologic domains. This experiment was the results of a joint effort between the Instituto Andaluz de Geofísica (IAG), Granada University, and GFZ Potsdam. Waveform data are available from the GEOFON data centre, under network code 9H and are embargoed until Jan 2021.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~150Gb
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-02-23
    Description: Abstract
    Description: We carried out a passive experiment operated with 10 broadband and short period seismic stations which were installed between July 2013 and May 2015 by a joint effort between the Instituto Andaluz de Geofísica, Granada University and the German Research Centre for Geosciences GFZ. The goal of this project is to study the crustal and upper mantle structures under the Central Betic mountain ranges and the variations of these structures between the different geological domains as a prolongation towards the north of the HIRE profile (Heit, Yuan and Mancilla; 2010). Waveform data is available from the GEOFON data centre, under network code 3J.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The TIPTIMON seismic deployment in Afghanistan aimed to study the seismotectonics of the Hindu Kush and the Tajik-Afghan basin. Within this network 8 seismic stations were deployed between 2013 to 2014 to study shallow and intermediate depth seismicity. TIPTIMON (Tien Shan-Pamir Monitoring) is a research programme funded by the German Federal Ministry of Education and Research (BMBF) within the CAME Programme (Central Asia - Monsoon dynamics and Geo-ecosystems). All stations were equipped with MARK L-4C-3D geophones and DSS CUBE recorders, continuously recording with 100 samples per second. Waveform data is available from the GEOFON data centre, under network code 6C, and is embargoed until Oct 2018.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 275GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The ScanArray experiment is a major collaborative effort of institutions in Scandinavia and Germany to map crustal and mantle structure below Scandinavia using a dense temporary deployment of broadband seismometers. Scientific questions to be addressed include (among others): 1. What supports the topographic high of the Scandes? 2. How does lithospheric thickness vary within Fennoscandia? 3. What is the internal fabric of the mantle lithosphere? 4. Are there differences in the crustal structure between the different blocks of Fennoscandia? This data set, termed ScanArray core, comprises the temporary stations deployed by the University of Copenhagen, the University of Aarhus, and the University of Oslo, the Karlsruhe Institute of Technology (KIT) and the GeoForschungsZentrum Potsdam (GFZ) as part of the ScanArray experiment. Stations within this dataset are deployed for periods between 2 and 4 years. Data are available from the GFZ seismological data archive with network code 1G. Waveform data will be fully opened in early 2020. The wider ScanArray dataset additionally includes the multi-use temporary deployments Neonor2 (FDSN-code 2D, University of Bergen, NORSAR) and ScanLips3D (University of Leicester; archived at IRIS DMC), and the permanent networks of Sweden (UP, SNSN), Norway (NS, NNSN), Denmark (DK, DNSN) and Finland (HE, FNSN) as well as a subset of NORSAR stations (NO). The SNSN rearranged the distribution of broadband seismometers and deployed additional temporary stations to meet the objectives of the ScanArray experiment. ScanArray core and these other networks (except ScanLips3D) jointly form the virtual network _SCANARRAY. Partners of the ScanArray consortium are: University of Aarhus, Uppsala University, University of Oslo, University of Bergen, Karlsruhe Institute of Technology, NORSAR, University of Copenhagen, Deutsches GeoForschungsZentrum (GFZ) and Istanbul Technical University.
    Keywords: Broadband seismic waveforms ; Lithosphere ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Greater than 450 GB
    Format: Approximately 200GB per year for 2014/2015
    Format: 44 stations in 2014
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-02-23
    Description: Abstract
    Description: From June 2012 to November 2013, the Chinese Academy of Geological Sciences (CAGS) together with the Deutsches GeoForschungsZentrum Potsdam (GFZ) operated an array of 80 broadband seismic stations in a 300 km by 150 km area straddling the Longmenshan fault zone around the epicentre of the Wenchuan earthquake. Since the occurrence of the Ms 8.0 Wenchuan earthquake which ruptured about 300 km of the Longmenshan fault zone in May 2008, this region has attracted the attention of many Earth scientists. Since the earthquake the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project has drilled several holes up to 3 km depth. The main purpose of the present array of seismological stations is to investigate the deep structure of the region surrounding the epicentre of the Wenchuan earthquake. While the array was operating the Ms 6.6 Lushan earthquake occurred in April 2013 at the SW edge of the array. Waveform data is available from the GEOFON data centre, under network code 2F, and is embargoed until DEC 2017.
