ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
Collection
Years
  • 101
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(22), (2020): 9883-9903, https://doi.org/10.1175/JCLI-D-20-0004.1.
    Description: Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.
    Description: This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. JAF was also supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. JS was supported in part by the U.S. National Science Foundation through Grants AGS-1602920 and AGS-1805490, and by the National Oceanic and Atmospheric Administration by Grant NA20OAR4310425. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portal. We thank the editor and two reviewers for comments that greatly improved the quality of this manuscript. This is SOEST Publication No. 11116 and LDEO Publication No. 8450.
    Description: 2021-04-15
    Keywords: Drought ; Climate change ; Paleoclimate ; Climate models ; Climate variability ; Other artificial intelligence/machine learning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(15), (2020): 6707-6730, https://doi.org/10.1175/JCLI-D-19-0579.1.
    Description: The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on interseasonal to interannual time scales, and to locate the source of moisture. Seasonal composites during El Niño–Southern Oscillation/Indian Ocean dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies toward Australia. During co-occurring La Niña and negative IOD events, salty anomalies around the Maritime Continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, a moisture transport divergence anomaly over Australia results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean–atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g., the 2010/11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall.
    Description: This research is funded through the Earth System and Climate Change Hub of the Australian government’s National Environmental Science Programme. The assistance of computing resources from the National Computational Infrastructure supported by the Australian Government is acknowledged. CCU acknowledges support from the U.S. National Science Foundation under Grant OCE-1663704. MF was supported by the by Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales and University of Tasmania. The authors wish to acknowledge PyFerret (https://ferret.pmel.noaa.gov/Ferret/) and the Cimate Data Operators (https://code.mpimet.mpg.de/projects/cdo/) for the data analysis and graphical representations in this paper.
    Keywords: Atmosphere-ocean interaction ; El Nino ; Extreme events ; La Nina ; Precipitation ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Kwon, Y., & Frankignoul, C. Autumn Arctic Pacific sea ice dipole as a source of predictability for subsequent spring Barents Sea ice condition. Journal of Climate, 34(2), (2021): 787-804, https://doi.org/10.1175/JCLI-D-20-0172.1.
    Description: This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.
    Description: This study is supported by NSF’s Office of Polar Programs (Grant 1736738). We also acknowledge support by the Blue-Action project (European Union’s Horizon 2020 research and innovation programme, Grant 727852).
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Ocean circulation ; Seasonal forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2669-2688, doi:10.1175/JPO-D-19-0077.1
    Description: The scale-dependent variance of tracer properties in the ocean bears the imprint of the oceanic eddy field. Anomalies in spice (which combines anomalies in temperature T and salinity S on isopycnal surfaces) act as passive tracers beneath the surface mixed layer (ML). We present an analysis of spice distributions along isopycnals in the upper 200 m of the ocean, calculated with over 9000 vertical profiles of T and S measured along ~4800 km of ship tracks in the Bay of Bengal. The data are from three separate research cruises—in the winter monsoon season of 2013 and in the late and early summer monsoon seasons of 2015 and 2018. We present a spectral analysis of horizontal tracer variance statistics on scales ranging from the submesoscale (~1 km) to the mesoscale (~100 km). Isopycnal layers that are closer to the ML-base exhibit redder spectra of tracer variance at scales ≲10 km than is predicted by theories of quasigeostrophic turbulence or frontogenesis. Two plausible explanations are postulated. The first is that stirring by submesoscale motions and shear dispersion by near-inertial waves enhance effective horizontal mixing and deplete tracer variance at horizontal scales ≲10 km in this region. The second is that the spice anomalies are coherent with dynamical properties such as potential vorticity, and not interpretable as passively stirred.
    Description: We are grateful to the captain and crew of the R/V Roger Revelle and the R/V Thomas G. Thompson, and all ASIRI-OMM and MISO-BOB scientists. We thank Prof. Andrew Thompson and an anonymous reviewer for suggestions that improved the manuscript. This work was carried out under the Office of Naval Research’s Air-Sea Interaction Regional Initiative (ASIRI) and Monsoon Intra-Seasonal Oscillations in the Bay of Bengal (MISO-BOB) research initiatives, in collaboration with the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons (OMM) initiative supported by the Monsoon Mission. Support came from ONR Grants N00014-16-1-2470, N00014-13-1-0451, N00014-17-1-2390 (G.S.J. and A.M.), N00014-14-1-0455 (J.M. and J.N), N00014-17-1-2511 (J.M.), N00014-13-1-0489, N00014-17-1-2391 (A.L.), N00014-15-1-2634 (E.S.), N00014-13-1-0456, N00014-17-1-2355 (A.T.), and N00014-13-1-0453, N00014-17-1-2880 (J.F.).
    Description: 2021-02-28
    Keywords: Ocean dynamics ; Thermocline ; Water masses/storage ; In situ oceanic observations ; Tracers ; Spectral analysis/models/distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(6), (2020): E744-E762, doi:10.1175/BAMS-D-19-0015.1.
    Description: From 11 April to 11 June 2018 a new type of ocean observing platform, the Saildrone surface vehicle, collected data on a round-trip, 60-day cruise from San Francisco Bay, down the U.S. and Mexican coast to Guadalupe Island. The cruise track was selected to optimize the science team’s validation and science objectives. The validation objectives include establishing the accuracy of these new measurements. The scientific objectives include validation of satellite-derived fluxes, sea surface temperatures, and wind vectors and studies of upwelling dynamics, river plumes, air–sea interactions including frontal regions, and diurnal warming regions. On this deployment, the Saildrone carried 16 atmospheric and oceanographic sensors. Future planned cruises (with open data policies) are focused on improving our understanding of air–sea fluxes in the Arctic Ocean and around North Brazil Current rings.
    Description: The Saildrone data collection mission was sponsored by the Saildrone Award, an annual data collection mission awarded by Saildrone Inc., and the Schmidt Family Foundation. The research was funded by the NASA Physical Oceanography Program Grant 80NSSC18K0837 and 80NSSC18K1441. The work by T. M. Chin, J. Vazquez-Cuerzo, and V. Tsontos was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Piero L.F. Mazzini was supported by California Sea Grant Award NA18OAR4170073. We thank CeNCOOS for providing the HF radar data in the Gulf of the Farallones. Jose Gomez-Valdes was supported by CONACYT Grant 257125, and by CICESE. Work by Joel Scott and Ivona Cetinic was supported through NASA PACE. The work by Lisan Yu was supported by NOAA Ocean Observing and Monitoring Division under Grant NA14OAR4320158.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6), (2020): 1557-1582, doi:10.1175/JPO-D-19-0239.1.
    Description: We examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.
    Description: This work was supported by the National Science Foundation Ocean Science Division under Grant OCE-1558960. PG also acknowledges support of the NASA Physical Oceanography Program Grant NNX16H59G. KC would like to thank D. McGillicuddy Jr. for inspiring discussions and suggestions during the course of this study. Constructive comments from two anonymous reviewers are appreciated.
    Keywords: Ageostrophic circulations ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Upwelling/downwelling ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(8), (2020): E1397-E1412, https://doi.org/10.1175/BAMS-D-19-0278.1.
    Description: Sea surface temperatures (SSTs) north of Australia in the Indonesian–Australian Basin are significantly influenced by Madden–Julian oscillation (MJO), an eastward-moving atmospheric disturbance that traverses the globe in the tropics. The region also has large-amplitude diurnal SST variations, which may influence the air–sea heat and moisture fluxes, that provide feedback to the MJO evolution. During the 2018/19 austral summer, a field campaign aiming to better understand the influences of air–sea coupling on the MJO was conducted north of Australia in the Indonesian–Australian Basin. Surface meteorology from buoy observations and upper-ocean data from autonomous fast-profiling float observations were collected. Two MJO convective phases propagated eastward across the region in mid-December 2018 and late January 2019 and the second MJO was in conjunction with a tropical cyclone development. Observations showed that SST in the region was rather sensitive to the MJO forcing. Air–sea heat fluxes warmed the SST throughout the 2018/19 austral summer, punctuated by the MJO activities, with a 2°–3°C drop in SST during the two MJO events. Substantial diurnal SST variations during the suppressed phases of the MJOs were observed, and the near-surface thermal stratifications provided positive feedback for the peak diurnal SST amplitude, which may be a mechanism to influence the MJO evolution. Compared to traditionally vessel-based observation programs, we have relied on fast-profiling floats as the main vehicle in measuring the upper-ocean variability from diurnal to the MJO time scales, which may pave the way for using cost-effective technology in similar process studies.
    Description: MF, SW, and JH are supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales, and University of Tasmania. Y. Duan is supported by National Natural Science Foundation of China (41706032) and Basic Scientific Fund for National Public Research Institutes of China (2019Q03).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2021-02-01
    Description: Multiyear climate predictions provide climate outlooks from years to a decade in advance. As multiyear temperature predictions become more mainstream and skillful, guidance is needed to assist practitioners who wish to explore this maturing field. This paper demonstrates the process and considerations of incorporating multiyear temperature predictions into water resources planning. Multiyear temperature predictions from the Community Earth System Model Decadal Prediction Large Ensemble are presented as discrete and probabilistic products and are used to force two common hydrologic modeling approaches: conceptual and empirical. The approaches are demonstrated to simulate streamflow in the upper Colorado River basin watershed in Colorado, where diagnostics show that increasing temperatures are associated with decreasing streamflows. Using temperature information for lead years 2–6, two analyses are performed: (i) a retrospective hindcast for the climatological period (1981–2010) and (ii) a blind forecast for 2011–15. For the retrospective hindcast, including temperature information improved the percent error as compared with climatology. For the blind forecast, the multiyear temperature prediction for warming was skillful, but the corresponding multiyear average streamflow predictions from both approaches were counterintuitive: with the predicted warming, the multiyear average streamflow was predicted to be lower than the climatological mean; however, the observed multiyear average streamflow was higher than the climatological mean. This was due to above-average precipitation during the prediction time frame, particularly for one of the years. With that year removed, the multiyear streamflow average became lower than the climatological mean. Temperature provides a marginal source of streamflow predictability, but there will be substantial uncertainty until prediction skill for year-to-year climate variability, especially for precipitation, increases.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2021-02-25
    Description: Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, non-local BPT and thus non-local circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically-motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a non-negligible role in structuring the gyre circulation. Non-local bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2021-02-25
    Description: Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b) and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2021-02-25
    Description: The temporal-spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with the linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In stratosphere, temperature tends to have more contributions. Over Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2021-02-25
    Description: In recent winters, there have been repeated observations of extreme warm and cold spells in the mid-latitude countries. This has evoked questions regarding how winter temperature extremes are induced. In this study, we demonstrate that abnormally warm winter weather in East Asia can drive the onset of extremely cold weather in North America approximately one week forward. These seesawing extremes across the basin are mediated by the North Pacific Oscillation (NPO), one of the recurrent atmospheric patterns over the North Pacific. Budget analysis of the quasi-geostrophic geopotential tendency equation shows that intense thermal advection over East Asia is able to trigger the growth of the NPO. Vorticity fluxes associated with the upper-level stationary trough then strengthen and maintain the NPO against thermal damping following the onset of the NPO. Differential diabatic heating accompanied by changes in circulation also positively contribute to the growth and maintenance of the NPO. These results imply that recurrent cold extremes, seemingly contrary to global warming, may be an inherent feature resulting from strengthening warm extremes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2021-02-25
    Description: This study revisits the long-term variabilities of East Asian summer monsoon (EASM) in 1958-2017 through examining diurnal cycles. We group monsoon days into four dynamic quadrants, with emphasis on the strong daily southerlies coupled with a large (Q1) or small (Q4) diurnal amplitude over Southeast China. The occurrence day of Q1 increases in June-July with the seasonal progress of EASM. It is most pronounced in 1960s-1970s and declines to the lowest in 1980s-1990s, while the Q4 occurrence increases notably from 1970s to 1990s; both groups return to normal in recent years. The interdecadal decrease (increase) of Q1 (Q4) occurrence corresponds well to the known weakening of EASM in the 20th century, and it also coincides with the rainfall anomalies over China shifting from “North flooding and South drought” to “North drought and South flooding” modes. The rainfall under Q1 (Q4) can account for ∼60% of the interannual variance of summer rainfall in northern (southern) China. The contrasting effects of Q1 and Q4 on rainfall are due to their remarkably different regulation on water vapor transports and convergence. The interannual/interdecadal variations of Q1 (Q4) occurrence determine the anomalous water vapor transports to northern (southern) China, in association with the various expansion of the western Pacific subtropical high. In particular, Q1 condition can greatly intensify nighttime moisture convergence, which is responsible for the long-term variations of rainfall in northern China. The results highlight that the diurnal cycles in monsoon flow act as a key regional process working with large-scale circulations to regulate the spatial distributions and long-term variabilities of EASM rainfall.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2021-02-25
