ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (110,443)
  • American Meteorological Society
Collection
Years
Journal
Topic
  • 1
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12),(2022): 3199-3219, https://doi.org/10.1175/jpo-d-22-0009.1.
    Description: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515, 1736109, and 2149080. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530.
    Description: 2023-05-18
    Keywords: Abyssal circulation ; Diapycnal mixing ; Meridional overturning circulation ; Topographic effects ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, pp. 1-40, ISSN: 0894-8755
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉Tipping points in the Earth system describe critical thresholds beyond which a single component, part of the system, or the system as a whole changes from one stable state to another. In the present-day Southern Ocean, the Weddell Sea constitutes an important dense-water formation site, associated with efficient deep-ocean carbon and oxygen transfer and low ice-shelf basal melt rates. Here, a regime shift will occur when continental shelves are continuously flushed with warm, oxygen-poor offshore waters from intermediate depth, leading to less efficient deep-ocean carbon and oxygen transfer and higher ice-shelf basal melt rates. We use a global ocean–biogeochemistry model including ice-shelf cavities and an eddy-permitting grid in the southern Weddell Sea to address the susceptibility of this region to such a system change for four 21〈jats:sup〉st〈/jats:sup〉-century emission scenarios. Assessing the projected changes in shelf–open ocean density gradients, bottom-water properties, and on-shelf heat transport, our results indicate that the Weddell Sea undergoes a regime shift by 2100 in the highest-emission scenario SSP5-8.5, but not yet in the lower-emission scenarios. The regime shift is imminent by 2100 in the scenarios SSP3-7.0 and SSP2-4.5, but avoidable under the lowest-emission scenario SSP1-2.6. While shelf-bottom waters freshen and acidify everywhere, bottom waters in the Filchner Trough undergo accelerated warming and deoxygenation following the system change, with implications for local ecosystems and ice-shelf basal melt. Additionally, deep-ocean carbon and oxygen transfer decline, implying that the local changes ultimately affect ocean circulation, climate, and ecosystems globally.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-02
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 3221–3240, https://doi.org/10.1175/jpo-d-22-0010.1.
    Description: Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in situ turbulence suggest that mixing is bottom enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer release experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in situ diffusion as well as an additional nonlinear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (〈20%), especially compared to the O(1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515 and 1736109. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530. This research is also supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under Award NA18NWS4620043B.
    Description: 2023-05-18
    Keywords: Diapycnal mixing ; Diffusion ; Upwelling/downwelling ; Bottom currents/bottom water ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2841–2852, https://doi.org/10.1175/jpo-d-22-0025.1.
    Description: Prediction of rapid intensification in tropical cyclones prior to landfall is a major societal issue. While air–sea interactions are clearly linked to storm intensity, the connections between the underlying thermal conditions over continental shelves and rapid intensification are limited. Here, an exceptional set of in situ and satellite data are used to identify spatial heterogeneity in sea surface temperatures across the inner core of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. A leftward shift in the region of maximum cooling was observed as the hurricane transited from the open gulf to the shelf. This shift was generated, in part, by the surface heat flux in conjunction with the along- and across-shelf transport of heat from storm-generated coastal circulation. The spatial differences in the sea surface temperatures were large enough to potentially influence rapid intensification processes suggesting that coastal thermal features need to be accounted for to improve storm forecasting as well as to better understand how climate change will modify interactions between tropical cyclones and the coastal ocean.
    Description: This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and the NASA Physical Oceanography program (80NSSC21K0553 and WBS 281945.02.25.04.67) and NOAA IOOS program via GCOOS (NA16NOS0120018). The authors declare that they have no competing interests.
    Keywords: Seas/gulfs/bays ; Atmosphere–ocean interaction ; Currents ; Tropical cyclones ; Buoy observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1797–1815, https://doi.org/10.1175/JPO-D-21-0288.1.
    Description: Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.
    Description: This study is supported by the National Science Foundation through Grant OCE-1634965.
    Keywords: Continental shelf/slope ; Channel flows ; Mesoscale processes ; In situ oceanic observations ; Satellite observations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(10), (2022): 1525–1539, https://doi.org/10.1175/jtech-d-21-0186.1.
    Description: The static and dynamic performances of the RBRargo3 are investigated using a combination of laboratory-based and in situ datasets from floats deployed as part of an Argo pilot program. Temperature and pressure measurements compare well to co-located reference data acquired from shipboard CTDs. Static accuracy of salinity measurements is significantly improved using 1) a time lag for temperature, 2) a quadratic pressure dependence, and 3) a unit-based calibration for each RBRargo3 over its full pressure range. Long-term deployments show no significant drift in the RBRargo3 accuracy. The dynamic response of the RBRargo3 demonstrates the presence of two different adjustment time scales: a long-term adjustment O(120) s, driven by the temperature difference between the interior of the conductivity cell and the water, and a short-term adjustment O(5–10) s, associated to the initial exchange of heat between the water and the inner ceramic. Corrections for these effects, including dependence on profiling speed, are developed.
    Keywords: Data processing/distribution ; In situ oceanic observations ; Profilers ; Oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-04-26
    Description: Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-01
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: Published
    Description: 8419–8443
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-14
    Description: The influence of the Atlantic multidecadal variability (AMV) on the North Atlantic storm track and eddy-driven jet in the winter season is assessed via a coordinated analysis of idealized simulations with state-of-the-art coupled models. Data used are obtained from a multimodel ensemble of AMV± experiments conducted in the framework of the Decadal Climate Prediction Project component C. These experiments are performed by nudging the surface of the Atlantic Ocean to states defined by the superimposition of observed AMV± anomalies onto the model climatology. A robust extratropical response is found in the form of a wave train extending from the Pacific to the Nordic seas. In the warm phase of the AMV compared to the cold phase, the Atlantic storm track is typically contracted and less extended poleward and the low-level jet is shifted toward the equator in the eastern Atlantic. Despite some robust features, the picture of an uncertain and model-dependent response of the Atlantic jet emerges and we demonstrate a link between model bias and the character of the jet response.
    Description: Published
    Description: 347-360
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1705-1730, https://doi.org/10.1175/jpo-d-21-0243.1.
    Description: Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
    Description: SK is supported by JSPS Overseas Research Fellowships. JS and SK are supported by NASA Grant 80NSSC18K1500. JTF and the mooring deployment were funded by NASA Grants NNX15AG20G and 80NSSC18K1494. DZ is supported by NASA Grant 80NSSC18K1499. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution 2021-1152. This is PMEL Contribution 5268.
    Description: 2023-01-27
    Keywords: Ocean ; North Pacific Ocean ; Tropics ; Entrainment ; Oceanic mixed layer ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 35(23), pp. 7811-7831, ISSN: 0894-8755
    Publication Date: 2023-06-23
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present, and future climate changes. The mid-Holocene (MH) and the last interglacial (LIG) were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art Earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the preindustrial era are agreed upon by the two model versions, including 1) enhanced seasonality in surface temperature that is driven by the redistribution of seasonal insolation; 2) a northward shift of the intertropical convergence zone (ITCZ) and tropical rain belt; 3) a reduction in annual mean Arctic sea ice concentration; 4) weakening and northward displacement of the Northern Hemisphere Hadley circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; 5) a westward shift of the Indo-Pacific Walker circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and 6) an expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget (i.e., the strengthening of wind circulation). However, the simulated responses of the Atlantic meridional overturning circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and preindustrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity, and density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-12-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 103(6), (2022): E1502-E1521, https://doi.org/10.1175/bams-d-21-0227.1.
    Description: Climate observations inform about the past and present state of the climate system. They underpin climate science, feed into policies for adaptation and mitigation, and increase awareness of the impacts of climate change. The Global Climate Observing System (GCOS), a body of the World Meteorological Organization (WMO), assesses the maturity of the required observing system and gives guidance for its development. The Essential Climate Variables (ECVs) are central to GCOS, and the global community must monitor them with the highest standards in the form of Climate Data Records (CDR). Today, a single ECV—the sea ice ECV—encapsulates all aspects of the sea ice environment. In the early 1990s it was a single variable (sea ice concentration) but is today an umbrella for four variables (adding thickness, edge/extent, and drift). In this contribution, we argue that GCOS should from now on consider a set of seven ECVs (sea ice concentration, thickness, snow depth, surface temperature, surface albedo, age, and drift). These seven ECVs are critical and cost effective to monitor with existing satellite Earth observation capability. We advise against placing these new variables under the umbrella of the single sea ice ECV. To start a set of distinct ECVs is indeed critical to avoid adding to the suboptimal situation we experience today and to reconcile the sea ice variables with the practice in other ECV domains.