    Keywords: Broadband seismological waveforms, Continental tectonics: compressional, Asia ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: 392 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Broadband seismic station deployed in Mauritius under RHUM-RUM project. Waveform data are available from the GEOFON data centre, under network code 3E under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~200G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The temporary Pollino Seismic Experiment, FDSN network code 4A, monitored the earthquake swarm in the Pollino Range region, Italy, between November 2012 and September 2014. The region is located at the transition from the Southern Apennines chain to the Calabrian arc. Striking a volume of about 20x20x15 km, the swarm started in October 2010, culminated in an Mw=5.2 event on 25 October 2012, and has continued since with a variable rate of activity. The area represents a seismic gap as there are no documented historical M〉6 earthquakes during the last thousand years. The tectonic structures of the area are poorly known. The experiment was part of a collaborative effort made by the German Research Centre for Geosciences (GFZ) and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) within the framework of the NERA and CCMP-Pompei projects. The 4A network consisted of 9 stations including 6 short-period and 3 broadband instruments, provided by GFZ. The permanent seismic network was complemented by the 9 GFZ stations and 5 IV stations temporarily installed by INGV. The short-period stations had Mark L-4C3D sensors with EDL digitizers. The broadband stations were equipped with STS2.5 seismometers and RefTek RT130S digitizers. Five short period and one broadband (CSA0 to CSA5) were installed in a small-aperture array in the west of the range. The other three stations (broadband: CSB, CSC and short period: CSD) were installed around the swarm area. The array and the network stations recorded in continuous mode at 200 Hz and at 100 Hz, respectively. The sensors were buried in the ground at 0.5 m depth except for CSB and CSD which were installed on the surface. High-precision station coordinates were obtained by using differential GPS measurements. The data have been used to analyze the earthquakes and seismogenetic structures and to discern the characteristics of the swarm sequence.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approx. 206 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The TIPTIMON seismic deployment in Tajikistan aimed to study the seismotectonics of the western Pamir and Tajik-Afghan basin. Within this network 25 seismic stations were deployed between 2012 to 2014 to study shallow and intermediate depth seismicity. TIPTIMON (Tien Shan-Pamir Monitoring) is a research programme funded by the German Federal Ministry of Education and Research (BMBF) within the CAME Programme (Central Asia - Monsoon dynamics and Geo-ecosystems). All stations recorded continuously with 100 samples per second and were equipped with EDL (EarthData PR6-24) recorders and broadband seismometers. Waveform data is available from the GEOFON data centre, under network code 5C, and is embargoed until April 2018.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: approx. 510GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-11-27
    Description: Abstract
    Description: We installed two seismological broadband arrays on the volcanic oceanic island of Madeira and in western Portugal on continental crust for a comparison and combination with a deep ocean broadband array installed for seismicity analysis and structure imaging of the oceanic plate environment around the Gloria fault in the Northeast Atlantic with broadband arrays. The data of the deep ocean array are published separately. Waveform data are available from the GEOFON data centre, under network code Y7 under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Other , Seismic Network
    Format: ~150Gb
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The integrated plate boundary in Chile (IPOC) combines 15 broadband stations with strong-motion sensors, GPS, strain sensors and magneto-telluric stations. The Chilean subduction zone setting provides a high background rate of seismicity (crustal, intermediate depth, and plate interface) in a region with exceptionally low ambient noise, particularly at higher frequencies. We have deployed seismic mini-arrays in the vicinity of IPOC stations PB02 and PB07, and installed a third array to the east of these stations near the village of Quillagua, such that all three arrays form a triangle. Each array has 10 elements and an aperture in the km range. The study area lies just to the north of the northern boundary of the rupture area of the Tocopilla earthquake of 2007 (Mw=7.7) and just above or slightly to the east of the downdip limit of plate interface seismicity. Installing the mini-arrays in the area of the existing IPOC has the following advantages: * Independent knowledge of background structure and seismicity from existing and ongoing studies. * Should any transients or other unusual signals be found in the array data, we can look for anomalous signals in geodetic and MT recordings, which will help to narrow down possible underlying mechanisms.