    Description: A lightning risk assessment for application to human safety was created and applied in 10 West Texas locations from 2 May 2016 to 30 September 2016. The method combined spatial lightning mapping data, probabilistic risk calculation adapted from the International Electrotechnical Commission Standard 62305-2, and weighted average interpolation to produce risk magnitudes that were compared to tolerability thresholds to issue lightning warnings. These warnings were compared to warnings created for the same dataset using a more standard lightning safety approach based on National Lightning Detection Network (NLDN) total lightning within 5 nautical miles of each location. Four variations of the calculation as well as different units of risk were tested to find the optimal configuration to calculate risk to an isolated human outdoors.The best performing risk configuration using risk 10min−1 or larger produced the most comparable results to the standard method, such as number of failures, average warning duration, and total time under warnings. This risk configuration produced fewer failures than the standard method, but longer total time under warnings and higher false alarm ratios. Median lead times associated with the risk configuration were longer than the standard method for all units considered, while median down times were shorter for risk 10min−1 and risk 15min−1. Overall, the risk method provides a baseline framework to quantify the changing lightning hazard on the storm-scale, and could be a useful tool to aid in lightning decision support scenarios.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2021-02-01
    Description: Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2021-03-30
    Description: In the present work, the trend of extreme rainfall indices in the Macro-Metropolis of São Paulo (MMSP) was analyzed and correlated with largescale climatic oscillations. A cluster analysis divided a set of rain gauge stations into three homogeneous regions within MMSP, according to the annual cycle of rainfall. The entire MMSP presented an increase in the total annual rainfall, from 1940 to 2016, of 3 mm per year on average, according to Mann-Kendall test. However, there is evidence that the more urbanized areas have a greater increase in the frequency and magnitude of extreme events, while coastal and mountainous areas, and regions outside large urban areas, have increasing rainfall in a better-distributed way throughout the year. The evolution of extreme rainfall (95th percentile) is significantly correlated with climatic indices. In the center-north part of the MMSP, the combination of Pacific Decadal Oscillation (PDO) and Antarctic Oscillation (AAO) explains 45% of the P95th increase during the wet season. In turn, in southern MMSP, the Temperature of South Atlantic (TSA), the AAO, the El Niño South Oscillation (ENSO) and the Multidecadal Oscillation of the North Atlantic (AMO) better explain the increase in extreme rainfall (R2 = 0.47). However, the same is not observed during the dry season, in which the P95th variation was only negatively correlated with the AMO, undergoing a decrease from the ‘70s until the beginning of this century. The occurrence of rainy anomalous months proved to be more frequent and associated with climatic indices than dry months.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2021-03-29
    Description: Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2021-03-29
    Description: The Conway-Maxwell-Poisson distribution improves the precision with which seasonal counts of tropical cyclones may be modelled. Conventionally the Poisson is used, which assumes that the formation and transit of tropical cyclones is the result of a Poisson process, such that their frequency distribution has equal mean and variance (‘equi-dispersion’). However, earlier studies of observed records have sometimes found over-dispersion, where the variance exceeds the mean, indicating that tropical cyclones are clustered in particular years. The evidence presented here demonstrates that at least some of this over-dispersion arises from observational inhomogeneities. Once this is removed, and particularly near the coasts, there is evidence for equi-dispersion or under-dispersion. In order to more accurately model numbers of tropical cyclones, we investigate the use of the Conway-Maxwell-Poisson as an alternative to the Poisson that represents any dispersion characteristic. An example is given for east China where using it improves the skill of a prototype seasonal forecast of tropical cyclone landfall.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2021-03-29
    Description: Today, the vast majority of meteorological data are collected in open, rural environments to comply with the standards set by the World Meteorological Organization. However, these traditional networks lack local information that would be of immense value, for example, for studying urban microclimate, evaluating climate adaptation measures, or improving high-resolution numerical weather predictions. Therefore an urgent need exists for reliable meteorological data in other environments (e.g. cities, lakes, forests) to complement these conventional networks. At present, however, high-accuracy initiatives tend to be limited in space and/or time as a result of the substantial budgetary requirements faced by research teams and operational services. We present a novel approach for addressing the existing observational gaps based on an intense collaboration with high schools. This methodology resulted in the establishment of a region-wide climate monitoring network of 59 accurate weather stations in a wide variety of locations across northern Belgium. The project is also of large societal relevance as it bridges the gap between the youth and atmospheric science. To guarantee a sustainable and mutually valuable collaboration, the schools and their students are involved at all stages, ranging from proposing measurement locations, building the weather stations, and even data analysis. We illustrate how the approach received an overwhelming enthusiasm from high schools and students and resulted in a high-accuracy monitoring network with unique locations offering novel insights.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2021-03-30
    Description: Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes: the Dual-Frequency Precipitation Radar (DPR) retrieval and its single frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE) and two passive microwave retrievals, i.e., the Goddard PROFiling algorithm (GPROF) and the Snow retrievaL ALgorithm fOr gMi (SLALOM). The 2C-SNOW retrieval has the highest Heidke Skill Score (HSS) for detecting snowfall among the products analysed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of two compared to MRMS. Large discrepancies (RMSE of 0.7 to 1.5 mm h-1) between space-borne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2021-03-30
    Description: Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4-5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the KOUN WSR-88D radar with ~1 minute temporal resolution is used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min) is used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1-km/5-min), spaced-based observations (10-km/30-min), and hourly rainfall products (1-km/60-min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1-km/1-min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that: 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation, 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser, and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2021-03-30
    Description: Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on the environment, human activities, and economy.Microwave (MW) telecommunication links carry information on rainfall rates along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inexpensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing. Processing satellite telecom signals bring some specific complexities related to the effects of rainfall boundaries, melting layer, and non-weather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An EnKF-based (Ensemble Kalman Filter) method has been developed to dynamically retrieve rainfall fields in gridded domains, which manages such probabilistic information and exploits the high sampling rate of measurements. The paper presents the EnKF method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available operational meteorological satellites and models, for advection, initial and boundary conditions, rain height. The method reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. It results computationally viable also for operational implementation and applicable to different link observation geometries and characteristics.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2021-03-29
    Description: Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multi-seasonal global simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) under present-day and projected future conditions. High-resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea-level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4–5° northward latitudinal shift and a ~6 hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough-TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius-Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2021-03-24
    Description: Assimilation of dual-polarization (dual-pol) observations provides more accurate storm-scale analyses to initialize forecasts of severe convective thunderstorms. This study investigates the impact assimilating experimental sector-scan dual-pol observations has on storm-scale ensemble forecasts and how this impact changes over different data assimilation (DA) windows using the ensemble Kalman filter (EnKF). Ensemble forecasts are initialized after 30, 45, and 60 minutes of DA for two sets of experiments that assimilate either reflectivity and radial velocity only (EXPZ) or reflectivity and radial velocity plus differential reflectivity (EXPZZDR). This study uses the 31 May 2013 Oklahoma event which included multiple storms that produced tornadoes and severe hail, with focus placed on two storms that impacted El Reno and Stillwater during the event.The earliest initialized forecast of EXPZZDR better predicts the evolution of the El Reno storm than EXPZ, but the two sets of experiments become similar at subsequent forecast times. However, the later EXPZZDR forecasts of the Stillwater storm, which organized towards the end of the DA window, produce improved results compared to EXPZ, in which the storm is less intense and weakens. Evaluation of forecast products for supercell mesocyclones (updraft helicity [UH]) and hail show similar results with earlier EXPZZDR forecasts better predicting the UH swaths of the El Reno storm and later forecasts producing improved UH and hail swaths for the Stillwater storm. The results indicate that the assimilation of ZDR over fewer DA cycles can produce improved forecasts when DA windows sufficiently cover storms during their initial development and organization.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2021-03-24
    Description: The characteristics of El-Niño-Southern Oscillation (ENSO) phase-locking in observations and CMIP5 and CMIP6 models are examined in this study. Two metrics based on the peaking month histogram for all El Niño and La Niña events are adopted to delineate the basic features of ENSO phase-locking in terms of the preferred calendar month and strength of this preference. It turns out that most models are poor at simulating the ENSO phase-locking, either showing little peak strengths or peaking at the wrong seasons. By deriving ENSO’s linear dynamics based on the conceptual recharge oscillator (RO) framework through the seasonal linear inverse model (sLIM) approach, various simulated phase-locking behaviors of CMIP models are systematically investigated in comparison with observations. In observations, phase-locking is mainly attributed to the seasonal modulation of ENSO’s SST growth rate. In contrast, in a significant portion of CMIP models, phase-locking is co-determined by the seasonal modulations of both SST growth and phase-transition rates. Further study of the joint effects of SST growth and phase-transition rates suggests that for simulating realistic winter peak ENSO phase-locking with the right dynamics, climate models need to have four key factors in the right combination: (1) correct phase of SST growth rate modulation peaking at the fall; (2) large enough amplitude for the annual cycle in growth rate; (3) amplitude of semi-annual cycle in growth rate needs to be small; and (4) amplitude of seasonal modulation in SST phase-transition rate needs to be small.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2021-03-24
    Description: Undisturbed trade-wind conditions comprise the most prevalent synoptic weather pattern in Hawai’i and produces a distinct pattern of orographic rainfall. Significant total rainfall contributions and extreme events are linked to four types of atmospheric disturbances: cold fronts, Kona lows, upper-tropospheric disturbances, and tropical cyclones. In this study, a 20- year (1990-2010) categorical disturbance time series is compiled and analyzed in relation to daily rainfall over the same period. The primary objective of this research is to determine how disturbances contribute to total wet season rainfall on the Island of O’ahu, Hawai’i. On average, 41% of wet seasonal rainfall occurs on disturbance days. Seventeen percent of seasonal rainfall can be directly attributed to disturbances (after a background signal is removed) and as much as 48% in a single season. The intensity of disturbance rainfall (mm/day) is a stronger predictor (r2 = 0.49; p 〈 0.001) of the total seasonal rainfall than the frequency of occurrence (r2 = 0.11; p = 0.153). Cold fronts are the most common disturbance type; however, the rainfall associated with fronts that cross the island is significantly higher than rainfall produced from non-crossing fronts. In fact, non-crossing fronts produce significantly less rainfall than under mean non-disturbance conditions 76% of the time. While the combined influence of atmospheric disturbances can account for almost half of the rainfall received during the wet season, the primary factor in determining a relatively wet or dry season/year on O’ahu are the frequency and rainfall intensity of Kona Low events.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2021-03-24
    Description: We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km3month-1yr-1 on average over 2002-2019 derived from satellite observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2021-03-24
    Description: Message diffusion and message persuasion are two important aspects of success for official risk messages about hazards. Message diffusion enables more people to receive lifesaving messages, and message persuasion motivates them to take protective actions. This study helps to identify win-win message strategies by investigating how an under-examined factor, message content that is theoretically important to message persuasion, influences message diffusion for official risk messages about heat hazards on Twitter. Using multilevel negative binomial regression models, the respective and cumulative effects of four persuasive message factors, hazard intensity, health risk susceptibility, health impact, and response instruction on retweet counts were analyzed using a dataset of heat-related tweets issued by U.S. National Weather Service accounts. Two subsets of heat-related tweets were also analyzed: 1) heat warning tweets about current or anticipated extreme heat events and 2) tweets about non-extreme heat events. This study found that heat-related tweets that mentioned more types of persuasive message factors were retweeted more frequently, and so were two subtypes of heat-related tweets. Mentions of hazard intensity also consistently predicted increased retweet counts. Mentions of health impacts positively influenced message diffusion for heat-related tweets and tweets about non-extreme heat events. Mentions of health risk susceptibility and response instructions positively predicted retweet counts for tweets about non-extreme heat events and tweets about official extreme heat warnings respectively. In the context of natural hazards, this research informs practitioners with evidence-based message strategies to increase message diffusion on social media. Such strategies also have the potential to improve message persuasion.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2021-03-22
    Description: The very strong Typhoon Goni passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on August 23, 2015. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface.Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices approximately 10 km in diameter were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall.The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2021-03-22
    Description: Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2021-03-22
    Description: A small integrated oceanographic thermometer with a nominal response time of 1 s was affixed to a floating hose “sea snake” towed near the bow of a research vessel. The sensor measured the near-surface ocean temperature accurately and in agreement with other platforms. The effect of conduction and evaporation is modeled for a sensor impulsively alternated between water and air. Large thermal mass makes most sea snake thermometers insensitive to temperature impulses. The smaller 1-s thermometer cooled by evaporation, but the sensor never reached the wet bulb temperature. The cooling was less than 6% of the (~2.7 °C) difference between the ocean temperature and the wet bulb temperature in 99% of 2 s–1 samples. Filtering outliers, such as with a median, effectively removes the evaporative cooling effect from 1- or 10-minute average temperatures.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2021-03-22