    Description: PH’s contribution was funded under the Australian Government’s Antarctic Science Collaboration Initiative program, and contributes to Project 6 of the Australian Antarctic Program Partnership (ASCI000002). PH acknowledges support through the Australian Antarctic Science Projects 4496 and 4506, and the International Space Science Institute (Bern, Switzerland) project #405.
    Description: 2022-12-01
    Keywords: Sea ice ; Climate change ; Climatology ; Climate records
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-11-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1233-1244, https://doi.org/10.1175/jpo-d-21-0223.1.
    Description: The Sverdrup relation is the backbone of wind-driven circulation theory; it is a simple relation between the meridional transport of the wind-driven circulation in the upper ocean and the wind stress curl. However, the relation is valid for steady circulation only. In this study, a time-dependent Sverdrup relation is postulated, in which the meridional transport in a time-dependent circulation is the sum of the local wind stress curl term and a time-delayed term representing the effect of the eastern boundary condition. As an example, this time-dependent Sverdrup relation is evaluated through its application to the equatorial circulation in the Indian Ocean, using reanalysis data and a reduced gravity model. Close examination reveals that the southward Somali Current occurring during boreal winter is due to the combination of the local wind stress curl in the Arabian Sea and delayed signals representing the time change of layer thickness at the eastern boundary.
    Description: This work is supported by NSFC (41822602, 41976016, 42005035, 42076021), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000, XDA 20060502), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), Guangdong Basic and Applied Basic Research Foundation (2021A1515011534), Youth Innovation Promotion Association CAS, ISEE2021ZD01, and LTOZZ2002. The numerical simulation is supported by the High-Performance Computing Division in the South China Sea Institute of Oceanology.
    Description: 2022-11-27
    Keywords: Ocean circulation ; Ocean dynamics ; Rossby waves ; Wind stress curl
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-12-09
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(7), (2022): 1333-1350, https://doi.org/10.1175/jpo-d-21-0298.1.
    Description: Idealized numerical simulations were conducted to investigate the influence of channel curvature on estuarine stratification and mixing. Stratification is decreased and tidal energy dissipation is increased in sinuous estuaries compared to straight channel estuaries. We applied a vertical salinity variance budget to quantify the influence of straining and mixing on stratification. Secondary circulation due to the channel curvature is found to affect stratification in sinuous channels through both lateral straining and enhanced vertical mixing. Alternating negative and positive lateral straining occur in meanders upstream and downstream of the bend apex, respectively, corresponding to the normal and reversed secondary circulation with curvature. The vertical mixing is locally enhanced in curved channels with the maximum mixing located upstream of the bend apex. Bend-scale bottom salinity fronts are generated near the inner bank upstream of the bend apex as a result of interaction between the secondary flow and stratification. Shear mixing at bottom fronts, instead of overturning mixing by the secondary circulation, provides the dominant mechanism for destruction of stratification. Channel curvature can also lead to increased drag, and using a Simpson number with this increased drag coefficient can relate the decrease in stratification with curvature to the broader estuarine parameter space.
    Description: The research leading to these results was funded by NSF Awards OCE-1634481 and OCE-2123002.
    Description: 2022-12-09
    Keywords: Estuaries ; Mixing ; Secondary circulation ; Fronts ; Tides ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-12-16
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(7), (2022): 1415–1430. https://doi.org/10.1175/JPO-D-21-0147.1.
    Description: Strong subinertial variability near a seamount at the Xisha Islands in the South China Sea was revealed by mooring observations from January 2017 to January 2018. The intraseasonal deep flows presented two significant frequency bands, with periods of 9–20 and 30–120 days, corresponding to topographic Rossby waves (TRWs) and deep eddies, respectively. The TRW and deep eddy signals explained approximately 60% of the kinetic energy of the deep subinertial currents. The TRWs at the Ma, Mb, and Mc moorings had 297, 262, and 274 m vertical trapping lengths, and ∼43, 38, and 55 km wavelengths, respectively. Deep eddies were independent from the upper layer, with the largest temperature anomaly being 〉0.4°C. The generation of the TRWs was induced by mesoscale perturbations in the upper layer. The interaction between the cyclonic–anticyclonic eddy pair and the seamount topography contributed to the generation of deep eddies. Owing to the potential vorticity conservation, the westward-propagating tilted interface across the eddy pair squeezed the deep-water column, thereby giving rise to negative vorticity west of the seamount. The strong front between the eddy pair induced a northward deep flow, thereby generating a strong horizontal velocity shear because of lateral friction and enhanced negative vorticity. Approximately 4 years of observations further confirmed the high occurrence of TRWs and deep eddies. TRWs and deep eddies might be crucial for deep mixing near rough topographies by transferring mesoscale energy to small scales.
    Description: This work was supported by the National Natural Science Foundation of China (92158204, 91958202, 42076019, 41776036, 91858203), the Open Project Program of State Key Laboratory of Tropical Oceanography (project LTOZZ2001), and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0304).
    Description: 2022-12-16
    Keywords: Abyssal circulation ; Ocean circulation ; Ocean dynamics ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-12-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 2923–2933, https://doi.org/10.1175/jpo-d-22-0064.1.
    Description: The characteristics and dynamics of depth-average along-shelf currents at monthly and longer time scales are examined using 17 years of observations from the Martha’s Vineyard Coastal Observatory on the southern New England inner shelf. Monthly averages of the depth-averaged along-shelf current are almost always westward, with the largest interannual variability in winter. There is a consistent annual cycle with westward currents of 5 cm s−1 in summer decreasing to 1–2 cm s−1 in winter. Both the annual cycle and interannual variability in the depth-average along-shelf current are predominantly driven by the along-shelf wind stress. In the absence of wind forcing, there is a westward flow of ∼5 cm s−1 throughout the year. At monthly time scales, the depth-average along-shelf momentum balance is primarily between the wind stress, surface gravity wave–enhanced bottom stress, and an opposing pressure gradient that sets up along the southern New England shelf in response to the wind. Surface gravity wave enhancement of bottom stress is substantial over the inner shelf and is essential to accurately estimating the bottom stress variation across the inner shelf.
    Description: The National Science Foundation, Woods Hole Oceanographic Institution, the Massachusetts Technology Collaborative, and the Office of Naval Research have supported the construction and maintenance of MVCO. The analysis presented here was partially funded by the National Science Foundation under Grants OCE 1558874 and OCE 1655686.
    Keywords: Continental shelf/slope ; Coastal flows ; Momentum ; Ocean dynamics ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-12-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 2909-2921, https://doi.org/10.1175/jpo-d-22-0063.1.
    Description: A remarkably consistent Lagrangian upwelling circulation at monthly and longer time scales is observed in a 17-yr time series of current profiles in 12 m of water on the southern New England inner shelf. The upwelling circulation is strongest in summer, with a current magnitude of ∼1 cm s−1, which flushes the inner shelf in ∼2.5 days. The average winter upwelling circulation is about one-half of the average summer upwelling circulation, but with larger month-to-month variations driven, in part, by cross-shelf wind stresses. The persistent upwelling circulation is not wind-driven; it is driven by a cross-shelf buoyancy force associated with less-dense water near the coast. The cross-shelf density gradient is primarily due to temperature in summer, when strong surface heating warms shallower nearshore water more than deeper offshore water, and to salinity in winter, caused by fresher water near the coast. In the absence of turbulent stresses, the cross-shelf density gradient would be in a geostrophic, thermal-wind balance with the vertical shear in the along-shelf current. However, turbulent stresses over the inner shelf attributable to strong tidal currents and wind stress cause a partial breakdown of the thermal-wind balance that releases the buoyancy force, which drives the observed upwelling circulation. The presence of a cross-shelf density gradient has a profound impact on exchange across this inner shelf. Many inner shelves are characterized by turbulent stresses and cross-shelf density gradients with lighter water near the coast, suggesting turbulent thermal-wind-driven coastal upwelling may be a broadly important cross-shelf exchange mechanism.