    Keywords: MINAS, temporary MINi ArrayS wthin the frame of IPOC ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Greater than 990 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Ketzin in a small town 20km west of Berlin that hosts a research facility for underground storage. Starting in 2008 the site was used to investigate the onshore geological storage of carbon dioxide (Liebscher et al., 2013). Among a large variety of downhole monitoring measurements and repeated 3D seismics above the storage formation, a seismic network was installed to investigate the possibility of monitoring subsurface processes related to the injection of CO2 with passive seismic recordings (Gassenmeier et al., 2015). The network was operated for 12 month from early 2011 to 2012 and consisted of 10 Guralp broadband sensors of the Geophysical Instrument Pool Potsdam (GIPP). Five instruments were located at the drilling site and five instruments were installed at a distance up to 3.5km around the injection site. The Instruments were either installed in basements or buried at a depth of about 70cm (KTE, KTF and KTG). The installation was supported by the German Federal Ministry of Education and Research (BMBF, grant 03G0736A) by the University of Leipzig and the GIPP.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~240G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The lithosphere of Iberia has been formed through a number of processes of continental collision and extension. In Lower Paleozoic, the collision of three tectonics blocks produced the Variscan Orogeny, the main event of formation of the Iberian lithosphere. The subsequent Mesozoic rifting and breakup of the Pangea had a profound effect on the continental crust of the western border of Iberia. Since the Miocene, the southern interaction between Africa and Iberia is characterized by a diffuse convergent margin that originates a vast area of deformation. The impact of this complex tectonic in the structure of the Iberian Lithosphere remains an incognito, especially in its western part beneath Portugal. While the surface geology is considerably studied and documented, the crustal and lithospheric structures are not well constrained. The existing knowledge relating the observed surface geology and Lithospheric deep structures is sparse and sometimes incoherent. The seismic activity observed along West Iberia is intensely clustered on few areas, namely on north Alentejo, Estremadura and Regua-Verin fault systems. Some of the problems to address are: What is the relation between surface topography and the deep crustal/lithospheric structure? How was it influenced by the past tectonic events? Which was the deep driving factor behind the tectonic units observed at surface: Lithosphere-Astenosphere boundary structure or deeper mantle structure? How the upper mantle and the Lithosphere-Astenosphere transition zone accommodated the past subduction? Which is its role and influence of the several tectonic units, and their contacts, in the present tectonic regime and in the stress field observed today? Is the anomalous seismicity and associated crustal deformation rates, due to an inherited structure from past orogenies? The main goal of this work is a 3D detailed image of the “slice” of the Earth beneath Western Iberia, by complementing the permanent seismic networks operating in Portugal and Spain. The different scales involved require the usage of several passive seismological methods: Local-Earthquake Tomography for fine structure of seismogenic areas, ambient noise tomography for regional crustal structure, Receiver Functions for Lithospheric structure and Surface-wave tomography for large scale Listosphere-Astenosphere structure. Crustal and Mantle seismic anisotropy analysis, coupled with source analysis and correlation with current geodetic measurements will allow establishing a reference 3D anisotropy model of present and past processes.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Western Iberia ; seismotectonics ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-02-08
    Description: Abstract
    Description: This project investigates the crust and upper mantle along a north-south oriented, about 350 km long profile from around the town of Ringkøbing in western Jutland to south of Hamburg in northwestern Germany, with a focus on teleseismic receiver functions and seismic tomography. A number of tectonic processes have affected the crust and uppermost mantle beneath southern Scandinavia and northern Germany: Precambrian crustal accretion in southern Baltica, Caledonian collision between Baltica and Avalonia along the Tornquist Suture Zone (TSZ), followed by Variscan collision and formation of the North German and the Norwegian-Danish basins, and more recent magmatic activity to the south. This study is particularly focused on the closure of the Tornquist Sea and the Caledonian collision between Baltica and Avalonia. A total of 29 stations, provided by GFZ and the University of Aarhus, were deployed between autumn 2010 and summer 2012, of which 25 form the main profile, and 4 are positioned in an off-line location. Waveform data are available from the GEOFON data centre, under network code ZW, and are available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Etendeka continental flood-basalt province in northern Namibia, linked by the Walvis Ridge to the Tristan da Cunha hotspot, has great importance in global plate tectonic concepts, and is an ideal place to understand the role of the plume-lithosphere interaction during the break-up of the Southern Atlantic Ocean. Within this frame we operated an amphibian passive-source seismic network (WALPASS for Walvis Ridge Passive Source Experiment) in the region where the Walvis Ridge intersects with the continental margin of northern Namibia. The land network operated for over two years while the OBS stations were in operation for one year. The broadband seismic network is composed of 28 three-component land stations and 12 ocean-bottom stations. This configuration of stations will allow us to map the lithospheric and upper mantle structure in the ocean-continent transition beneath the passive continental margin of northern Namibia and to examine possible seismic anomalies related to the postulated hotspot track from the continent to the ocean along the Walvis Ridge. The acquired data should help clarify the velocity anomaly in the lowermost mantle caused by the Africa super plume and to improve the distribution of seismicity in this geophysically little studied region.