    Description: This paper presents applications of wavelet artificial neural networks (WANN) to forecast rainfalls one, three, six, and twelve months in advance using lagged monthly rainfall, maximum, minimum temperatures, Southern Oscillation Index (SOI), Inter-decadal Pacific Oscillation (IPO), and Nino3.4 as predictors. Eight input datasets comprised of different combinations of predictive variables were used for ten candidate climate stations in Queensland, Australia. Datasets were split as 1908 to 1999 for the training of the model and 2000 to 2016 for the verification of the model. Also, the conventional Artificial Neural Network (ANN) model was developed with the same input datasets to compare with WANN results. Moreover, the skillfulness of the WANN was investigated with the current climate prediction system used by the Australian Bureau of Meteorology (BOM), Australian Community Climate Earth-System Simulator–Seasonal (ACCESS–S) as well as climatology forecasts. The comparisons showed that the WANN achieved the lowest errors for three-month lagged prediction with an average Root Mean Square Error (RMSE) of 38.6mm. In contrast, for the same lag-period, the average RMSEs from ANN, ACCESS-S, and climatology predictions were 72.2mm, 102.7mm, and 72.2mm, respectively. It is also found that the ANN underestimates the peak values with an average value of 49%, 47%, 52%, and 53% at one, three, six, and twelve months lead times, correspondingly. However, the corresponding peak values underestimation through the WANN were 0%, 1%, 22%, and 39%, respectively. This research provides promising insights into using hybrid methods for predicting rainfall a few months in advance, which is extremely beneficial for Australia’s agricultural industries.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2021-03-24
    Description: Soil moisture atmosphere interactions are key elements of the regional climate system. There is a well-founded hope that a more accurate representation of the soil moisture-precipitation feedback would improve the simulation of summer precipitation on daily to seasonal, to climate time scales. However, uncertainties have persistently remained as the simulated feedback is strongly sensitive to the model representation of deep convection. Here we assess the feedback representation using a GPU-accelerated version of the regional climate model COSMO. We simulate and compare the impact of continental-scale springtime soil-moisture anomalies on summer precipitation at convection-resolving (2.2 km) and convection-parameterizing resolution (12 km). We conduct re-analysis-driven simulations of 10 summer seasons (1999-2008) in continental Europe. While both simulations qualitatively agree on a positive sign of soil moisture-induced precipitation, they strongly differ in precipitation frequency: When convection is parameterized, wetter soil predominantly leads to more frequent precipitation events, and when convection is treated explicitly, they primarily become more intense. The results indicate that the sensitivity to soil moisture is stronger with parameterized convection, suggesting that the land surface-atmosphere coupling may be overestimated. In addition, the feedback’s sensitivity in complex terrain is assessed for soil perturbations of different horizontal scales. The convection-resolving simulations confirm a negative feedback for sub-continental soil moisture anomalies, which manifests itself in a local decrease of wet-hour frequency. However, the intensity feedback reinforces precipitation events at the same time (positive feedback). The two processes are represented differently in simulations with explicit and parameterized convection, explaining much of the difference between the two simulations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2021-03-22
    Description: Although environmental controls on bulk supercell potential and hazards have been studied extensively, relationships between environmental conditions and temporal changes to storm morphology remain less explored. These relationships are examined in this study using a compilation of sounding data collected during field campaigns from 1994–2019 in the vicinity of 216 supercells. Environmental parameters are calculated from the soundings and related to storm-track characteristics like initial cell motion and the time of the right turn (i.e., the time elapsed between the cell initiation and the first time when the supercell obtains a quasi-steady motion that is directed clockwise from its initial motion.). We do not find any significant associations between environmental parameters and the time of the right turn. Somewhat surprisingly, no relationship is found between storm-relative environmental helicity and the time elapsed between cell initiation and the onset of deviant motion. Initial cell motion is best approximated by the direction of the 0–6-km mean wind at two-thirds the speed. This is a result of advection and propagation in the 0–4- and 0–2-km layers, respectively. Unsurprisingly, Bunkers-right storm motion is a good estimate of post-turn motion, but storms that exhibit a post-turn motion left of Bunkers-right are less likely to be tornadic. These findings are relevant for real-time forecasting efforts in predicting the path and tornado potential of supercells up to hours in advance.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2021-03-22
    Description: Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2021-03-24
    Description: The prediction skill of the North Atlantic Oscillation (NAO) in boreal winter is assessed in the operational models of the WCRP/WWRP Subseasonal-to-Seasonal (S2S) prediction project. Model performance in representing the contribution of different processes to the NAO forecast skill is evaluated. The S2S models with relatively higher stratospheric vertical resolutions (high-top models) are in general more skillful in predicting the NAO than those models with relatively lower stratospheric resolutions (low-top models). Comparison of skill is made between different groups of forecasts based on initial condition characteristics: phase and amplitude of the NAO, easterly and westerly phases of the quasi-biennial oscillation (QBO), warm and cold phases of ENSO, and phase and amplitude of the Madden-Julia Oscillation (MJO). The forecasts with a strong NAO in the initial condition are more skillful than with a weak NAO. Those with negative NAO tend to have more skillful predictions than positive NAO. Comparisons of NAO skill between forecasts during easterly and westerly QBO and between warm and cold ENSO show no consistent difference for the S2S models. Forecasts with strong initial MJO tend to be more skillful in the NAO prediction than weak MJO. Among the eight phases of MJO in the initial condition, phases 3-4 and phase 7 have better NAO forecast skills compared with the other phases.The results of this study have implications for improving our understanding of sources of predictability of the NAO. The situation dependence of the NAO prediction skill is likely useful in identifying “ windows of opportunity” for subseasonal to seasonal predictions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2021-02-01
    Description: This study presents results from the Polar Amplification Multimodel Intercomparison Project (PAMIP) single-year time-slice experiments that aim to isolate the atmospheric response to Arctic sea ice loss at global warming levels of +2°C. Using two General Circulation Models (GCMs), the ensemble size is increased up to 300 ensemble members, beyond the recommended 100 members. After partitioning the response in groups of 100-ensemble members, the reproducibility of the results is evaluated, with a focus on the response of the mid-latitude jet streams in the North Atlantic and North Pacific. Both atmosphere-only and coupled ocean-atmosphere PAMIP experiments are analyzed. Substantial differences in the mid-latitude response are found among the different experiment subsets, suggesting that 100-member ensembles are still significantly influenced by internal variability, which can mislead conclusions. Despite an overall stronger response, the coupled ocean-atmosphere runs exhibit greater spread due to additional ENSO-related internal variability when the ocean is interactive. The lack of consistency in the response is true for anomalies that are statistically significant according to Student’s-t and False Discovery Rate tests. This is problematic for the multi-model assessment of the response, as some of the spread may be attributed to different model sensitivities while it is due to internal variability. We propose a method to overcome this consistency issue, that allows for more robust conclusions when only 100 ensemble members are used.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2021-03-22
    Description: Ancillary information that exists within rain gauge and radar-based data sets provides opportunities to better identify error and bias between the two observing platforms as compared to error and bias statistics without ancillary information. These variables include precipitation type identification, air temperature, and radar quality. There are two NEXRAD based data sets used for reference; the National Centers for Environmental Prediction (NCEP) stage IV and the NOAA NEXRAD Reanalysis (NNR) gridded data sets. The NCEP stage IV data set is available at 4km hourly and includes radar-gauge bias adjusted precipitation estimates. The NNR data set is available at 1km at 5-minute and hourly time intervals and includes several different variables such as reflectivity, radar-only estimates, precipitation flag, radar quality indicator, and radar-gauge bias adjusted precipitation estimates. The NNR data product provides additional information to apply quality control such as identification of precipitation type, identification of storm type and Z-R relation. Other measures of quality control are a part of the NNR data product development. In addition, some of the variables are available at 5-minute scale. We compare the radar-based estimates with the rain gauge observations from the U.S. Climate Reference Network (USCRN). The USCRN network is available at the 5-minute scale and includes observations of air temperature, wind, and soil moisture among others. We present statistical comparisons of rain gauge observations with radar-based estimates by segmenting information based on precipitation type, air temperature, and radar quality indicator.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2021-03-24
    Description: Current-topography interactions in the ocean give rise to eddies spanning a wide range of spatial and temporal scales. Latest modeling efforts indicate that coastal and underwater topography are important generation sites for submesoscale coherent vortices (SCVs), characterized by horizontal scales of (0.1 – 10) km. Using idealized, submesoscale and BBL-resolving simulations and adopting an integrated vorticity balance formulation, we quantify precisely the role of bottom boundary layers (BBLs) in the vorticity generation process. In particular, we show that vorticity generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the bottom. We refer to this as the Bottom Stress Divergence Torque (BSDT). BSDT is a fundamentally nonconservative torque that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar Bottom Stress Curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an interpretation of BPT as the sum of a viscous, vorticity generating component (BSDT) and an inviscid, ‘flow-turning ’ component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially less energetic, and have smaller spatial scales.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2021-03-22
    Description: The response of the meridional overturning circulation (MOC) to changes in Southern Ocean (SO) zonal wind forcing and Pacific basin vertical diffusivity is investigated under varying buoyancy forcings, corresponding to ‘warm’, ‘present-day’ and ‘cold’ states, in a two-basin general circulation model connected by a southern circumpolar channel. We find that the Atlantic MOC (AMOC) strengthens with increased SO wind stress or diffusivity in the model Pacific, under all buoyancy forcings. The sensitivity of the AMOC to wind stress increases as the buoyancy forcing is varied from a warm to a present-day or cold state, whereas it is most sensitive to the Pacific diffusivity in a present-day or warm state. Similarly, the AMOC is more sensitive to buoyancy forcing over the Southern Ocean under reduced wind stress or enhanced Pacific diffusivity. These results arise because of the increased importance of the Pacific pathway in the warmer climates, giving an increased linkage between the basins and so the opportunity for the diffusivity in the Pacific to affect the overturning in the Atlantic. In cooler states, such as in glacial climates, the two basins are largely decoupled and the wind strength over the SO is the primary determinant of the AMOC strength. Both wind- and diffusively-driven upwelling sustain the AMOC in the warmer (present-day) state. Changes in SO wind stress alone do not shoal the AMOC to resemble that observed at the last glacial maximum; changes in the buoyancy forcing are also needed to decouple the two basins.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2021-03-24
    Description: A previous study of currents in the Gulf of Mexico by the author used long-term means from three independent data sources. Ship-drift results are in good agreement with surface drifters, but these two do not agree with satellite sea-surface heights (SSH). The agreement between the first two suggested the possibility that there could be errors in the SSH or that the mean surface flow is not in geostrophic balance. The present results, using the addition of a fourth long-term mean from hydrographic data, which agrees with the SSH, resolves the issue. The lack of agreement between different long-term means is from inadequate coverage in space and time in data from ship drifts and drifters.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2021-03-22
    Description: The CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatio-temporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large scale ocean structure, transports and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multi-year to decadal time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2021-03-22
    Description: We detail the system design, model configuration and data assimilation evaluation for the CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1. CAFE60v1 has been designed with the intention of simultaneously generating both initial conditions for multi-year climate forecasts and a large ensemble retrospective analysis of the global climate system from 1960 to present. Strongly coupled data assimilation (SCDA) is implemented via an ensemble transform Kalman filter in order to constrain a general circulation climate model to observations. Satellite (altimetry, sea surface temperature, sea ice concentration) and in-situ ocean temperature and salinity profiles are directly assimilated each month, whereas atmospheric observations are sub-sampled from the JRA-55 atmospheric reanalysis. Strong coupling is implemented via explicit cross domain covariances between ocean, atmosphere, sea ice and ocean biogeochemistry. Atmospheric and surface ocean fields are available at daily resolution and monthly resolution for the land, subsurface ocean and sea ice. The system produces 96 climate trajectories (state estimates) over the most recent six decades as well as a complete data archive of initial conditions potentially enabling individual forecasts for all members each month over the 60 year period. The size of the ensemble and application of strongly coupled data assimilation lead to new insights for future reanalyses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2021-03-24