    Description: The National Science Foundation, Woods Hole Oceanographic Institution, the Massachusetts Technology Collaborative, and the Office of Naval Research have supported the construction and maintenance of MVCO. The analysis presented here was partially funded by the National Science Foundation under Grants OCE 1558874 and OCE 1655686.
    Keywords: Buoyancy ; Coastal flows ; Currents ; Dynamics ; Lagrangian circulation/transport ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-06-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6),(2022): 1191-1204, https://doi.org/10.1175/jpo-d-21-0242.1.
    Description: A simplified quasigeostrophic (QG) analytical model together with an idealized numerical model are used to study the effect of uneven ice–ocean stress on the temporal evolution of the geostrophic current under sea ice. The tendency of the geostrophic velocity in the QG model is given as a function of the lateral gradient of vertical velocity and is further related to the ice–ocean stress with consideration of a surface boundary layer. Combining the analytical and numerical solutions, we demonstrate that the uneven stress between the ice and an initially surface-intensified, laterally sheared geostrophic current can drive an overturning circulation to trigger the displacement of isopycnals and modify the vertical structure of the geostrophic velocity. When the near-surface isopycnals become tilted in the opposite direction to the deeper ones, a subsurface velocity core is generated (via geostrophic setup). This mechanism should help understand the formation of subsurface currents in the edge of Chukchi and Beaufort Seas seen in observations. Furthermore, our solutions reveal a reversed flow extending from the bottom to the middepth, suggesting that the ice-induced overturning circulation potentially influences the currents in the deep layers of the Arctic Ocean, such as the Atlantic Water boundary current.
    Description: This work was funded by the National Key Research and Development Program of China (Grant 2017YFA0604600), the National Natural Science Foundation of China (Grant 41676019), the Fundamental Research Funds for the Central Universities (Grant 2019B81214), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant KYCX19_0384), and the National Science Foundation (MAS, Grants OPP-1822334, OCE-2122633).
    Keywords: Arctic ; Sea ice ; Channel flows ; Vertical motion ; Ekman pumping ; Idealized models ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2431-2444, https://doi.org/10.1175/jpo-d-22-0024.1.
    Description: A three-dimensional inertial model that conserves quasigeostrophic potential vorticity is proposed for wind-driven coastal upwelling along western boundaries. The dominant response to upwelling favorable winds is a surface-intensified baroclinic meridional boundary current with a subsurface countercurrent. The width of the current is not the baroclinic deformation radius but instead scales with the inertial boundary layer thickness while the depth scales as the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. Thus, the boundary current scales depend on the stratification, wind stress, Coriolis parameter, and its meridional variation. In contrast to two-dimensional wind-driven coastal upwelling, the source waters that feed the Ekman upwelling are provided over the depth scale of this baroclinic current through a combination of onshore barotropic flow and from alongshore in the narrow boundary current. Topography forces an additional current whose characteristics depend on the topographic slope and width. For topography wider than the inertial boundary layer thickness the current is bottom intensified, while for narrow topography the current is wave-like in the vertical and trapped over the topography within the inertial boundary layer. An idealized primitive equation numerical model produces a similar baroclinic boundary current whose vertical length scale agrees with the theoretical scaling for both upwelling and downwelling favorable winds.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M.S. is supported by the National Science Foundation Grant OCE-1922538. Z. C. is supported by the ‘Taishan/Aoshan’ Talents program (2017ASTCPES05) the Fundamental Research Funds for the Central Universities (202072001).
    Description: 2023-03-30
    Keywords: Ekman pumping/transport ; Upwelling/downwelling ; Coastal flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1897–E1935, https://doi.org/10.1175/BAMS-D-19-0316.1.
    Description: Life on Earth vitally depends on the availability of water. Human pressure on freshwater resources is increasing, as is human exposure to weather-related extremes (droughts, storms, floods) caused by climate change. Understanding these changes is pivotal for developing mitigation and adaptation strategies. The Global Climate Observing System (GCOS) defines a suite of essential climate variables (ECVs), many related to the water cycle, required to systematically monitor Earth’s climate system. Since long-term observations of these ECVs are derived from different observation techniques, platforms, instruments, and retrieval algorithms, they often lack the accuracy, completeness, and resolution, to consistently characterize water cycle variability at multiple spatial and temporal scales. Here, we review the capability of ground-based and remotely sensed observations of water cycle ECVs to consistently observe the hydrological cycle. We evaluate the relevant land, atmosphere, and ocean water storages and the fluxes between them, including anthropogenic water use. Particularly, we assess how well they close on multiple temporal and spatial scales. On this basis, we discuss gaps in observation systems and formulate guidelines for future water cycle observation strategies. We conclude that, while long-term water cycle monitoring has greatly advanced in the past, many observational gaps still need to be overcome to close the water budget and enable a comprehensive and consistent assessment across scales. Trends in water cycle components can only be observed with great uncertainty, mainly due to insufficient length and homogeneity. An advanced closure of the water cycle requires improved model–data synthesis capabilities, particularly at regional to local scales.
    Description: WD acknowledges ESA’s QA4EO (ISMN) and CCI Soil Moisture projects. WD, CRV, AG, and KL acknowledge the G3P project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 870353. MIH and MS acknowledge ESA’s CCI Water Vapour project. MS and RH acknowledges the support by the EUMETSAT member states through CM SAF. DGM acknowledges support from the European Research Council (ERC) under Grant Agreement 715254 (DRY–2–DRY). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).
    Description: 2022-04-01
    Keywords: Hydrologic cycle ; Satellite observations ; Surface fluxes ; Surface observations ; Water masses/storage ; Water budget/balance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1936–E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.
    Description: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Description: This work was supported through the U.S. Office of Naval Research’s Departmental Research Initiative: Monsoon Intraseasonal Oscillations in the Bay of Bengal, the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons Program, and the Sri Lankan National Aquatic Resources Research and Development Agency. We thank the Captain and crew of the R/V Thompson for their help in data collection. Surface atmospheric fields included fluxes were quality controlled and processed by the Boundary Layer Observations and Processes Team within the NOAA Physical Sciences Laboratory. Forecast analysis was completed by India Meteorological Department. Drone image was taken by Shreyas Kamat with annotations by Gualtiero Spiro Jaeger. We also recognize the numerous researchers who supported cruise- and land-based measurements. This work represents Lamont-Doherty Earth Observatory contribution number 8503, and PMEL contribution number 5193.
    Description: 2022-04-01
    Keywords: Atmosphere-ocean interaction ; Monsoons ; In situ atmospheric observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-09-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(4), (2022): 597–616, https://doi.org/10.1175/jpo-d-21-0121.1.
    Description: We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean, which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (m–ω) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the finescale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solutions are reinstated to the status of “constant-downscale-flux” solutions. This is consequential for an understanding of energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”
    Description: The authors gratefully acknowledge support from the ONR Grant N00014-17-1-2852. YL gratefully acknowledges support from NSF DMS Award 2009418.
    Description: 2022-09-25
    Keywords: Ocean ; Gravity waves ; Nonlinear dynamics ; Ocean dynamics ; Mixing ; Fluxes ; Isopycnal coordinates ; Nonlinear models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-08-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(7), (2022): 1053–1083, https://doi.org/10.1175/jtech-d-21-0167.1.
    Description: The Ka-band Radar Interferometer (KaRIn) on the Surface Water and Ocean Topography (SWOT) satellite will revolutionize satellite altimetry by measuring sea surface height (SSH) with unprecedented accuracy and resolution across two 50-km swaths separated by a 20-km gap. The original plan to provide an SSH product with a footprint diameter of 1 km has changed to providing two SSH data products with footprint diameters of 0.5 and 2 km. The swath-averaged standard deviations and wavenumber spectra of the uncorrelated measurement errors for these footprints are derived from the SWOT science requirements that are expressed in terms of the wavenumber spectrum of SSH after smoothing with a filter cutoff wavelength of 15 km. The availability of two-dimensional fields of SSH within the measurement swaths will provide the first spaceborne estimates of instantaneous surface velocity and vorticity through the geostrophic equations. The swath-averaged standard deviations of the noise in estimates of velocity and vorticity derived by propagation of the uncorrelated SSH measurement noise through the finite difference approximations of the derivatives are shown to be too large for the SWOT data products to be used directly in most applications, even for the coarsest footprint diameter of 2 km. It is shown from wavenumber spectra and maps constructed from simulated SWOT data that additional smoothing will be required for most applications of SWOT estimates of velocity and vorticity. Equations are presented for the swath-averaged standard deviations and wavenumber spectra of residual noise in SSH and geostrophically computed velocity and vorticity after isotropic two-dimensional smoothing for any user-defined smoother and filter cutoff wavelength of the smoothing.