    Keywords: Broadband seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Greater than 720 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Iquique Local Network (ILN), a temporal network of broadband and short period seismic stations has been operating in Northern Chile since 2009. The aim of this installation was to locally densify the permanent seismic installation of the Integrated Plate Boundary Observatory in Chile (IPOC), with the main goal to decrease the magnitude of detected earthquake, to improve the hypocentral location accuracy, to allow a more accurate investigation of seismic source parameters, and to analyse proposed seismogenic structures of the Northern Chile seismic gap. The network setup evolved with time, with different geometries at different installation phases, aiming to study different seismicity features. In the first phase, started in 2009 and operational since 2010 until autumn 2013, the network had a sparse configuration, targeting a broad region extending from 19.5° S in the North to approximately 21.3° S South of Iquique. In the following stage, operational until fall 2017, most broadband stations were rearranged into a small aperture seismic array (PicArray) close to the village of Pica, to monitor with array techniques the shallow seismicity at the plate interfacer, intermediate and deep focus seismicity. Waveform data are available from the GEOFON data centre, under network code IQ, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; seismic hazard ; broad band ; velocity ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: A temporary local seismic network was installed in the basin of Norcia (Italy) in January 2009 and operated until May 2009. Several recordings collected by the network are earthquakes of the 2009, Mw 6.3 L'Aquila seismic sequence. The seismic equipments consisted of fifteen Earth-Data Loggers (24 bit) connected to Mark L4-3D sensors (1Hz). The stations continuously recorded at a rate of 100 samples per second, and the timing was provided by a GPS link. Waveform data are available from the GEOFON data centre.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 80 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-01-26
    Description: Abstract
    Description: As part of the INDEPTH IV passive-source experiment from May 2007 until October 2008, 50 broadband seismographs (35 from GIPP, Germany and 15 from SEIS-UK) were deployed along two profiles across the Kunlun mountains and the Jinsha river suture in northeast Tibet. The aims of the project are to determine the crust and upper mantle structure beneath northeast Tibet, detect the sharpness of any steps in major crustal boundaries (e.g. Moho) and detect how deep major faults penetrate in order to examine the viability of the crustal flow hypothesis. The data from the 35 GIPP seismographs are archived at GEOFON at https://geofon.gfzpotsdam.de/waveform/archive/network.php?ncode=XO The data from the 15 SEIS-UK seismographs are archived at the IRIS-DMC at http://ds.iris.edu/mda/XO?timewindow=2007-2009. Waveform data are available from the GEOFON data centre, under network code XO.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Earth structure ; Tibet ; passive seismology ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~200G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Earthquake swarms occur frequently in Vogtland/West Bohemia at the German-Czech border. The link between these earthquakes and magmatic fluids that escape at the surface has been debated and investigated. The Rohrbach/Vogtland seismic array, installed by the University of Potsdam, Germany, was a small-aperture array that monitored the major earthquake swarm in 2008 and the background seismicity between October 16, 2008 and March 18, 2009. The array consisted of 11 stations equipped with MarsLite data loggers and Lennartz Le3D-5s seismometers. Data were recorded in continuous mode at 250 Hz. Sensors were buried in the ground at 0.5 m depth. High-precision station coordinates were obtained using differential GPS measurements. The array data has been used for analyses of earthquakes and seismic structures. Waveform data is fully open.