    Description: The intermediate circulation of the Strait of Georgia, British Columbia, Canada, plays a key role in dispersing contaminants throughout the Salish Sea, yet little is known about its dynamics. Here, we use hydrographic observations and hindcast fields from a regional 3D model to approach the intermediate circulation from three perspectives. Firstly, we derive and model a “seasonality” tracer from temperature observations to age the water, estimate mixing, and infer circulation. Secondly, we analyze modeled velocity fields to create mean current maps and examine the advective and diffusive components of the mean flow field. Lastly, we calculate Lagrangian trajectories to derive Transit Time Distributions and Lagrangian statistics. In combination, these analyses provide an overview of the mean intermediate circulation that can be summarized as follows: subducting water in Haro Strait ventilates the intermediate water primarily via an up-strait boundary current that flows along the eastern shores of the southernmost basin in 1–2 months. This inflowing water is either incorporated into the interior of the basin, recirculated southwards, or transported into the northernmost basin, mixing steadily with adjacent water masses during its transit. A second, shallower ventilating jet emanates southwards from Discovery Passage, locally modifying the Haro Strait inflow signal. Outside of these well-defined advective features, diffusive transport dominates in the majority of the region. The intermediate renewal signal fully ventilates the region in 100–140 days, which serves as a benchmark for contaminant dispersal timescale estimates.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2021-03-23
    Description: The occurrence of environmental disasters affects different social segments, impacting health, education, housing, economy and the provision of basic services. Thus, the objective of this study was to estimate the relationship between the occurrence of disasters and extreme climate, sociosanitary and demographic conditions in the Northeast region of Brazil during the period from 1993 to 2013. Initially, we analyzed the spatial pattern of the incidence of events and, subsequently, generalized additive models for location, scale and shape were used in order to identify and estimate the magnitude of associations between factors. Results showed that droughts are the predominant disasters in the NEB representing 81.1% of the cases, followed by events triggered by excessive rainfall such as flash floods (11.1%) and floods (7.8%). Climate conditions presented statistically significant associations with the analyzed disasters, in which indicators of excess rainfall positively contributed to the occurrence of flash floods and floods, but negatively contributed to the occurrence of drought. Sociosanitary factors, such as percentage of households with inadequate sewage, waste collection and water supply, were also positively associated with the model’s estimations, i.e., contributing to an increase in the occurrence of events, with the exception of floods, which were not significantly influenced by sociosanitary parameters. A decrease of 19% in the risk of drought occurrence was estimated, on average. On the other hand, events caused by excessive rainfall increased by 40% and 57%, in the cases of flash floods and floods, respectively.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2021-03-23
    Description: Variability in the tropical atmosphere is concentrated at wavenumber-frequency combinations where linear theory indicates wave-modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small scale convection triggering large scale waves via wave-wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only anti-symmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave-modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave-modes, and also provides a solid footing for the common assumption that the back-ground spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as -5/3. However it does explain why the cascade should be towards lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave-modes are important for tropical dynamics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2021-03-23
    Description: Since the tragic tornado outbreaks in Central Alabama and Joplin, Missouri in 2011, the National Weather Service (NWS) has increasingly emphasized the importance of supporting community partners who help protect public safety. Through impact-based decision support services (IDSS), NWS forecasters develop relationships with their core partners to meet their partners’ decision-making needs. IDSS presents a fundamental shift in NWS forecasting through highlighting the importance of connecting with partners instead of simply providing partners with forecasts. A critical challenge to the effective implementation of IDSS is a lack of social science research evaluating the success of IDSS. This paper addresses this gap through a cross-sectional survey with 119 NWS forecasters and managers in the Central and Southern regions of the U.S. Findings uncover how NWS forecasters and management team members evaluate the importance of IDSS. Findings also provide a new instrument for NWS field offices to assess and improve their relationships with core partners.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2021-03-23
    Description: Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of paired papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in the second paper.For all estimates, the meridional transport integrated zonally and averaged over a hemisphere, 〈Vk〉, is southward between 1000-4000 m in both hemispheres, northward between 4000-5000 m in the South Atlantic, and insignificant between 4000-5000 m in the North Atlantic. Estimates of 〈Vk〉 obtained from two distinct prior circulations - one based on a level of no motion at 4000 m and one based on Argo oat velocities at 1000 m - become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk = /〈Vk〉, where is the volume of the kth layer, is estimated to about a century between 1000-3000 m in both the South and North Atlantic, 124±9 yr (203±23 yr) between 3000-4000 m in the South (North) Atlantic, and 269±115 yr between 4000-5000 m in the South Atlantic.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2021-03-10
    Description: Infrequent lightning flashes occurring outside of surface precipitation pose challenges to Impact-based Decision Support Services (IDSS) for outdoor activities. This paper examines the remote sensing observations from an event on 20 August 2019 where multiple cloud-to-ground flashes occurred over 10 km outside surface precipitation (lowest radar tilt reflectivity
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2021-03-10
    Description: This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2021-03-16
    Description: 1-second resolution US radiosonde data are analyzed for unstable layers, where the potential temperature decreases with increasing altitude, in the troposphere and lower stratosphere (LS). Care is taken to exclude spurious unstable layers arising from noise in the soundings and also to allow for the destabilizing influence of water vapor in saturated layers. Riverton, WY, and Greensboro, NC, in the extratropics, are analyzed in detail, where it is found that the annual and diurnal variations are largest, and the interannual variations are smallest in the LS. More unstable layer occurrences in the LS at Riverton are found at 00 UT, while at Greensboro, more unstable layer occurrences in the LS are at 12 UT, consistent with a geographical pattern where greater unstable layer occurrences in the LS are at 00 UT in the western US, while greater unstable layer occurrences are at 12 UT in the eastern US. The picture at Koror, Palau, in the tropics is different in that the diurnal and interannual variations in unstable layer occurrences in the LS are largest, with much smaller annual variations. At Koror, more frequent unstable layer occurrences in the LS occur at 00 UT. Also, a “notch” in the frequencies of occurrence of thin unstable layers at about 12 km is observed at Koror, with large frequencies of occurrence of thick layers at that altitude. Histograms are produced for the two midlatitude and one tropical station analyzed. The log-log slopes for troposphere histograms are in reasonable agreement with earlier results, but the LS histograms show a steeper log-log slope, consistent with more thin unstable layers and less thick unstable layers there. Some radiosonde stations are excluded from this analysis since a marked change in unstable layer occurrences was identified when a change in radiosonde instrumentation occurred.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2021-03-18
    Description: Super El Niño has been a research focus since the first event occurred. Based on observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean Dipole (IOD) in autumn which is called Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds over the Pacific (U), augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño3.4 model, with a rise in the total explained variances by 10–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately, 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific will greatly improve super El Niño prediction.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2021-03-18
    Description: Texas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multi-parameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2021-03-18
    Description: Based on daily data from the Japanese 55-year Reanalysis (JRA-55) covering the springs from 1958 to 2018, this study examines the formation mechanisms and climate impacts of springtime western Pacific (WP) pattern as subseasonal climate variability over North Pacific. Results suggest that the springtime WP pattern arises from a weak dipole-like disturbance over North Pacific and disturbances over East Asia. The energetic analysis suggests that the baroclinic energy conversion acts as an important energy source to balance the available potential energy loss caused by transient eddies and diabatic heating and acts as a kinetic energy (KE) source for the WP pattern. For the feedback forcing by total transient eddies, it acts as a major KE source for the WP pattern before day 0 and acts as a strong KE sink after day 0. It turns out that the barotropic energy conversion makes only weak KE contribution to the WP pattern.Once the WP pattern forms, East Asia and North America experience strong surface air temperature anomalies of opposite signs, while strong sea surface temperature anomalies are found to occur over mid-latitude and tropical North Pacific at the same time. Concurrently, the Pacific jet and the storm track shift north-southward around their climatological position. In addition, a dipole-like shallow convective anomaly appears over mid-latitude North Pacific, and a band of anomalous deep convection tends to occur in the tropics as the energy of the WP pattern propagates into the region.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2021-03-10
    Description: Properly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper ocean circulation and air-sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model-data differences, errors and signal-to-noise ratios, our results indicate that constraining ocean state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2021-03-10
    Description: Symmetric instability (SI) extracts kinetic energy from fronts in the surface mixed layer (SML), potentially affecting the SML structure and dynamics. Here, a global submesoscale-permitting ocean model named MITgcm LLC4320 simulation is used to examine the Stone (1966) linear prediction of the maximum SI scale to estimate grid spacings needed to begin resolving SI. Furthermore, potential effects of SI on the usable wind-work are estimated roughly: this estimate of SI “activity” is useful for assessing if these modes should be resolved or parameterized. The maximum SI scale varies by latitude with median values of 568 m to 23 m. Strong seasonality is observed in the SI scale and activity. The median scale in winter is 188 m globally, 2.5 times of that of summer (75 m). SI is more active in winter: 15% of the time compared with 6% in summer. The strongest SI activity is found in the western Pacific, western Atlantic, and Southern Oceans. The required grid spacings for a global model to begin resolving SI eddies in the SML are 24 m (50% of regions resolved) and 7.9 m (90%) in winter, decreasing to 9.4 m (50%) and 3.6 m (90%) in summer. It is also estimated that SI may reduce usable wind-work by an upper bound of 0.83 mW m−2 globally, or 5% of the global magnitude. The sensitivity of these estimates to empirical thresholds is provided in the text.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2021-03-10
    Description: Operational Arctic sea ice forecasts are of crucial importance to science and to society in the Arctic region. Currently, statistical and numerical climate models are widely used to generate the Arctic sea ice forecasts at weather time-scales. Numerical models require near real-time input of relevant environmental conditions consistent with the model equations and they are computationally expensive. In this study, we propose a deep learning approach, namely Convolutional Long Short Term Memory Networks (ConvLSTM), to forecast sea ice in the Barents Sea at weather to sub-seasonal time scales. This is an unsupervised learning approach. It makes use of historical records and it exploits the covariances between different variables, including spatial and temporal relations. With input fields from reanalysis data, we demonstrate that ConvLSTM is able to learn the variability of the Arctic sea ice and can forecast regional sea ice concentration skillfully at weekly to monthly time scales. It preserves the physical consistency between predictors and predictands, and generally outperforms forecasts with climatology, persistence and a statistical model. Based on the known sources of predictability, sensitivity tests with different climate fields as input for learning were performed. The impact of different predictors on the quality of the forecasts are evaluated and we demonstrate that the surface energy budget components have a large impact on the predictability of sea ice at weather time scales. This method is promising to enhance operational Arctic sea ice forecasting in the near future.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2021-03-12
    Description: Tornadoes cause billions of dollars in damage and over 100 fatalities on average annually. Yet, an indirect cost to these storms is found in lost sales and/or lost productivity from responding to over 2,000 warnings per year. This project responds to the Weather Research and Forecasting Innovation Act of 2017, H.R. 353, which calls for the use of social and behavioral science to study and improve storm warning systems. Our goal is to provide an analysis of cost avoidance that could accrue from a change to the warning paradigm, particularly to include probabilistic hazard information at storm scales. A survey of nearly 500 firms was conducted in and near the Dallas/Fort Worth metropolitan area asking questions about experience with tornadoes, sources of information for severe weather, expected cost of responding to tornado warnings and how the firm would respond to either deterministic or probabilistic warnings. We find a dramatic change from deterministic warnings compared to the proposed probabilistic and that a probabilistic information system produces annual cost avoidance in a range of $2.3 to $7.6 billion compared to the current deterministic warning paradigm.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2021-02-18
    Description: An emergent constraint (EC) is a popular model evaluation technique, which offers the potential to reduce intermodel variability in projections of climate change. Two examples have previously been laid out for future surface albedo feedbacks (SAF) stemming from loss of Northern Hemisphere (NH) snow cover (SAFsnow) and sea ice (SAFice). These processes also have a modern-day analog that occurs each year as snow and sea ice retreat from their seasonal maxima, which is strongly correlated with future SAF across an ensemble of climate models. The newly released CMIP6 ensemble offers the chance to test prior constraints through out-of-sample verification, an important examination of EC robustness. Here, we show that the SAFsnow EC is equally strong in CMIP6 as it was in past generations, while the SAFice EC is also shown to exist in CMIP6, but with different, slightly weaker characteristics. We find that the CMIP6 mean NH SAF exhibits a global feedback of 0.25 ± 0.05 Wm-2K-1, or ∼61% of the total global albedo feedback, largely in line with prior generations despite its increased climate sensitivity. The NH SAF can be broken down into similar contributions from snow and sea ice over the 21st century in CMIP6. Crucially, intermodel variability in seasonal SAFsnow and SAFice is largely unchanged from CMIP5 because of poor outlier simulations of snow cover, surface albedo, and sea ice thickness. These outliers act to mask the noted improvement from many models when it comes to SAFice, and to a lesser extent SAFsnow.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2021-02-02