    Description: This research was supported by NASA Grant NNX16AH76G.
    Keywords: Sea level ; Altimetry ; Remote sensing ; Satellite observations ; Error analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-08-29
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.
    Description: This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.
    Description: The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation.
    Keywords: Diapycnal mixing ; Eddies ; Fronts ; Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-08-25
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Han, L., Seim, H., Bane, J., Todd, R. E., & Muglia, M. A shelf water cascading event near Cape Hatteras. Journal of Physical Oceanography, 51(6), (2021): 2021–2033, https://doi.org/10.1175/JPO-D-20-0156.1.
    Description: Carbon-rich Middle Atlantic Bight (MAB) and South Atlantic Bight (SAB) shelf waters typically converge on the continental shelf near Cape Hatteras. Both are often exported to the adjacent open ocean in this region. During a survey of the region in mid-January 2018, there was no sign of shelf water export at the surface. Instead, a subsurface layer of shelf water with high chlorophyll and dissolved oxygen was observed at the edge of the Gulf Stream east of Cape Hatteras. Strong cooling over the MAB and SAB shelves in early January led to shelf waters being denser than offshore surface waters. Driven by the density gradient, the denser shelf waters cascaded beneath the Gulf Stream and were subsequently entrained into the Gulf Stream, as they were advected northeastward. Underwater glider observations 80 km downstream of the export location captured 0.44 Sv (1 Sv ≡ 106 m3 s−1) of shelf waters transported along the edge of the Gulf Stream in January 2018. In total, as much as 7 × 106 kg of carbon was exported from the continental shelf to a greater depth in the open ocean during this 5-day-long cascading event. Earlier observations of near-bottom temperature and salinity at a depth of 230 m captured several multiday episodes of shelf water at a location that was otherwise dominated by Gulf Stream water, indicating that the January 2018 cascading event was not unique. Cascading is an important, yet little-studied pathway of carbon export and sequestration at Cape Hatteras.
    Description: This research was funded by the National Science Foundation (Grants OCE-1558920 to University of North Carolina at Chapel Hill and OCE-1558521 to Woods Hole Oceanographic Institution) as part of PEACH. We acknowledge and thank Sara Haines for the processing and QC of the mooring data, and we thank the PEACH group for helpful discussions and for their support. Additional thanks are given to the crew of R/V Armstrong (AR-26).
    Keywords: Continental shelf/slope ; Fronts ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-07-13
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 271–282. https://doi.org/10.1175/jtech-d-21-0069.1.
    Description: The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
    Description: KJJ and RV thank Ministry of Earth Sciences (MoES), Government of India, Secretary, MoES, and Director, NIOT, for the support and encouragement in carrying out the work under the National Monsoon Mission, Ocean Mixing and Monsoon (OMM) program. AT, JTF, and RAW thank Office of Naval Research Grants N00014-19-12410 and N00014-17-12880, United States, for funding and support. The OOS team at NIOT is acknowledged for their efforts in maintaining the OMNI buoy network in North Indian Ocean. We acknowledge Dr. B.W. Blomquist, University of Colorado, for his support in computing clear-sky radiation and Iury T. Simoes-Sousa, University of Massachusetts, Dartmouth, for the graphics. NCMRWF, MoES, Government of India, is acknowledged for NGFS reanalysis dataset, which is produced under the collaboration between NCMRWF, IITM, and IMD.
    Keywords: Algorithms ; Buoy observations ; In situ oceanic observations ; Instrumentation/sensors ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-09-14
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(2), (2022): 851–875, https://doi.org/10.1175/JCLI-D-20-0603.1.
    Description: The Earth system is accumulating energy due to human-induced activities. More than 90% of this energy has been stored in the ocean as heat since 1970, with ∼60% of that in the upper 700 m. Differences in upper-ocean heat content anomaly (OHCA) estimates, however, exist. Here, we use a dataset protocol for 1970–2008—with six instrumental bias adjustments applied to expendable bathythermograph (XBT) data, and mapped by six research groups—to evaluate the spatiotemporal spread in upper OHCA estimates arising from two choices: 1) those arising from instrumental bias adjustments and 2) those arising from mathematical (i.e., mapping) techniques to interpolate and extrapolate data in space and time. We also examined the effect of a common ocean mask, which reveals that exclusion of shallow seas can reduce global OHCA estimates up to 13%. Spread due to mapping method is largest in the Indian Ocean and in the eddy-rich and frontal regions of all basins. Spread due to XBT bias adjustment is largest in the Pacific Ocean within 30°N–30°S. In both mapping and XBT cases, spread is higher for 1990–2004. Statistically different trends among mapping methods are found not only in the poorly observed Southern Ocean but also in the well-observed northwest Atlantic. Our results cannot determine the best mapping or bias adjustment schemes, but they identify where important sensitivities exist, and thus where further understanding will help to refine OHCA estimates. These results highlight the need for further coordinated OHCA studies to evaluate the performance of existing mapping methods along with comprehensive assessment of uncertainty estimates.
    Description: AS is supported by a Tasmanian Graduate Research Scholarship, a CSIRO-UTAS Quantitative Marine Science top-up, and by the Australian Research Council (ARC) (CE170100023; DP160103130). CMD was partially supported by ARC (FT130101532) and the Natural Environmental Research Council (NE/P019293/1). RC was supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program. TB is supported by the Climate Observation and Monitoring Program, National Oceanic and Atmosphere Administration, U.S. Department of commerce. GCJ and JML are supported by NOAA Research and the NOAA Ocean Climate Observation Program. This is PMEL contribution number 5065. JAC is supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), jointly funded by the Qingdao National Laboratory for Marine Science and Technology (QNLM, China) and the Commonwealth Scientific and Industrial Research Organization (CSIRO, Australia) and Australian Research Council’s Discovery Project funding scheme (project DP190101173). The research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). Data used in this study are available on request.
    Keywords: Bias ; Interpolation schemes ; In situ oceanic observations ; Uncertainty ; Oceanic variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 223–235, https://doi.org/10.1175/JTECH-D-21-0110.1.
    Description: Previous work with simulations of oceanographic high-frequency (HF) radars has identified possible improvements when using maximum likelihood estimation (MLE) for direction of arrival; however, methods for determining the number of emitters (here defined as spatially distinct patches of the ocean surface) have not realized these improvements. Here we describe and evaluate the use of the likelihood ratio (LR) for emitter detection, demonstrating its application to oceanographic HF radar data. The combined detection–estimation methods MLE-LR are compared with multiple signal classification method (MUSIC) and MUSIC parameters for SeaSonde HF radars, along with a method developed for 8-channel systems known as MUSIC-Highest. Results show that the use of MLE-LR produces similar accuracy, in terms of the RMS difference and correlation coefficients squared, as previous methods. We demonstrate that improved accuracy can be obtained for both methods, at the cost of fewer velocity observations and decreased spatial coverage. For SeaSondes, accuracy improvements are obtained with less commonly used parameter sets. The MLE-LR is shown to be able to resolve simultaneous closely spaced emitters, which has the potential to improve observations obtained by HF radars operating in complex current environments.
    Description: This work was supported by the National Science Foundation (NSF) under Grant OCE-1658475. Computing resources were provided by the UCSB Center for Scientific Computing through an NSF MRSEC (DMR-1720256) and NSF CNS-1725797.
    Keywords: Ocean ; Algorithms ; Data quality control ; Radars/radar observations ; Remote sensing ; Surface observations ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(1),(2022): 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.
    Description: Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
    Description: The OSMOSIS experiment was funded by the U.K. Natural Environment Research Council (NERC) through Grants NE/1019999/1 and NE/101993X/1. ACNG acknowledges the support of the Royal Society and the Wolfson Foundation, and XY that of a China Scholarship Council PhD studentship.
    Keywords: Ageostrophic circulations ; Dynamics ; Eddies ; Energy transport ; Frontogenesis/frontolysis ; Instability ; Mesoscale processes ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Small scale processes ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-09-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1677-1691, https://doi.org/10.1175/jpo-d-21-0269.1.