    Keywords: Seismic waveforms ; Germany ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approx. 95 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Toba caldera is located in north Sumatra, Indonesia. It is part of the volcanic arc associated with the subduction of the Australian Plate beneath the Southeast-Asian Plate. The subduction zone, and the Sumatra Fault, a right lateral strike-slip fault which marks the plate boundary, are seismically active. In order to investigate the volcano-related seismic activity and image the volcano related structures (i.e. a potential magma chamber) using ambient noise techniques a dense seismic network was installed around Lake Toba between May and October 2008. The network, deployed within a German-Indonesian cooperation, comprised 42 continuously recording seismic stations equipped with three-component, short-period seismic sensors with 1 Hz natural frequency. The GPS-synchronised data loggers recorded at 100 samples per second for the experiment's time span of 6 months. During this time period local and regional seismicity was recorded. The array of stations covers an area of approx. 150 by 200 km with inter-station distances of about 20 km. The station distribution is quite irregular due to the difficult environmental conditions. Data from all stations are freely available from the GFZ seismological data archive.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 287 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Deutsches GeoForschungsZentrum GFZ
    Publication Date: 2024-02-23
    Description: Abstract
    Description: We study deep structures and geodynamic processes in the Tien Shan and Pamir collision zones, central Asia, with passive source seismic experiments in Kyrgyzstan and Tajikistan. In 2008, a total of 40 seismic stations were deployed predominantly along a 350 km long N-S profile and partly as a sparse 2D seismic network covering an area of 300x300 km of the central Pamir plateau. In 2009, the array was rearranged into a 2D network with higher station density. The proposed scientific tasks to study the crust and upper mantle with seismic methods include (i) teleseismic P and S receiver functions, (ii) shear wave splitting, (iii) location of local earthquakes and waveform inversion for source mechanism, (iv) seismic tomography using local and teleseismic earthquakes, and (v) tomography of surface waves and ambient noise.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 440 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The seismic array is part of a collaborative international passive-source seismic experiment in the southern Puna (25°S to 28°S) that aims to address fundamental questions on the processes that form, modify and destroy continental lithosphere and control lithospheric dynamics along Andean-type continental margins. The southern Puna is anomalous with respect to the rest of the Andean plateau in having a distinct magmatic and structural history, a large deficit in crustal shortening compared to its elevation and an underlying slab with a transitional dip between a steeper segment to the north and the Chilean flat-slab to the south. With the international project we proposed to test the hypothesis of the lithospheric delamination beneath the southern Puna. The total network consists of 75 seismic stations and has been operated in Argentina and chile for 2 years. The GFZ has contributed 30 stations with EarthData logger (EDL). Sensors include broadband Güralp 3ESP (60 s) and 3T (100 s) and short-period Mark L4 (1 s). Continuous data are freely available on the GEOFON. The US data can be requested from the IRIS.
    Keywords: Seismic waveforms ; Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 490 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The IPOC seismic network is part of the Integrated Plate boundary Observatory Chile (IPOC), a European-Chilean network of institutions and scientists organizing and operating a distributed system of instruments and projects dedicated to the study of earthquakes and deformation at the continental margin of Chile. In particular, the seismic network is jointly operated by the GFZ German Research Centre for Geosciences, Potsdam, Germany; the Institut de Physique du Globe Paris, France (IPGP); the Chilean National Seismological Centre (CSN); the Universidad de Chile, Santiago, Chile (UdC); and the Universidad Católica del Norte, Antofagasta, Chile (UCNA). The subduction plate boundary between the South American and the oceanic Nazca plates exhibits some of the largest earthquakes on Earth. The IPOC goal is to improve the understanding of both the physical mechanisms underlying these processes and the natural hazards induced by them. The observatory is designed to monitor the plate boundary system from the Peru-Chile border to south of the city of Antofagasta, from the coast to the high Andes, capturing both great and small earthquakes in this region. A key component of IPOC is its multi-parameter observatories, where at each site a suite of different physical parameters are measured continuously. So far about 20 such multi-parameter stations are installed. All of these sites are equipped with STS-2 broadband seismometers and accelerometers. Additional instrumentation at some of the stations includes continuous GPS, electric and magnetic field (MT), surface inclination, and climate (temperature, air pressure, humidity). Most sites transmit their data in near-real time using a suite of communication channels (VSAT, WiFi, telemetry etc.). Seismic instruments are deployed on concrete pedestals in bedrock caverns (a few meters deep) to measure ground shaking from earthquakes or other sources that last from a tiny fraction of a second to several hours. Strong-motion sensors are deployed next to the broadband sensors to increase the dynamic range and for earthquake engineering applications. Broadband data are freely distributed in real-time and archive data is also available. This DOI encompasses all IPOC seismic data; data is available under FDSN network code CX.
    Keywords: Seismic waveforms ; Broadband seismic waveforms ; Seismic monitoring ; Plate boundary observatory ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approximately 20 active stations; greater than 120 MB/day.