    Description: Multisource satellite remote sensing data have been used to analyze the strong upwelling event off the southern coast of Sri Lanka in 2013 and its relationship with Indian Ocean Dipole (IOD) events. The upwelling area in 2013 is 5.7 times larger than that in a normal year, and lasts from June to August, with the peaks of the cooling anomaly reaching -1.5 °C and the positive chlorophyll-a concentration anomaly exceeding 3.1 mg m-3. In 2013, the negative unseasonable IOD (IODJJA) event enhances the southwest monsoon, while the blocking of the monsoon wind by the island results in a stronger westerly/northwesterly wind stress off the southern coast of Sri Lanka and a weaker westerly/northwesterly wind stress over the eastern Sri Lanka waters. This causes stronger offshore transport and positive Ekman pumping off the southern coast, forming a strong upwelling event there. Further analysis indicates that the interannual variability of the upwelling, as represented by a newly constructed index based on satellite observations, is primarily caused by the variations of local wind associated with the IOD. The upwelling off the southern coast of Sri Lanka weakens (strengthens) in the positive (negative) IOD years. However, an analysis based on 21 IOD events during 1982-2019 demonstrates that the effects of the three types of IOD events, including IODJJA, prolonged IOD (IODLONG) and normal IOD (IODSON), on the upwelling are different. Compared to the IODSON events, the IODJJA and IODLONG events tend to have stronger influences due to their earlier developing phases.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2021-02-02
    Description: The complex interaction between the Indian Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year (ENSO(+1)). The interaction between the IOD and the concurrent ENSO (ENSO(0)) can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña-like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud-radiation-SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind-evaporation-SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2021-02-03
    Description: High-resolution, bias-corrected climate data is necessary for climate impact studies at local scales. Gridded historical data is convenient for bias-correction but may contain biases resulting from interpolation. Long-term, quality-controlled station data represent true climatological measurements, but as the distribution of climate stations is irregular, station data are challenging to incorporate into downscaling and bias-correction approaches. Here, we compared six novel methods for constructing full-coverage, high-resolution, bias-corrected climate products using daily maximum temperature simulations from a regional climate model (RCM). Only station data were used for bias-correction. We quantified performance of the six methods with the root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA models to analyze how performance varied among methods. We validated the six methods using two calibration periods of observed data (1980-1989 and 1980-2014) and two testing sets of RCM data (1990-2014 and 1980-2014). RMSE for all methods varied throughout the year and was larger in cold months, while PSS was more consistent. Quantile-mapping bias-correction techniques substantially improved PSS, while simple linear transfer functions performed best in improving RMSE. For the 1980-1989 calibration period, simple quantile-mapping techniques outperformed empirical quantile mapping (EQM) in improving PSS. When calibration and testing time periods were equivalent, EQM resulted in the largest improvements in PSS. No one method produced substantial improvements in both RMSE and PSS. Our results indicate that simple quantile-mapping techniques are less prone to overfitting than EQM and are suitable for processing future climate model output, while EQM is ideal for bias-correcting historical climate model output.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2021-02-03
    Description: The Asian monsoon has large spatial-temporal variabilities in winds and precipitation. This study reveals that the Asia monsoon also exhibits pronounced regional differences in cloud regimes and cloud-rainfall relationship at a wide range of timescales from diurnal, seasonal, to interannual. Over South (East) Asia, the convectively-active regime of deep convection (CD) occurs frequently in June–September (March–September) with a late afternoon peak (morning feature). The intermediate mixture (IM) regime over South Asia mainly occurs in summer and maximizes near noon. It develops as CD at late afternoon and dissipates as convective cirrus (CC) after midnight, showing a life cycle of thermal convection in response to solar radiation. Over East Asia, IM is dominant in cold seasons with a small diurnal cycle, indicating a prevalence of mid-level stratiform clouds. Further analyses show that CD/CC contribute 80–90% of the rainfall amount and most of the intense rainfall in the two key regions. The CD-related rainfall also accounts for the pronounced diurnal cycles of summer rainfall with a late-afternoon peak (morning feature) over North India (Southeast China). The afternoon CD-related rainfall mainly results from thermal convection under the moderate humidity but warm conditions particularly over North India, while the morning CD-related rainfall over Southeast China is more related to the processes with high humidity. The CD/CC-related rainfall also exhibits large interannual variations that explain ∼90% of the interannual variance of summer rainfall. The interannual variations of CD/CC occurrence are positively correlated with the moist southerlies and induced convergence, especially over Southeast China, suggesting a close relationship between cloud regimes and monsoon activities.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2021-02-03
    Description: Assessments of spatiotemporal severe hail fall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter “maximum expected size of hai” (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hail fall characteristics during a 23-year period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995-2017). Next, environmental constraints from the Modern-Era Retrospective analysis for Research and Applications, Version 2 are applied to the MESH distributions to produce a corrected hail fall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions, the Great Plains and the Gulf Coast. The environmentally-filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods and reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2021-02-03
    Description: It is widely known that strong vertical wind shear (exceeding 10 m s-1) often weakens tropical cyclones (TCs). However, in some circumstances, a TC is able to resist this strong shear and even re-strengthen. To better understand this phenomenon, a series of idealized simulations are conducted, followed by a statistical investigation of forty years of northern hemisphere TCs. In the idealized simulations, a TC is embedded within a time-varying point downscaling framework, which is used to gradually increase the environmental vertical wind shear to 14 m s-1 and then hold it constant. This controlled framework also allows for the separation of the TC-induced flow from the prescribed environmental flow. The TC-induced outflow is found to withstand the strong upper-tropospheric environmental flow, and this is manifested in the TC-induced shear difference (TCSD) vector. The TCSD vector, together with the environmental shear vector, defines an azimuthal range within which most of the asymmetric convection is located. The statistical analysis confirms the findings from the idealized simulations, and the results are not strongly sensitive to the TC intensity or basin. Moreover, compared with total shear, the inclusion of TCSD information creates a slightly better correlation with TC intensity change. Overall, the TCSD vector serves as a diagnostic to explain the ability of a TC to resist strong environmental shear through its outflow, and it could potentially be used as a parameter to predict future intensity change.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2021-02-03
    Description: The ability of six CMIP6 models to reproduce the observed cold season teleconnection between tropical Indo-Pacific sea surface temperatures (SSTs) and precipitation in Southwest Asia, the coastal Middle East (CME), and Northern Pakistan and India (NPI) is examined. The 1979-2014 period is analyzed, to maximize observations over both the tropical ocean and the regions. Nine historical simulations for the same period are examined for each model, to account for the internal variability of the coupled system. The teleconnection is examined in terms of SSTs, precipitation, 200 hPa geopotential heights, and derived quantities.All the models capture some of the broadest features of the teleconnections, but there is a wide range in the ability of the models to reproduce the magnitude and details. The differences appear related to both the models’ ability to capture the details of the tropical variability, including the position and strength of the precipitation anomalies in the Indo-west Pacific, as well as the models’ ability to accurately propagate the tropically-forced response into the region. The teleconnections to the CME and NPI regions on the eastern and western margins, respectively, of the strongest signal are very similar in structure and have similar results, except that the models’ ability to reproduce the strength and details of the teleconnection is even more limited, consistent with their marginal locations and known influence of other modes of variability. For all three areas, the wide range in model ability to capture the leading teleconnection suggests caution in interpreting climate regional projections.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2021-03-10
    Description: Interannual variability of the Southern Hemisphere subtropical jet (STJ) is assessed using atmospheric reanalyses during 1979-2018. The focus is on the austral winter season when the STJ is strongest and most distinct from the midlatitude eddy-driven jet (EDJ). Variations in the intensity and latitudinal position of the STJ are diagnosed using an index developed to discriminate between variations associated with the EDJ. STJ intensity and position variations are found to be tied to different mechanisms. An intensification of the STJ is associated with enhanced divergent outflow from diabatic heating over the equatorial Pacific Ocean, primarily resulting from eastern Pacific or canonical El Niño. This intensification is associated with a narrowing of the STJ and an in-place weakening of the EDJ. An equatorward shifted STJ, however, appears to be eddy-driven and is associated with an acceleration and poleward displacement of the EDJ, which projects onto the positive polarity of the Southern Annular Mode. As has previously been reported, El Niño Modoki (or central Pacific El Niño) can act to shift the EDJ poleward during austral winter; thus, a possible pathway for changes in the position of the STJ is via tropically-forced changes in the position of the EDJ. In contrast to previous studies, we also highlight a weakening and poleward shift of the STJ in association with an expansion of the Hadley circulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2021-03-10
    Description: Online science communities can serve as powerful platforms for advancing scientific knowledge, capacity, and outreach by increasing collaboration and information sharing among geographically distant peers, practitioners, and the public. Here, we examine the value and role of the Early Career Climate Forum (ECCF), a climate-focused online science community based in the United States dedicated to training and providing support to the next generation of climate scientists. In a survey of community users and contributors, we find that the ECCF played a unique role in providing users access to career resources as well as climate-related research and insights. Respondents also indicated that the ECCF provides them with a strong sense of community and a sense of hope for the future of climate science research. These findings highlight the importance of online science communities in shaping and supporting the next generation of scientists and practitioners working at the science-management interface on climate change issues.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2021-03-18
    Description: A coupled ocean-wave-sea spray model system is used to investigate the impacts of sea spray and sea surface roughness on the response of the upper ocean to the passage of the super typhoon Haitang. Sea spray mediated heat and momentum fluxes are derived from an improved version of Fairall’s heat fluxes formulation (Zhang et al., 2017) and Andreas’s sea spray-mediated momentum flux models. For winds ranging from low to extremely high speeds, a new parameterization scheme for the sea surface roughness is developed, in which the effects of wave state and sea spray are introduced. In this formulation, the drag coefficient has minimal values over the right quadrant of the typhoon track, along which the typhoon-generated waves are longer, smoother, and older, compared to other quadrants. Using traditional interfacial air-sea turbulent (sensible, latent, and momentum) fluxes, the sea surface cooling response to typhoon Haitang is overestimated by 1 °C, which can be compensated by the effects of sea spray and ocean waves on the right side of the storm. Inclusion of sea spray-mediated turbulent fluxes and sea surface roughness, modulated by ocean waves, gives enhanced cooling along the left edges of the cooling area by 0.2 °C, consistent with the upper ocean temperature observations.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2021-03-18
    Description: Reasonable parameterization of air-sea momentum flux is important for the accuracy of ocean and atmosphere simulations, and in the numerical model, the parameterization of the air-sea momentum flux becomes a problem of parameterization of the sea surface wind stress drag coefficient (Cd). In this study, five kinds of typical Cd parameterization methods were assessed in the simulation of two typhoon cases, one of which was a super typhoon and another was a common severe typhoon, based on an atmosphere-wave-ocean coupled model. Based on the two case study, it was found that the typhoon path and minimum sea level pressure were not very sensitive to Cd parameterizations, though the spatial distribution of Cd and its variation with wind speed were all very different across the parameterization methods. However, Cd has a significant effect on the wind speed, and at high wind speed, the simulated maximum wind speed compared better with the observation in the experiment which adopted the Cd calculation method considering the effects of sea spray. Also, Cd plays an important role in the feedback processes between atmosphere and ocean during the typhoon process, through its effect on the air-sea heat and momentum flux, SST, ocean mixed layer depth, ocean currents etc. The results of this study answered the question of how the Cd affects the atmosphere and ocean during the typhoon process, and to what extent they are affected, which can help to explain or even further improve the simulation results.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2021-03-18
    Description: Droughts are a worldwide concern, thus assessment efforts are conducted by many centers around the world, mainly through simple drought indices which usually neglect important hydrometeorological processes or require variables available only from complex Land Surface Models (LSMs). The U.S. Climate Prediction Center (CPC) uses the Leaky Bucket (LB) water-balance model to post-process temperature and precipitation, providing soil moisture (SM) anomalies to assess drought conditions. However, despite its crucial role in the water cycle, snowpack has been neglected by LB and most drought indices.Taking advantage of the high-quality snow water equivalent (SWE) data from the University of Arizona (UA), a single-layer snow scheme, forced by daily temperature and precipitation only, is developed for LB implementation and tested with two independent forcing datasets. Compared against the UA and SNOTEL SWE data over CONUS, LB outperforms a sophisticated LSM (Noah/NLDAS-2), with the median LB vs SNOTEL correlation (RMSE) about 40% (26%) higher (lower) than that from Noah/NLDAS-2, with only slight differences due to different forcing datasets.The changes in the temporal variability of SM due to the snowpack treatment lead to improved temporal and spatial distribution of drought conditions in the LB simulations compared to the reference U.S. Drought Monitor maps, highlighting the importance of snowpack inclusion in drought assessment. The simplicity but reasonable reliability of the LB with snowpack treatment makes it suitable for drought monitoring and forecasting in both snow-covered and snow-free areas, while only requiring precipitation and temperature data (markedly less than other water-balance-based indices).