    Description: Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed.
    Description: This work was generously funded by NSF Grants OCE-1912302, OCE-1912125 (Drushka), and OCE-1912325 (Abernathey) as part of the Ocean Energy and Eddy Transport Climate Process Team.
    Keywords: Eddies ; Energy transport ; Mesoscale processes ; Turbulence ; Oceanic mixed layer ; Altimetry ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-09-23
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(1), (2022): 31–35, https://doi.org/10.1175/JTECH-D-21-0075.1.
    Description: Acoustic Doppler current profilers (ADCP) do not provide reliable water velocity measurements near the sea surface or bottom because acoustic sidelobe reflections from the boundary contaminate the Doppler velocity measurements. The apparent depth of the center of the sidelobe reflection is zsl = ha[1 − cos(θ)], where ha is the distance from the ADCP acoustic head to the sea surface and θ is the ADCP beam angle. However, sidelobe contamination extends one and a half ADCP bins below zsl as the range gating of the acoustic return causes overlap between adjacent ADCP bins. Consequently, the contaminated region z 〈 zsl + 3Δz/2 is deeper than traditionally suggested, with a dependence on bin size Δz. Direct observations confirming both the center depth of the sidelobe reflection and the depth of contamination are presented for six bottom-mounted, upward-looking ADCPs. The sidelobe reflection is isolated by considering periods of weak wind stresses when the sea surface is smooth and there is nearly perfect reflection of the main beams away from the ADCP and hence little acoustic return from the main beams to the ADCP.
    Description: This analysis was supported by NSF OCE 1558874 for Kirincich and Lentz. Plueddemann was supported by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO Fund Reference Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158.
    Keywords: Acoustic measurements/effects ; Data processing/distribution ; Profilers ; oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.
    Description: Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f 〉 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
    Description: OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1).
    Keywords: North Atlantic Ocean ; Cyclogenesis/cyclolysis ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Applied Meteorology and Climatology 60(9), (2021): 1361–1370, https://doi.org/10.1175/JAMC-D-20-0254.1.
    Description: We analyze how winter thaw events (TE; T 〉 0°C) are changing on the summit of Mount Washington, New Hampshire, using three metrics: the number of TE, number of thaw hours, and number of thaw degree-hours for temperature and dewpoint for winters from 1935/36 to 2019/20. The impact of temperature-only TE and dewpoint TE on snow depth are compared to quantify the different impacts of sensible-only heating and sensible-and-latent heating, respectively. Results reveal that temperature and dewpoint TE for all metrics increased at a statistically significant rate (p 〈 0.05) over the full time periods studied for temperature (1935/36–2019/20) and dewpoint (1939/40–2019/20). Notably, around 2000/01, the positive trends increased for most variables, including dewpoint-thaw degree-hours that increased by 82.11 degree-hours decade−1 during 2000–20, which is approximately 5 times as faster as the 1939–2020 rate of 17.70 degree-hours decade−1. Furthermore, a clear upward shift occurred around 1990 in the lowest winter values of thaw hours and thaw degree-hours—winters now have a higher baseline amount of thaw than before 1990. Snow-depth loss during dewpoint TE (0.36 cm h−1) occurred more than 2 times as fast as temperature-only TE (0.14 cm h−1). With winters projected to warm throughout the twenty-first century in the northeastern United States, it is expected that the trends in winter thaw events, and the sensible and latent energy that they bring, will continue to rise and lead to more frequent winter flooding, fewer days of good quality snow for winter recreation, and changes in ecosystem function.
    Keywords: Atmosphere ; Snowmelt/icemelt ; Snowpack ; Winter/cool season ; Climate change ; Humidity ; Latent heating/cooling ; Snow cover ; Temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3651–3662, https://doi.org/10.1175/JPO-D-21-0076.1.
    Description: Ocean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents can be found in all the world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z coordinate and σ coordinate based on 10-yr averaged Simple Ocean Data Assimilation version 3 (SODA3) data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional–vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.
    Description: This work is supported by the National Natural Science Foundation of China (42076025, 41676021), the Key Special Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), the National Basic Research Program (973 Program) of China (2013CB956201). The numerical simulation is supported by the High Performance Computing Division in the South China Sea Institute of Oceanography. The authors thank Tingjin Guan for the help in enhancing drawing quality.
    Keywords: Currents ; Jets ; Mesoscale processes ; Potential vorticity ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Liang, Y.-C., Frankignoul, C., Kwon, Y.-O., Gastineau, G., Manzini, E., Danabasoglu, G., Suo, L., Yeager, S., Gao, Y., Attema, J. J., Cherchi, A., Ghosh, R., Matei, D., Mecking, J., Tian, T., & Zhang, Y. Impacts of Arctic sea ice on cold season atmospheric variability and trends estimated from observations and a multimodel large ensemble. Journal of Climate, 34(20), (2021): 8419–8443, https://doi.org/10.1175/JCLI-D-20-0578.s1.
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: We acknowledge support by the Blue-Action Project (the European Union’s Horizon 2020 research and innovation programme, #727852, http://www.blue-action.eu/index.php?id=3498). The WHOI–NCAR group was supported by the U.S. National Science Foundation (NSF) Office of Polar Programs Grants 1736738 and 1737377. Their computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory at NCAR. NCAR is a major facility sponsored by the U.S. NSF under Cooperative Agreement No. 1852977. Guillaume Gastineau was granted access to the HPC resources of TGCC under the allocations A5-017403 and A7-017403 made by GENCI. The SST and SIC data were downloaded from the U.K. Met Office Hadley Centre Observations Datasets (http://www.metoffice.gov.uk/hadobs/hadisst). The work by NLeSC was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. The simulations of IAP AGCM were supported by the National Key R&D Program of China 2017YFE0111800. The NorESM2-CAM6 simulations were performed on resources provided by UNINETT Sigma2–the National Infrastructure for High Performance Computing and Data Storage in Norway (nn2343k, NS9015K).
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zambon, J. B., He, R., Warner, J. C., & Hegermiller, C. A. Impact of SST and surface waves on Hurricane Florence (2018): a coupled modeling investigation. Weather and Forecasting, 36(5), (2021): 1713–1734, https://doi.org/10.1175/WAF-D-20-0171.1.
    Description: Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir–Simpson category 4 to category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several days. We conducted a series of numerical modeling experiments in coupled and uncoupled configurations to examine the impact of sea surface temperature (SST) and ocean waves on storm characteristics. In addition to experiments using a fully coupled atmosphere–ocean–wave model, we introduced the capability of the atmospheric model to modulate wind stress and surface fluxes by ocean waves through data from an uncoupled wave model. We examined these experiments by comparing track, intensity, strength, SST, storm structure, wave height, surface roughness, heat fluxes, and precipitation in order to determine the impacts of resolving ocean conditions with varying degrees of coupling. We found differences in the storm’s intensity and strength, with the best correlation coefficient of intensity (r = 0.89) and strength (r = 0.95) coming from the fully coupled simulations. Further analysis into surface roughness parameterizations added to the atmospheric model revealed differences in the spatial distribution and magnitude of the largest roughness lengths. Adding ocean and wave features to the model further modified the fluxes due to more realistic cooling beneath the storm, which in turn modified the precipitation field. Our experiments highlight significant differences in how air–sea processes impact hurricane modeling. The storm characteristics of track, intensity, strength, and precipitation at landfall are crucial to predictability and forecasting of future landfalling hurricanes.
    Description: This work has been supported by the U.S. Geological Survey Coastal/Marine Hazards and Resources Program, and by Congressional appropriations through the Additional Supplemental Appropriations for Disaster Relief Act of 2019 (H.R. 2157). The authors also wish to acknowledge research support through NSF Grant OCE-1559178 and NOAA Grant NA16NOS0120028. We also wish to thank Chris Sherwood from the U.S. Geological Survey for his help in deriving wave length from WAVEWATCH III data.
    Keywords: Hurricanes/typhoons ; Hindcasts ; Numerical weather prediction/forecasting ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 38(9), (2021): 1535–1550, https://doi.org/10.1175/JTECH-D-20-0176.s1.