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The Teisseyre-Tornquist Zone (TTZ) as part of the Trans-European Suture Zone (TESZ) is one of the most prominent suture zones in Europe separating the young Palaeozoic platform from the much older Precambrian East European craton. The knowledge of deep structure of the TESZ is very important for the understanding of various tectonic processes in Europe. The PASSEQ 2006-2008 seismic experiment was performed thanks to a big international effort of 17 institutions from 10 countries. A total of 139 three-component temporary short-period and 49 temporary broadband seismic stations provided continuous recordings between May 2006 and June 2008 with the main period of recordings during 2007, in an array about 1200 km long and 400 km wide running from Germany through the Czech Republic and Poland to Lithuania. The average spacing between all stations was about 60 km, attaining about 20 km in the central part. The configuration of the seismic network was a compromise among needs of different seismic methods. The dense central profile allows the use of modern passive 2-D imaging techniques, while the distribution of broadband sensors was designed for surface wave and receiver function studies of the upper mantle down to the transition zone in a wide frequency range. Waveform data is fully open, with network code 7E.
    Keywords: Seismic waveforms, PASSEQ ; Germany ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: Approx 1684 GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Understanding the factors leading to large earthquakes in the coupling zone of convergent margins and their interrelation with surface deformation were the main aims of the international and interdisciplinary research initiative TIPTEQ (“From The Incoming Plate To megaThrust EarthQuake Processes”). Between Nov. 2004 and Oct. 2005 we deployed 2 temporary, amphibious seismic arrays in South-Central Chile. In this region the 1960 Mw = 9.5 earthquake nucleated. The northern network between 37° and 39°S was formed by up to 120 digitally recording land stations (equipped with short-period sensors) and 10 Ocean Bottom Seismometers/Hydrophones (OBS/OBH). Waveform data are available from the GEOFON data centre, under network code ZW, and are available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~500G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Durchleuchtung der Litosphäre und des oberen Mantels mit Hilfe aktiver und passiver Seismologie (hier nur passiver Teil). Receiver Funktionen und SKS-Anisotropie Methoden sollen angewandt werden. Ziel ist die Rolle eines Mantelplumes in einem aktiven Kontinentalrand zu untersuchen. Waveform data are available from the GEOFON data centre, under network code XC under CC-BY 4.0 license.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~150Gb
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-02-08
    Description: Abstract
    Description: Local seismic network in Northern Chile, Southern Bolivia. (Grant-number: GIPP199604) Waveform data is available from the GEOFON data centre. License: “Creative Commons Attribution-ShareAlike 4.0 International License” (CC BY-SA).
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Central Andes ; magmatic arc ; local seismicity ; temporary local seismic network ; Northern Chile ; Southern Bolivia ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~70G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The Institute of Seismology, University of Helsinki (ISUH) was founded in 1961 as a response to the growing public concern for environmental hazards caused by nuclear weapon testing. Since then ISUH has been responsible for seismic monitoring in Finland. The current mandate covers government regulator duties in seismic hazard mitigation and nuclear test ban treaty verification, observatory activities and operation of the Finnish National Seismic Network (FNSN) as well as research and teaching of seismology at the University of Helsinki.The first seismograph station of Finland was installed at the premises of the Department of Physics, University of Helsinki in 1924. However, the mechanical Mainka seismographs had low magnification and thus the recordings were of little practical value for the study of local seismicity. The first short-period seismographs were set up between 1956 and 1963. The next significant upgrade of FNSN occurred during the late 1970’s when digital tripartite arrays in southern and central Finland became fully operational, allowing for systematic use of instrumental detection, location and magnitude determination methods. By the end of the 1990’s, the entire network was operating using digital telemetric or dial-up methods. The FNSN has expanded significantly during the 21st Century. It comprises now 36 permanent stations. Most of the stations have Streckeisen STS-2, Nanometrics Trillium (Compact/P/PA/QA) or Guralp CMG-3T broad band sensors. Some Teledyne-Geotech S13/GS13 short period sensors are also in use. Data acquisition systems are a combination of Earth Data PS6-24 digitizers and PC with Seiscomp/Seedlink software or Nanometrics Centaurs. The stations are connected to the ISUH with Seedlink via Internet and provide continuous waveform data at 40 Hz (array) or 100-250 Hz sampling frequency. Further information about instrumentation can be found at the Institute’s web site (www.seismo.helsinki.fi). Waveform data are available from the GEOFON data centre, under network code HE, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...