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2021-03-11
    Description: In this study, we simulate the magnitude of urban heat islands (UHIs) during heat wave (HWs) in two cities with contrasting climates (Boston and Phoenix) using the Weather Research and Forecasting (WRF) model and quantify their drivers with a newly developed attribution method. During the daytime, a surface UHI (SUHI) is found in Boston mainly caused by the higher urban surface resistance (rs) that reduces the latent heat flux, and the higher urban aerodynamic resistance (ra) that inhibits convective heat transfer between the urban surface and the lower atmosphere. In contrast, a surface urban cool island (SUCI) is found in Phoenix mainly due to the lower urban ra that facilitates convective heat transfer. In terms of near-surface air UHI (AUHI), there is almost no daytime AUHI in either city. At night, a SUHI and an AUHI are identified in Boston due to the stronger release of heat storage in urban areas. In comparison, the lower urban ra in Phoenix enhances convective heat transfer from the atmosphere to the urban surface at night, leading to a positive SUHI but no AUHI. Our study highlights that the magnitude of UHIs or UCIs is strongly controlled by urban-rural differences in terms of aerodynamic features, vegetation and moisture conditions, and heat storage, which show contrasting characteristics in different regions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2021-03-11
    Description: The newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2021-03-30
    Description: Integrating climate risk information into resilience-building activities in the field is important to ensure that adaptation is based on the best available science. Despite this, many challenges exist when developing, communicating, and incorporating climate risk information. There are limited resources on how stakeholders perceive risks, use risk information, and what barriers exist to limit knowledge integration. This paper seeks to define: 1) What do conservation stakeholders consider to be the most significant climate risks they face now and possibly in the future?; 2) What have been the most significant barriers to their using climate risk information?; and 3) What sources and types of knowledge would be most useful for these managers to overcome these barriers? A survey was conducted amongst stakeholders (n=224) associated with World Wildlife Fund (WWF) projects in tropical and subtropical countries. A very high proportion of stakeholders used climate risk information and yet faced integration-related challenges, which included too much uncertainty and not at a relevant scale for planning. The main factors preventing the use of climate risk information in decision-making were unavailability of climate risk information, no or limited financial or human resources available to respond, lack of organizational mandate or support, and no or limited institutional incentives. Comparing perceived current and future risks revealed a decline in concern for some future climate hazards. Survey respondents identified scientific reports, climate scientists and online sources as the most useful information sources of climate risk information, whilst (i) maps and illustrations, (ii) scenarios format and (iii) data tables, graphs and charts were identified as user-friendly formats.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2021-03-30
    Description: Recent theoretical work has shown that, when the so-called non-traditional effects are taken into account, the reflection of Equatorially Trapped Waves (ETWs) off the seafloor generates strong vertical shear that results in bottom-intensified mixing at the inertial latitude of the ETW via a mechanism of critical reflection. It has been estimated that this process could play an important role in driving diapycnal upwelling in the Abyssal Meridional Overturning Circulation (AMOC). However, these results were derived under an idealized configuration with a monochromatic ETW propagating through a flat ocean at rest. To test the theory in a flow that is more representative of the ocean, we contrast a set of realistic numerical simulations of the Eastern Equatorial Pacific run using either the hydrostatic or quasi-hydrostatic approximation, the latter of which accounts for non-traditional effects. The simulations are nested into a Pacific-wide hydrostatic parent solution forced with climatological data and realistic bathymetry, resulting in an ETW field and a deep circulation consistent with observations. Using these simulations, we observe enhanced abyssal mixing in the quasi-hydrostatic run, even over smooth topography, that is absent in the hydrostatic run. The mixing is associated with inertial shear that has spatio-temporal properties consistent with the critical reflection mechanism. The enhanced mixing results in a weakening of the abyssal stratification and drives diapycnal upwelling in our simulation, in agreement with the predictions from the idealized simulations. The diapycnal upwelling is on the order of O(10) Sv and thus could play an important role in closing the AMOC.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2021-03-30
    Description: A practical method for instrumental calibration and aerosol optical properties retrieval based on Coherent Doppler Lidar (CDL) and sun-photometer is presented in this paper. To verify its feasibility and accuracy, this method is applied into three field experiments in 2019 and 2020. In this method, multi-wavelength (440 nm, 670 nm, 870 nm and 1020 nm) Aerosol Optical Depth (AOD) from sun-photometer measurements are used to estimate AOD at 1550 nm and calibrate integrated CDL backscatter signal. Then, it is validated by comparing the retrieved calibrated AOD at 1550 nm from CDL signal and that from sun-photometer measurements. Well agreement between them with the correlation of 0.96, the RMSE of 0.0085 and the mean relative error of 22% is found. From the comparison results of these three experiments, sun-photometer is verified to be an effective reference instrument for the calibration of CDL return signal and the aerosol optical properties measurement with CDL is feasible. It is expected to promote the study on the aerosol flux and transport mechanism in the planetary boundary layer with the widely deployed CDLs.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2021-03-30
    Description: A scale adaptive model is developed for the representation of dry convective boundary layer (CBL) turbulence in numerical models operating at O(100 m - 1 km) horizontal resolution, also known as the model gray zone of the CBL. The new model is constructed based on a planetary boundary layer (PBL) scheme and a large-eddy simulation (LES) closure that are both turbulence kinetic energy-based parameterizations. Scale adaptivity is achieved by “blending” the PBL scheme with the LES closure through an inverse averaging procedure that naturally accounts for vertical variations of the dominant turbulent length scales, hence the gray zone range. High-resolution wide-domain LES benchmark cases covering a broad range of CBL bulk stability are filtered to gray zone resolutions, and analyzed to determine the averaging coefficients. Stability dependence of the dominant length scales is revealed by the analysis and accounted for in the new model. The turbulence model is implemented into a community atmospheric model, and tested for idealized cases. Compared to two established gray zone models, the new model performs equally well under strongly convective conditions, and is more advantageous for the weakly unstable and near neutral CBL.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2021-03-25
    Description: From 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of Northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestly-Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr-2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr-2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995-2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2021-03-25
    Description: NASA Precipitation Measurement Mission observations are used to evaluate the diurnal cycle of precipitation from three CMIP6 models (NCAR-CESM2, CNRM-CM6-1, CNRM-ESM2-1) and the ERA5 reanalysis. NASA’s global-gridded IMERG product, which combines spaceborne microwave radiometer, infrared sensor and ground-based gauge measurements, provides high spatio-temporal resolution (0.1°, half-hourly) estimates that are suitable for evaluating the diurnal cycle in models, as determined against the CONUS ground-based radar network. IMERG estimates are coarsened to the spatial and hourly resolution of the state-of-the-art CMIP6 and ERA5 products, and their diurnal cycles are compared across multiple decades of June-July-August in the 60°N–S domain (IMERG and ERA5: 2000–2019; NCAR and CNRM: 1979–2008). Low precipitation regions (and weak amplitude regions when analyzing the diurnal phase) are excluded from analyses in order to assess only robust diurnal signals. Observations identify greater diurnal amplitudes over land (26–134% of the precipitation mean; 5th–95th percentile) than over ocean (14–66%). ERA5, NCAR and CNRM underestimate amplitudes over ocean, whilst ERA5 overestimates over land. IMERG observes a distinct diurnal cycle only in certain regions, with precipitation peaking broadly between 14–21 LST over land (21–6 LST over mountainous and varying-terrain regions) and 0–12 LST over ocean. The simulated diurnal cycle is unrealistically early compared with observations, particularly over land (NCAR-CESM2-AMIP: –1 hour; ERA5: –2 hours; CNRM-CM6-1-AMIP: –4 hours on average) with nocturnal maxima not well represented over mountainous regions. Furthermore, ERA5’s representation of the diurnal cycle is too simplified, with less interannual variability in the time of maximum compared to observations over many regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2021-03-25
    Description: In the Midwestern United States, intensifying impacts from climate change necessitate adaptation by the agricultural sector. Tree fruit agriculture is uniquely vulnerable to climate change due to the long-lived nature of perennial systems, yet very few studies have addressed how fruit growers perceive climate change and are responding to climate risks. For this study, sixteen semi-structured interviews were conducted with Michigan tree fruit growers to understand how their climate change beliefs, beliefs about adaptive actions, and climate-related risk perceptions influence adaptation behaviors. While there was a great deal of uncertainty about the anthropogenic nature of climate change, growers generally agreed that unprecedented changes in climate and weather patterns were occurring. Due to a perception of little control over future climate impacts, most growers reactively adapted to climate risks that negatively impacted their orchards by implementing measures such as frost protection, irrigation, pesticides, and crop insurance. This study highlighted that while proactive adaptations such as crop diversification, planting new varieties, and improving soil health will be necessary to increase farm resilience in the future, growers were unable to justify making these changes due to their uncertainty about future climate changes. The findings from this study highlight the need for future outreach efforts by Extension agents, private agricultural advisors, and federal and state agency advisors to provide educational information on the long-term impacts of climate change in order to help growers increase the resilience of their farm in the face of future climate impacts.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2021-04-01
    Description: As leaders of civil society, governments have a prime responsibility to communicate climate change information in order to motivate their citizens to mitigate and adapt. This study compares the approaches of the U.K. and Hong Kong governments. Although different in size and population, the United Kingdom and Hong Kong have similar climate change agendas to communicate to similarly educated and prosperous populations. The study finds that while both governments use similar means: policy, education, campaigns, internet, and social media, these have different characteristics, with different emphases in their climate change message. The United Kingdom’s top-down approach is more prominent in its legally binding policy and well-defined programs for adaptation and risk assessment. Hong Kong has more effectively embedded climate change education across the school curricula and has a more centralized and consistently branded campaign, with widespread use of visual language to connect the public to the problem. Hong Kong frames climate change as a science–society problem and has a greater focus on self-responsibility and bottom-up behavioral change. Thus, the U.K. and Hong Kong governments have polarized approaches to motivating their citizens into climate action. Moving forward, both governments should consider best practice elements of the other to develop their communication of climate change.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2021-03-26
    Description: Arctic staircases mediate the heat transport from the warm water of Atlantic origin to the cooler waters of the Arctic mixed layer. For this reason, staircases have received much due attention from the community, and their heat transport has been well characterized for systems in the absence of external forcing. However, the ocean is a dynamic environment with large-scale currents and internal waves being omnipresent, even in regions shielded by sea-ice. Thus, we have attempted to address the effects of background shear on fully developed staircases using numerical simulations. The code, which is pseudo-spectral, evolves the governing equations for a Boussinesq fluid with temperature and salinity in a shearing coordinate system. We find that—– unlike many other double-diffusive systems—the sheared staircase requires three-dimensional simulations to properly capture the dynamics. Our simulations predict shear patterns that are consistent with observations and show that staircases in the presence of external shear should be expected to transport heat and salt at least twice as efficiently as in the corresponding non-sheared systems. These findings may lead to critical improvements in the representation of micro-scale mixing in global climate models.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2021-02-16