    Description: Monitoring the heat content variability of glacial fjords is crucial to understanding the effects of oceanic forcing on marine-terminating glaciers. A pressure-sensor-equipped inverted echo sounder (PIES) was deployed midfjord in Sermilik Fjord in southeast Greenland from August 2011 to September 2012 alongside a moored array of instruments recording temperature, conductivity, and velocity. Historical hydrography is used to quantify the relationship between acoustic travel time and the vertically averaged heat content, and a new method is developed for filtering acoustic return echoes in an ice-influenced environment. We show that PIES measurements, combined with a knowledge of the fjord’s two-layer density structure, can be used to reconstruct the thickness and temperature of the inflowing water. Additionally, we find that fjord–shelf exchange events are identifiable in the travel time record implying the PIES can be used to monitor fjord circulation. Finally, we show that PIES data can be combined with moored temperature records to derive the heat content of the upper layer of the fjord where moored instruments are at great risk of being damaged by transiting icebergs.
    Description: FS and MA acknowledge funding from the Kerr Family Foundation and the Grossman Family Foundation through the Woods Hole Oceanographic Institution. MA is supported by a grant from the National Science Foundation Office of Polar Programs (1332911). FS and RS acknowledge support from NSF OCE-1657601 and from the Heising-Simons Foundation.
    Keywords: Glaciers ; Ice sheets ; Acoustic measurements/effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-06-10
    Description: Author Posting. © American Meteorological Society , 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., Miller, U., St Laurent, L., Ijichi, T., Weller, R. A., McRaven, L., Nylund, S., & Le Bel, D. Moored turbulence measurements using pulse-coherent doppler sonar. Journal of Atmospheric and Oceanic Technology, 38(9), (2021): 1621–1639, https://doi.org/10.1175/JTECH-D-21-0005.1.
    Description: Upper-ocean turbulence is central to the exchanges of heat, momentum, and gases across the air–sea interface and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed layer depths and sea surface temperature. In part, progress has been limited by the difficulty of measuring turbulence from fixed moorings that can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring turbulent kinetic energy (TKE) dissipation rates ϵ from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-Ocean Regional Study (SPURS) to collect two year-long datasets. We find that the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate 2-week missions for O(10−8) ≤ ϵ ≤ O(10−5) m2 s−3. Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1–10 km. We also find that dissipation estimates from two different moorings at 12.5 and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory.
    Description: This work was funded by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant NNX11AE84G), for SPURS-2 (NASA Grant NNX15AG20G), and for analysis (NASA Grant 80NSSC18K1494). Funding for early iterations of this project associated with the VOCALS project and Stratus 9 mooring was provided by NSF (Awards 0745508 and 0745442). Additional funding was provided by ONR Grant N000141812431 and NSF Award 1756839. The Stratus Ocean Reference Station is funded by the Global Ocean Monitoring and Observing Program of the National Oceanic and Atmospheric Administration (CPO FundRef Number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158. Microstructure measurements made from the glider were supported by NSF (Award 1129646).
    Keywords: Ocean ; Turbulence ; Atmosphere-ocean interaction ; Boundary layer ; Oceanic mixed layer ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-06-17
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 9093–9113, https://doi.org/10.1175/JCLI-D-21-0142.1.
    Description: This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC). This opens a pathway through which the AC transports the warm and salty water mass from the subtropics, yielding marked increases in sea surface temperature (SST), upward turbulent heat flux (THF), and meridional SST gradient in the Agulhas retroflection region. These thermodynamic and dynamic changes are accompanied by the robust strengthening of the local low-tropospheric baroclinicity and the baroclinic wave activity in the atmosphere. Examination of the composite life cycle of synoptic-scale storms subjected to the high-THF events indicates a robust strengthening of the extratropical storms far downstream. Energetics calculations for the atmosphere suggest that the baroclinic energy conversion from the basic flow is the chief source of increased eddy available potential energy, which is subsequently converted to eddy kinetic energy, providing for the growth of transient baroclinic waves. Overall, the results suggest that the mechanical and thermal air–sea interactions are inherently and inextricably linked together to substantially influence the extratropical storm tracks in the south Indian Ocean.
    Description: Seo acknowledges the support from the NSF (OCE-2022846), NOAA (NA19OAR4310376), ONR (N00014-17-12398), and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution (WHOI). Song is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1C1C1003663). O’Neill was supported by the NASA Grants 80NSSC19K1117 and 80NSSC19K1011.
    Keywords: Atmosphere-ocean interaction ; Extratropical cyclones ; Wind stress ; Boundary currents ; Storm tracks
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-06-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(3), (2022): 363–382, https://doi.org/10.1175/jpo-d-21-0084.1.
    Description: Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt, and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass Glacially Modified Water (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an optimum multi-parameter technique across multiple years we then show that GMW is composed of 57.8% ± 8.1% Atlantic Water (AW), 41.0% ± 8.3% Polar Water (PW), 1.0% ± 0.1% subglacial discharge, and 0.2% ± 0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (1 Sv ≡ 106 m3 s−1) (compared to a freshwater input of 0.5 mSv). This study provides a first-order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.
    Description: This work was partially supported by the Centre for Climate Dynamics (SKD) at the Bjerknes Centre for Climate Research. The authors thank NASA and the OMG consortium for making observational data freely available, and acknowledge M. Morlighem for good support in the early stages of this project. MM and LHS and would also like to thank Ø. Paasche, the ACER project, and the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019–20 that made the visit to Scripps Institution of Oceanography possible. FS acknowledges support from the DOE Office of Science Grant DE-SC0020073, Heising-Simons Foundation and from NSF and OCE-1756272. DAS acknowledges support from U.K. NERC Grants NE/P011365/1, NE/T011920/1, and NERC Independent Research Fellowship NE/T011920/1. MW was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by the Universities Space Research Association under contract with NASA. CSA would like to acknowledge Geocenter Denmark for support to the project “Upernavik Glacier.”
    Keywords: Ocean ; Arctic ; Atlantic Ocean ; Glaciers ; Ice sheets ; Buoyancy ; Entrainment ; In situ oceanic observations ; Annual variations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(9), (2021): 2721–2733, https://doi.org/10.1175/JPO-D-20-0298.1.
    Description: A linear numerical model of an island or a tall seamount is used to explore superinertial leaky resonances forced by ambient vertically and horizontally uniform current fluctuations. The model assumes a circularly symmetric topography (including a shallow reef) and allows realistic stratification and bottom friction. As long as there is substantial stratification, a number of leaky resonances are found, and when the island’s flanks are narrow relative to the internal Rossby radius, some of the near-resonant modes resemble leaky internal Kelvin waves. Other “resonances” resemble higher radial mode long gravity waves as explored by Chambers. The near-resonances amplify the cross-reef velocities that help fuel biological activity. Results for cases with the central island replaced by a lagoon do not differ greatly from the island case which has land at the center. As an aside, insight is provided on the question of offshore boundary conditions for superinertial nearly trapped waves along a straight coast.
    Keywords: Baroclinic flows ; Internal waves ; Kelvin waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.
    Description: The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
    Description: D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584).
    Keywords: North Atlantic Ocean ; Lagrangian circulation/transport ; Ocean circulation ; Differential equations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3663–3678, https://doi.org/10.1175/JPO-D-21-0058.1.
    Description: The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M. A. S. is supported by the National Science Foundation Grant OCE-1922538.
    Keywords: Ekman pumping/transport ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-06-16
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(11), (2022): 3445-3457, https://doi.org/10.1175/jcli-d-21-0656.1.
    Description: Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007.
    Description: All three authors are supported by U.S. National Science Foundation (OCE-2048336). The Community Earth System Model project is supported primarily by the National Science Foundation (https://www.cesm.ucar.edu/projects/community-projects/LENS/data-sets.html and https://www.cesm.ucar.edu/working_groups/CVC/simulations/cesm1-single_forcing_le.html).
    Keywords: Aerosol radiative effect ; Climate Change ; Climate variability ; Sea surface temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-06-09
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(8), (2021): S143–S198, https://doi.org/10.1175/BAMS-D-21-0083.1.