    Description: Variations in wind resources affect the reliability and feasibility of wind energy. At longer timescales, modes within the climate system and externally forced variability become important as the decades-long lifetimes of wind installations and upfront investment costs are considered. Understanding the influence of teleconnections may yield important insights for skillful seasonal predictions. In this study, several modes of variability, including the Arctic Oscillation (AO), the El Niño-Southern Oscillation (ENSO) and the global surface solar flux, are assessed for their influence on wind energy anomalies in the Upper Midwest (40-52°N, 87-105°W). Monthly wind energy is calculated using extrapolated 80-meter wind fields from reanalysis data for the period 1980-2018. A multiple linear regression analysis is conducted for the monthly turbine energy output anomalies (TEOA) against the effects of synoptic patterns and pressure gradients, as well as the teleconnection indices, for each grid cell and season, yielding information on the spatial and temporal variations in influence throughout the region. The regression model indicated that each of the factors had significant influences on wind energy, though the effects varied spatially and by season. Periods of extremely low production are often embedded in prolonged declines over several months which were the result of a combination of synoptic variability and significant phases of the teleconnections such as large El Niño events, negative AO episodes and volcanically-induced reductions in surface solar flux. Monthly TEOA are found to vary by up to 37 percent, amounting to ±130 MWh and tens of thousands of dollars per turbine.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2021-02-16
    Description: Recent studies could link the quantities of estuarine exchange flows to the volume-integrated mixing inside an estuary, where mixing is defined as the destruction of salinity variance. The existing mixing relations quantify mixing inside an estuary by the net boundary fluxes of volume, salinity, and salinity variance which are quantified as Knudsen or Total Exchange Flow bulk values. So far, river runoff is the only freshwater flux included and the freshwater exchange due to precipitation and evaporation is neglected. Yet, the latter is the driving force of inverse estuaries, which could not be described by the existing relations. To close this gap, this study considers evaporation and precipitation to complete the existing mixing relations by including cross-surface salinity variance transport. This allows decomposing the mixing into a riverine and a surface transport contribution. The improved relations are tested against idealized two-dimensional numerical simulations of different combinations of freshwater forcing. The mixing diagnosed from the model results agrees exactly with the derived mixing relation. An annual hind-cast simulation of the Persian Gulf is then used to test the mixing relations, both exact and approximated, e.g., long-term averaged, for a realistic inverse estuary. The results show that the annual mean mixing contributions of river discharge and evaporation are almost equal, although the freshwater transport due to evaporation is about one order of magnitude larger than the river runoff.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2021-02-17
    Description: El Niño and La Niña events show a wide range of durations over the historical record. The predictability of event duration has remained largely unknown, although multiyear events could prolong their climate impacts. To explore the predictability of El Niño and La Niña event duration, multiyear ensemble forecasts are conducted with the Community Earth System Model, version 1 (CESM1). The 10–40 member forecasts are initialized with observed oceanic conditions on March 1, June 1, and November 1 of each year during 1954–2015; ensemble spread is created through slight perturbations to the atmospheric initial conditions. The CESM1 predicts the duration of individual El Niño and La Niña events with lead times ranging from 6 to 25 months. In particular, forecasts initialized in November, near the first peak of El Niño or La Niña, can skillfully predict whether the event continues through the second year with 1-year lead time. The occurrence of multiyear La Niña events can be predicted even earlier with lead times up to 25 months, especially when they are preceded by strong El Niño. The predictability of event duration arises from initial thermocline depth anomalies in the equatorial Pacific, as well as sea surface temperature anomalies within and outside the tropical Pacific. The forecast error growth, on the other hand, originates mainly from atmospheric variability over the North Pacific in boreal winter. The high predictability of event duration indicates the potential for extending 12-month operational forecasts of El Niño and La Niña events by one additional year.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2021-02-17
    Description: Turbulent mixing in the planetary boundary layer (PBL) 28 governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface-atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by the Earth’s surface. This study uses a multi-data synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979-2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and driest Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2021-02-17
    Description: The Meiyu withdrawal date (MWD) is a crucial indicator of flood/drought conditions over East Asia. It is characterized by a strong interannual variability, but its underlying mechanism remains unknown. We investigated the possible effects of the winter sea surface temperature (SST) in the North Pacific Ocean on the MWD on interannual to interdecadal timescales. Both our observations and model results suggest that the winter SST anomalies associated with the MWD are mainly contributed by a combination of the first two leading modes of the winter SST in the North Pacific, which have a horseshoe shape (the NPSST). The statistical results indicate that the intimate linkage between the NPSST and the MWD has intensified since the early 1990s. During the time period 1990–2016, the NPSST-related SST anomalies persisted from winter to the following seasons and affected the SST over the tropical Pacific in July. Subsequently, the SST anomalies throughout the North Pacific strengthened the southward migration of the East Asian jet stream (EAJS) and the southward and westward replacement of the western North Pacific subtropical high (WPSH), leading to an increase in Meiyu rainfall from July 1 to 20. More convincingly, the anomalous EAJS and WPSH induced by the SST anomalies can be reproduced well by numerical simulations. By contrast, the influence of the NPSST on the EASJ and WPSH were not clear between 1961 and 1985. This study further illustrates that the enhanced interannual variability of the NPSST may be attributed to the more persistent SST anomalies during the time period 1990–2016.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2021-02-17
    Description: The synoptic low-pressure systems (LPSs) formed over the downwind side of the Tibetan Plateau explain a substantial portion of summer rainfall extremes along their paths. Recent studies have found that the total extreme rainfall trend over the East Asian landmass, which features the “south flood-north drought†pattern, can be understood to a great extent by the changes in terrestrial LPSs. Yet, the energy sources fueling these storms and the environmental drivers of their long-term trends remain unclear. Utilizing a probabilistic clustering method, three clusters of terrestrial LPS tracks for the period 1979-2018 are identified. Besides the differences in trajectories that distinguish the clusters into northeastward-migrating and quasi-stationary types, prominent inter-cluster differences are found in the LPS evolution, energetics, and trends. The Lorenz energetics suggest that while condensational heating is indispensable for all three clusters, the migratory type, which has greater intensity and faster development, is more closely tied to baroclinicity. Nonetheless, the summer baroclinicity alone is not enough to sustain these LPSs as these storms dissipate quickly after propagating out of the humid monsoon region and into the drier extratropics. Over time, the occurrences of migratory LPSs decreases, and that of quasi-stationary LPSs increases. Using a Poisson model that links the LPS genesis to local environmental conditions, the decreasing occurrence of migratory LPSs is shown to result from the weakened baroclinicity, whereas the increasing occurrence of quasi-stationary LPSs is primarily driven by enhanced relative humidity and reduced steering flow in the mid-to-lower troposphere over East Asia.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2021-02-17
    Description: Over the South Indian Ocean, the coupled system of the subtropical Mascarene high and lowlevel clouds exhibits marked seasonality. To investigate this seasonality, the present study assesses radiative impacts of low-level clouds on the summertime Mascarene high with a coupled general circulation model. Comparison between a fully coupled control simulation and a “no low-cloud simulation,†where the radiative effects of low-level clouds are artificially turned off, demonstrates that they act to reinforce the Mascarene high. Their impacts are so significant that the summertime Mascarene high almost disappears in the no low-cloud experiment, suggesting their essential role in the existence of the summertime Mascarene high. As the primary mechanism, lowered seasurface temperature by the cloud albedo effect suppresses deep convective precipitation, inducing a Matsuno-Gill type response that reinforces the high, as verified through an atmospheric dynamical model diagnosis. Associated reduction of high-top clouds, as well as increased low-level clouds, augments in-atmosphere radiative cooling, which further reinforces the high. The present study reveals that low-level clouds constitute a tight positive feedback system with the subtropical high via sea-surface temperature over the summertime South Indian Ocean.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2021-02-18
    Description: This study presents spatial models (i.e., thin plate spatially continuous spline surfaces) of adjusted precipitation for Canada at daily, pentad (5-day), and monthly time scales from 1900 to 2015. The input data include manual observations from 3346 stations that were adjusted previously to correct for snow water equivalent (SWE) conversion and various gauge-related issues. In addition to the 42,331 models for daily total precipitation and 1392 monthly total precipitation models 8395 pentad models were developed for the first time, depicting mean precipitation for 73 pentads annually. For much of Canada, mapped precipitation values from this study were higher than those from the corresponding unadjusted models (i.e., models fitted to the unadjusted data), reflecting predominantly the effects of the adjustments to the input data. Error estimates compared favourably to the corresponding unadjusted models. For example, Root generalized cross validation (GCV) estimate (a measure of predictive error) at the daily time scale was 3.6 mm on average for the 1960 to 2003 period as compared to 3.7 mm for the unadjusted models over the same period. There was a dry bias in the predictions relative to recorded values of between 1% and 6.7% of the average precipitations amounts for all time scales. Mean absolute predictive errors of the daily, pentad, and monthly models were 2.5 mm (52.7%), 0.9 mm (37.4%), and 11.2 mm (19.3%), respectively. In general, the model skill was closely tied to the density of the station network. The current adjusted models are available in grid form at ~2-10 km resolutions.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2021-03-30
    Description: The subpolar North Atlantic (SPNA) experienced extreme cold during 2015, an event often called the “cold blob”. The evolution of this event in the Community Earth System Model version 1 Decadal Prediction Large Ensemble (CESM1-DPLE) hindcast initialized in November 2014 is compared to observations. This CESM1-DPLE hindcast failed to predict cold conditions during 2015 despite already cold SPNA initial conditions and despite having high sea surface temperature skill in the SPNA in all other years. The goal of this paper is to understand what led to this prediction failure in order to provide insight for future decadal prediction efforts. Our analysis shows that strongly positive North Atlantic Oscillation (NAO) conditions during winter and spring 2015 likely sustained the cold blob but were not simulated in any CESM1-DPLE members. We examine the rarity of the 2015 event using the CESM1-DPLE’s uninitialized counterpart, the CESM1 Large Ensemble (CESM1-LE). Results from the CESM1-LE indicate that the exceptional state of the observed NAO in the winter of 2015 is at least part of the explanation for why this event was not encompassed in the CESM1-DPLE spread. To test another possibility — that deficiencies in the initial conditions degraded the prediction — we performed additional hindcasts using the CESM1-DPLE protocol but different initial conditions. Altering the initial conditions did not improve the simulation of the 2015 cold blob, and in some cases, degraded it. Given the difficulty of predicting this event, this case could be a useful testbed for future prediction system development.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2021-03-25
    Description: Persistent drought events that cause serious damages to economy and environment are usually intensified by the feedback between land surface and atmosphere. Therefore, reasonably modeling land-atmosphere coupling is critical for skillful prediction of persistent droughts. However, most high-resolution regional climate modeling focused on the amplification effect of land-atmosphere coupling on local anticyclonic circulation anomaly, while less attention was paid to the non-local influence through altering large-scale atmospheric circulation. Here we investigate how the antecedent land-atmosphere coupling over the area south to Lake Baikal (ASLB) influences the drought events occurred over its downstream region (Northeast China; NEC) by using Weather Research and Forecasting (WRF) model and linear baroclinic model (LBM). When the ASLB is artificially forced to be wet in the WRF simulations during March-May, the surface sensible heating is weakened and results in a cooling anomaly in low level atmosphere during May-July. Consequently, the anticyclonic circulation anomalies over ASLB and NEC are weakened, and the severity of NEC drought during May-July cannot be captured due to the upstream wetting in March-May. In the LBM experiments, idealized atmospheric heating anomaly that mimics the diabatic heating associated with surface wetness is imposed over ASLB, and the quasi-steady response pattern of 500-hPa geopotential height to the upstream wetting is highly consistent with that in the WRF simulation. In addition, the lower level heating instead of the upper level cooling makes a major contribution to the high pressure anomaly over NEC. This study implies the critical role of modeling upstream land-atmosphere coupling in capturing downstream persistent droughts.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2021-04-01
    Description: The terminal velocity of cloud drops and raindrops used in numerical model calculations can significantly affect weather predictions. Current formulations rely on laboratory experiments made in the 1940s and 1960s. Because these experiments were performed only at typical environmental conditions of 20°C and 1013 hPa, parameterizations have been introduced to deduce the terminal velocity aloft without rigorous evaluation. In this study, an incompressible two-phase flow direct numerical simulation model is used to calculate the free-falling motion of axisymmetric drops with diameters between 0.025 and 0.5 mm to study the terminal fall velocity. Simulated terminal fall velocities of free-falling drops at 20°C and 1013 hPa agree within 3.2% with the previous empirical parameterization (Beard formula), and 4.5% with existing laboratory data in the diameter range between 0.3 and 0.5 mm. The velocities converge to the analytic Hadamard–Rybczynski solution within 2% for small Reynolds numbers, demonstrating the robustness of our simulations. Simulations under various atmospheric conditions show that existing empirical parameterizations that account for the air density dependence of the terminal velocity have errors up to 11.8% under the conditions examined in this study. We propose a new empirical formula that describes the air density dependence of the terminal velocity. It is also shown that the falling speed of a small drop is not sensitive to shape oscillation, and the terminal velocity decreases by only less than 1.3% when the axis ratio increases by 12% with reduced surface tension. Internal circulation within falling drops is also presented and compared with previous studies.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2021-03-26
    Description: Paleo proxy records indicate that abrupt changes in thermohaline circulation (THC) were induced by rapid meltwater discharge from retreating ice sheets. Such abrupt changes in the THC have been understood as a hysteresis behavior of nonlinear system. Previous studies, however, primarily focused on a near-static hysteresis under fixed or slowly varying freshwater forcing (FWF), reflecting the equilibrated response of the THC. This study aims to improve the current understanding of transient THC responses under rapidly varying forcing and its dependency on forcing timescales. The results simulated by an Earth system model suggest that the bifurcation is delayed as the forcing timescale is shorter, causing the Atlantic meridional overturning circulation collapse (recovery) to occur at higher (lower) FWF values. The delayed shutdown/recovery occurs because bifurcation is determined not by the FWF value at the time but by the total amount of freshwater remaining over the THC convection region. The remaining freshwater amount is primarily determined by the forcing accumulation (i.e., time-integrated FWF), which is modulated by the freshwater/salt advection by ocean circulations and freshwater flux by the atmospheric hydrological cycle. In general, the latter is overwhelmed by the former. When the forced freshwater amount is the same, the modulation effect is stronger under slowly varying forcing because more time is provided for the feedback processes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2021-03-26
    Description: It is thought that the sensible heat fluxes associated with sea surface temperature (SST) fronts can affect the genesis and evolution of atmospheric fronts. An analytic model is developed and used to explore this idea. The model predictions are compared with climatologies of atmospheric fronts over the North Atlantic Ocean identified in reanalyses. The climatologies are divided into times when fronts are detected at a point and times when they are not, and compared with model results with and without fronts in their initial conditions.In airstreams with fronts, both the climatologies and model show that adiabatic frontogenesis is much more important than diabatic frontogenesis. They also show that there is weak diabatic frontogenesis associated with differential sensible heating over the SST front and frontolysis either side of it. Because of the upstream and downstream frontolysis, the SST front has relatively little net effect on atmospheric fronts in the model. This result holds true as the width and strength of the SST front changes.In airstreams initially without fronts, a combination of adiabatic and diabatic frontogenesis is important for the local genesis of atmospheric fronts over the SST front. The model shows sustained frontogenesis only when the deformation is sufficiently strong or when the translation speed is low, as advection otherwise weakens the potential temperature gradient. This strong localized diabatic frontogenesis, which is amplified by adiabatic frontogenesis, can result in a front, which is consistent with atmospheric fronts in the region being most frequently located along the SST front.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2021-03-26
    Description: This study explores the importance of mid-level moisture for tropical cyclone (TC) formation in monsoon and easterly environments over the western North Pacific in regional simulations (15-km resolution). The Weather Research and Forecasting (WRF) model is used to simulate 22 TCs that form in monsoon environments (MTCs) and 13 TCs that form in easterly environments (ETCs) over the period 2006–2010. To characterize the moisture contribution, simulations with mid-level moisture improved through assimilation of global positioning system (GPS) radio occultation (RO) data (labeled as EPH) are compared to those without (labeled as GTS). In general, the probability of TC formation being detected in the simulations is higher for MTCs than ETCs, regardless of GPS RO assimilation, especially for the monsoon trough environment. Fifty-four percent of ETC formations are sensitive to the mid-level moisture patterns, while only 18% for MTC formations are sensitive, indicating the importance of mid-level moisture is higher for ETC formations. Because of a model dry bias, the simulation of TC formation in an observed environment with lower vorticity but higher moisture is sensitive to the moisture increase through GPS RO data. Sensitivity experiments show that if the moisture in GTS is replaced by that in EPH, the TC formation can be detected in the GTS simulations. In turn, the TC formation cannot be detected in the EPH simulations with GTS moisture. The mechanism causing the difference in simulation performance of TC formation is attributed to more diabatic heating release and stronger positive potential vorticity tendency at mid-levels around the disturbance center caused by the higher moisture magnitudes.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2021-03-26
    Description: An integrated technique combining global climate model (GCM) simulation results and a statistical time series forecasting model (the autoregressive integrated moving average ARIMA model) was developed to bring together the climate change signal from GCMs to city-level historical observations as an approach to obtain location-specific temperature and precipitation projections. This approach assumes that regional temperature and precipitation time series reflect a combination of an underlying climate change signal series and a regional-deviation-from-the-signal series. An ensemble of GCMs is used to describe and provide the climate change signal, and the ARIMA model is used to model and project the regional deviation. Qualitative and quantitative assessments were conducted for evaluating the projection performance of the hybrid GCM-ARIMA (G-ARIMA) model. The results indicate that the G-ARIMA model can provide projected city-specific daily temperature and precipitation series comparable to historical observations and can have improved projection accuracy for several assessed annual indices compared to a commonly used downscaled projection product. The G-ARIMA model is subject to some limitations and uncertainties from the GCM-provided climate change signal. A notable feature of the G-ARIMA model is the efficiency with which projections can be updated when new observations become available, thus facilitating updating of regional temperature and precipitations projections. Given the increasing need for and use of location-specific climate projections in practical engineering applications, the G-ARIMA model is an option for regional temperature and precipitation projection for such applications.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2021-03-26
    Description: The surface heat flux anomalies during El Niño events have always been treated as an atmospheric response to sea surface temperature anomalies (SSTAs). However, whether they play roles in the formation of SSTAs remain unclear. In this study, we find that the surface net heat flux anomalies in different El Niño types have different effects on the development of the spatial pattern of SSTAs. By applying the fuzzy clustering method, El Niño events during 1982–2018 are classified into two types: extreme (moderate) El Niños with strong (moderate) positive SSTAs, with the largest SSTAs in the eastern (central) equatorial Pacific. The surface net heat flux anomalies in extreme El Niños generally display a “larger warming gets more damping” zonal paradigm, and essentially do not impact the formation of the spatial pattern of SSTAs. Those in moderate El Niños, however, can impact the formation of the spatial pattern of SSTA, by producing more damping effects in the eastern than in the central equatorial Pacific, thus favoring the largest SSTAs being confined to the central equatorial Pacific. The more damping effects of net heat flux anomalies in the eastern equatorial Pacific in moderate El Niños are contributed by the surface latent heat flux anomalies, which are mainly regulated by the negative relative humidity–SST feedback and the positive wind–evaporation–SST feedback. Therefore, we highlightthat these two atmospheric adjustments should be considered during the development of moderate El Niños in order to obtain a comprehensive understanding of the formation of El Niño diversity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2021-03-26
    Description: Extreme precipitation events are a serious threat to societal well-being over rainy areas such as Bangladesh. The reliability of studies of extreme events depends on data quality and their spatial and temporal distribution, although these subjects remain knowledge gaps in many countries. This work focuses on the analysis of four satellite-based precipitation products for monitoring intense rainfall events: the Climate Hazards Group Infrared Precipitation with Station Data (CHIRPS), the PERSIANN-Climate Data Record (PERSIANN-CDR), the Integrated Multisatellite Retrievals (IMERG), and the CPC Morphing Technique (CMORPH). Five indices of intense rainfall were considered for the period 2000-2019 and a set of 31 rain gauges for evaluation. The number and amount of precipitation associated with intense rainfall events are systematically underestimated or overestimated throughout the country. While random errors are higher over the wetter and higher-elevation north- and southeastern parts of Bangladesh, biases are more homogeneous. CHIRPS, PERSIANN-CDR and IMERG perform similar capturing total seasonal rainfall, but variability is better represented by CHIRPS and IMERG. Better results were obtained by IMERG, followed by PERSIANN-CDR and CHIRPS, in terms of climatological intensity indices based on percentiles, although the three products exhibited systematic errors. IMERG and CMORPH systematically overestimate the occurrence of intense precipitation events. IMERG showed the best performance representing events over a value of 20 mm/day; CMORPH exhibited random and systematic errors strongly associated with a poor representation of interannual variability in seasonal total rainfall. The results suggest that the datasets have different potential use and such differences should be considered in future applications regarding extreme rainfall events and risk assessment in Bangladesh.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2021-03-30
    Description: Severe thunderstorms routinely exhibit adjacent maxima and minima in cloud-top vertical vorticity (CTV) downstream of overshooting tops within flow fields retrieved using sequences of fine-temporal resolution (1-min) geostationary operational environmental satellite (GOES)-R series imagery. Little is known about the origin of this so-called “CTV couplet” signature, and whether the signature is the result of flow field derivational artifacts. Thus, the CTV signature’s relevance to research and operations is currently ambiguous. Within this study, we explore the origin of near-cloud-top rotation using an idealized supercell numerical model simulation. Employing an advanced dense optical flow algorithm, image stereoscopy, and numerical model background wind approximations, the artifacts common with cloud-top flow field derivation are removed from two supercell case studies sampled by GOES-R imagers. It is demonstrated that the CTV couplet originates from tilted and converged horizontal vorticity that is baroclinically generated in the upper levels (above 10 km) immediately downstream of the overshooting top. This baroclinic generation would not be possible without a strong and sustained updraft, implying an indirect relationship to rotationally-maintained supercells. Furthermore, it is demonstrated that CTV couplets derived with optical flow algorithms originate from actual rotation within the storm anvils in the case studies explored here, though supercells with opaque above anvil cirrus plumes and strong anvil-level negative vertical wind shear may produce rotation signals as an artifact without quality control. Artifact identification and quality control is discussed further here for future research and operations use.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...