    Description: This chapter details 2020 global patterns in select observed oceanic physical, chemical, and biological variables relative to long-term climatologies, their differences between 2020 and 2019, and puts 2020 observations in the context of the historical record. In this overview we address a few of the highlights, first in haiku, then paragraph form: La Niña arrives, shifts winds, rain, heat, salt, carbon: Pacific—beyond. Global ocean conditions in 2020 reflected a transition from an El Niño in 2018–19 to a La Niña in late 2020. Pacific trade winds strengthened in 2020 relative to 2019, driving anomalously westward Pacific equatorial surface currents. Sea surface temperatures (SSTs), upper ocean heat content, and sea surface height all fell in the eastern tropical Pacific and rose in the western tropical Pacific. Efflux of carbon dioxide from ocean to atmosphere was larger than average across much of the equatorial Pacific, and both chlorophyll-a and phytoplankton carbon concentrations were elevated across the tropical Pacific. Less rain fell and more water evaporated in the western equatorial Pacific, consonant with increased sea surface salinity (SSS) there. SSS may also have increased as a result of anomalously westward surface currents advecting salty water from the east. El Niño–Southern Oscillation conditions have global ramifications that reverberate throughout the report.
    Description: Argo data used in the chapter were collected and made freely available by the International Argo Program and the national programs that contribute to it. (https://argo.ucsd.edu, https://www.ocean-ops. org). The Argo Program is part of the Global Ocean Observing System. Many authors of the chapter are supported by NOAA Research, the NOAA Global Ocean Monitoring and Observing Program, or the NOAA Ocean Acidification Program. • L. Cheng is supported by National Natural Science Foundation of China (42076202) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB42040402. • R. E. Killick is supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. PMEL contribution numbers 5214, 5215, 5216, 5217, and 5247.
    Repository Name: Woods Hole Open Access Server
    Type: Book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.
    Description: Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
    Description: This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Arctic ; Diapycnal mixing ; Diffusion ; Fluxes ; Instability ; Mixing ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-08-05
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(4), (2022): 491–502, https://doi.org/10.1175/jtech-d-21-0046.1.
    Description: The Air-Launched Autonomous Micro Observer (ALAMO) is a versatile profiling float that can be launched from an aircraft to make temperature and salinity observations of the upper ocean for over a year with high temporal sampling. Similar in dimensions and weight to an airborne expendable bathythermograph (AXBT), but with the same capability as Argo profiling floats, ALAMOs can be deployed from an A-sized (sonobuoy) launch tube, the stern ramp of a cargo plane, or the door of a small aircraft. Unlike an AXBT, however, the ALAMO float directly measures pressure, can incorporate additional sensors, and is capable of performing hundreds of ocean profiles compared to the single temperature profile provided by an AXBT. Upon deployment, the float parachutes to the ocean, releases the air-deployment package, and immediately begins profiling. Ocean profile data along with position and engineering information are transmitted via the Iridium satellite network, automatically processed, and then distributed by the Global Telecommunications System for use by the operational forecasting community. The ALAMO profiling mission can be modified using the two-way Iridium communications to change the profiling frequency and depth. Example observations are included to demonstrate the ALAMO’s utility.
    Description: This work was supported by the National Oceanographic and Atmospheric Administration under Grants NA13OAR4830233 (as part of CINAR Sandy Supplemental funding from the Disaster Relief Appropriations Act of 2013) and NA14OAR4320158 and by Office of Naval Research under Grants N0001416WX01384, N0001416WX01262, and N000141512293. ALAMO floats are commercially available from MRV Systems, LLC (https://www.mrvsys.com).
    Keywords: Ocean ; Hurricanes ; Ocean dynamics ; Mixed layer ; Aircraft observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(5),(2022): 65-979, https://doi.org/10.1175/jpo-d-21-0174.1.
    Description: The mechanisms of wind-forced variability of the zonal overturning circulation (ZOC) are explored using an idealized shallow water numerical model, quasigeostrophic theory, and simple analytic conceptual models. Two wind-forcing scenarios are considered: midlatitude variability in the subtropical/subpolar gyres and large-scale variability spanning the equator. It is shown that the midlatitude ZOC exchanges water with the western boundary current and attains maximum amplitude on the same order of magnitude as the Ekman transport at a forcing period close to the basin-crossing time scale for baroclinic Rossby waves. Near the equator, large-scale wind variations force a ZOC that increases in amplitude with decreasing forcing period such that wind stress variability on annual time scales forces a ZOC of O(50) Sv (1 Sv ≡ 106 m3 s−1). For both midlatitude and low-latitude variability the ZOC and its related heat transport are comparable to those of the meridional overturning circulation. The underlying physics of the ZOC relies on the influences of the variation of the Coriolis parameter with latitude on both the geostrophic flow and the baroclinic Rossby wave phase speed as the fluid adjusts to time-varying winds.
    Description: This study was supported by National Science Foundation Grants OCE-1947290 and OCE-2122633.
    Description: 2022-11-01
    Keywords: Ekman pumping/transport ; Mass fluxes/transport ; Planetary waves ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(5), (2022): 595–617, https://doi.org/10.1175/jtech-d-21-0039.1.
    Description: The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O(100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
    Description: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). All authors are supported by the SWOT project. J. T. Farrar was partially supported by NASA NNX16AH76G.
    Description: 2022-11-01
    Keywords: Internal waves ; Ocean dynamics ; Small scale processes ; Altimetry ; Global positioning systems (GPS) ; In situ oceanic observations ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-11-04
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2627-2641, https://doi.org/10.1175/jpo-d-22-0090.1.
    Description: Changes in dynamic manometric sea level ζm represent mass-related sea level changes associated with ocean circulation and climate. We use twin model experiments to quantify magnitudes and spatiotemporal scales of ζm variability caused by barometric pressure pa loading at long periods (≳1 month) and large scales (≳300km) relevant to Gravity Recovery and Climate Experiment (GRACE) ocean data. Loading by pa drives basin-scale monthly ζm variability with magnitudes as large as a few centimeters. Largest ζm signals occur over abyssal plains, on the shelf, and in marginal seas. Correlation patterns of modeled ζm are determined by continental coasts and H/f contours (H is ocean depth and f is Coriolis parameter). On average, ζm signals forced by pa represent departures of ≲10% and ≲1% from the inverted-barometer effect ζib on monthly and annual periods, respectively. Basic magnitudes, spatial patterns, and spectral behaviors of ζm from the model are consistent with scaling arguments from barotropic potential vorticity conservation. We also compare ζm from the model driven by pa to ζm from GRACE observations. Modeled and observed ζm are significantly correlated across parts of the tropical and extratropical oceans, on shelf and slope regions, and in marginal seas. Ratios of modeled to observed ζm magnitudes are as large as ∼0.2 (largest in the Arctic Ocean) and qualitatively agree with analytical theory for the gain of the transfer function between ζm forced by pa and wind stress. Results demonstrate that pa loading is a secondary but nevertheless important contributor to monthly mass variability from GRACE over the ocean.
    Description: The authors acknowledge support from the National Aeronautics and Space Administration through the GRACE Follow-On Science Team (Grant 80NSSC20K0728) and the Sea Level Change Team (Grant 80NSSC20K1241). The contribution from I. F. and O. W. represents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (Grant 80NM0018D0004).
    Keywords: Barotropic flows ; Large-scale motions ; Ocean circulation ; Planetary waves ; Potential vorticity ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Farrar, J. T., Durland, T., Jayne, S. R., & Price, J. F. Long-distance radiation of Rossby Waves from the equatorial current system. Journal of Physical Oceanography, 51(6), (2021): 1947–1966, https://doi.org/10.1175/JPO-D-20-0048.1.
    Description: Measurements from satellite altimetry are used to show that sea surface height (SSH) variability throughout much of the North Pacific Ocean is coherent with the SSH signal of the tropical instability waves (TIWs) that result from instabilities of the equatorial currents. This variability has regular phase patterns consistent with freely propagating barotropic Rossby waves radiating energy away from the unstable equatorial currents, and the waves clearly propagate from the equatorial region to at least 30°N. The pattern of SSH variance at TIW frequencies exhibits remarkable patchiness on scales of hundreds of kilometers, which we interpret as being due to the combined effects of wave reflection, refraction, and interference. North of 40°N, more than 6000 km from the unstable equatorial currents, the SSH field remains coherent with the near-equatorial SSH variability, but it is not as clear whether the variability at the higher latitudes is a simple result of barotropic wave radiation from the tropical instability waves. Even more distant regions, as far north as the Aleutian Islands off of Alaska and the Kamchatka Peninsula of eastern Russia, have SSH variability that is significantly coherent with the near-equatorial instabilities. The variability is not well represented in the widely used gridded SSH data product commonly referred to as the AVISO or DUACS product, and this appears to be a result of spatial variations in the filtering properties of the objective mapping scheme.
    Description: This work was supported by NASA Grants NNX13AE46G, NNX14AM71G, and NNX17AH54G.
    Keywords: Pacific Ocean ; Barotropic flows ; Instability ; Planetary waves ; Rossby waves ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(6),(2021): 1842–1872, https://doi.org/10.1175/JPO-D-20-0153.1.
    Description: Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of two companion papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in Part II. We find that, for all estimates, the meridional transport integrated zonally and averaged over a hemisphere, ⟨Vk⟩, is southward between 1000 and 4000 m in both hemispheres, northward between 4000 and 5000 m in the South Atlantic, and insignificant between 4000 and 5000 m in the North Atlantic. Estimates of ⟨Vk⟩ obtained from two distinct prior circulations—one based on a level of no motion at 4000 m and one based on Argo float velocities at 1000 m—become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk=Vk/⟨Vk⟩, where Vk is the volume of the kth layer, is estimated to about a century between 1000 and 3000 m in both the South and North Atlantic, 124 ± 9 yr (203 ± 23 yr) between 3000 and 4000 m in the South (North) Atlantic, and 269 ± 115 yr between 4000 and 5000 m in the South Atlantic.
    Description: This work has been supported by Grant OCE-1702417 from the U.S. National Science Foundation.
    Keywords: Atlantic Ocean ; Abyssal circulation ; Tracers ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1927-1943, https://doi.org/10.1175/jpo-d-21-0124.1.
    Description: The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.
    Description: This work was supported by the National Science Foundation (Grants OCE-1232971 and OCE-1233282), the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443), and the Global Ocean Monitoring and Observing Program of the National Oceanographic and Atmospheric Administration (NA13OAR4830216). Color maps are from Thyng et al. (2016).
    Description: 2023-02-01
    Keywords: Currents ; In situ oceanic observations ; Instability ; Mixing ; Ocean dynamics ; Pacific Ocean ; Potential vorticity ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(8), (2022): 1183-1198, https://doi.org/10.1175/jtech-d-21-0068.1.
    Description: Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative ASIRI under Grant N00014-13-1-0451 (SE and AM) and Grant N00014-13-1-0477 (VH and LC). The authors thank the captain and crew of the R/V Roger Revelle, and Andrew Lucas with the Multiscale Ocean Dynamics group at the Scripps Institution for Oceanography for providing the FastCTD data collected in 2015, which was supported by ONR Grant N00014-13-1-0489, as well as Eric D’Asaro for helpful discussions and Lance Braasch for assistance with the drifter dataset. AM and SE further thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support. VH and LC were additionally supported by ONR Grants N00014-15-1-2286, N00014-14-1-0183, N00014-19-1-26-91 and NOAA Global Drifter Program (GDP) Grant NA15OAR4320071.
    Description: 2023-02-01
    Keywords: Indian Ocean ; Eddies ; Frontogenesis/frontolysis ; Fronts ; Lagrangian circulation/transport ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(17), (2022): 5465-5482, https://doi.org/10.1175/jcli-d-21-0671.1.
    Description: Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.
    Description: S.K.H. was supported by the Investment in Science Fund at WHOI and the John E. and Anne W. Sawyer Endowed Fund in Support of Scientific Staff. F.J.P. was supported by a Stanback Postdoctoral Fellowship at Caltech.
    Description: 2023-02-01
    Keywords: Diapycnal mixing ; Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-02-01
    Description: Multiyear climate predictions provide climate outlooks from years to a decade in advance. As multiyear temperature predictions become more mainstream and skillful, guidance is needed to assist practitioners who wish to explore this maturing field. This paper demonstrates the process and considerations of incorporating multiyear temperature predictions into water resources planning. Multiyear temperature predictions from the Community Earth System Model Decadal Prediction Large Ensemble are presented as discrete and probabilistic products and are used to force two common hydrologic modeling approaches: conceptual and empirical. The approaches are demonstrated to simulate streamflow in the upper Colorado River basin watershed in Colorado, where diagnostics show that increasing temperatures are associated with decreasing streamflows. Using temperature information for lead years 2–6, two analyses are performed: (i) a retrospective hindcast for the climatological period (1981–2010) and (ii) a blind forecast for 2011–15. For the retrospective hindcast, including temperature information improved the percent error as compared with climatology. For the blind forecast, the multiyear temperature prediction for warming was skillful, but the corresponding multiyear average streamflow predictions from both approaches were counterintuitive: with the predicted warming, the multiyear average streamflow was predicted to be lower than the climatological mean; however, the observed multiyear average streamflow was higher than the climatological mean. This was due to above-average precipitation during the prediction time frame, particularly for one of the years. With that year removed, the multiyear streamflow average became lower than the climatological mean. Temperature provides a marginal source of streamflow predictability, but there will be substantial uncertainty until prediction skill for year-to-year climate variability, especially for precipitation, increases.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-02-25
    Description: Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, non-local BPT and thus non-local circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically-motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a non-negligible role in structuring the gyre circulation. Non-local bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-02-25
    Description: Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b) and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-02-25
    Description: The temporal-spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with the linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In stratosphere, temperature tends to have more contributions. Over Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-02-25
    Description: In recent winters, there have been repeated observations of extreme warm and cold spells in the mid-latitude countries. This has evoked questions regarding how winter temperature extremes are induced. In this study, we demonstrate that abnormally warm winter weather in East Asia can drive the onset of extremely cold weather in North America approximately one week forward. These seesawing extremes across the basin are mediated by the North Pacific Oscillation (NPO), one of the recurrent atmospheric patterns over the North Pacific. Budget analysis of the quasi-geostrophic geopotential tendency equation shows that intense thermal advection over East Asia is able to trigger the growth of the NPO. Vorticity fluxes associated with the upper-level stationary trough then strengthen and maintain the NPO against thermal damping following the onset of the NPO. Differential diabatic heating accompanied by changes in circulation also positively contribute to the growth and maintenance of the NPO. These results imply that recurrent cold extremes, seemingly contrary to global warming, may be an inherent feature resulting from strengthening warm extremes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-02-25
    Description: This study revisits the long-term variabilities of East Asian summer monsoon (EASM) in 1958-2017 through examining diurnal cycles. We group monsoon days into four dynamic quadrants, with emphasis on the strong daily southerlies coupled with a large (Q1) or small (Q4) diurnal amplitude over Southeast China. The occurrence day of Q1 increases in June-July with the seasonal progress of EASM. It is most pronounced in 1960s-1970s and declines to the lowest in 1980s-1990s, while the Q4 occurrence increases notably from 1970s to 1990s; both groups return to normal in recent years. The interdecadal decrease (increase) of Q1 (Q4) occurrence corresponds well to the known weakening of EASM in the 20th century, and it also coincides with the rainfall anomalies over China shifting from “North flooding and South drought” to “North drought and South flooding” modes. The rainfall under Q1 (Q4) can account for ∼60% of the interannual variance of summer rainfall in northern (southern) China. The contrasting effects of Q1 and Q4 on rainfall are due to their remarkably different regulation on water vapor transports and convergence. The interannual/interdecadal variations of Q1 (Q4) occurrence determine the anomalous water vapor transports to northern (southern) China, in association with the various expansion of the western Pacific subtropical high. In particular, Q1 condition can greatly intensify nighttime moisture convergence, which is responsible for the long-term variations of rainfall in northern China. The results highlight that the diurnal cycles in monsoon flow act as a key regional process working with large-scale circulations to regulate the spatial distributions and long-term variabilities of EASM rainfall.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-02-25
    Description: A lightning risk assessment for application to human safety was created and applied in 10 West Texas locations from 2 May 2016 to 30 September 2016. The method combined spatial lightning mapping data, probabilistic risk calculation adapted from the International Electrotechnical Commission Standard 62305-2, and weighted average interpolation to produce risk magnitudes that were compared to tolerability thresholds to issue lightning warnings. These warnings were compared to warnings created for the same dataset using a more standard lightning safety approach based on National Lightning Detection Network (NLDN) total lightning within 5 nautical miles of each location. Four variations of the calculation as well as different units of risk were tested to find the optimal configuration to calculate risk to an isolated human outdoors.The best performing risk configuration using risk 10min−1 or larger produced the most comparable results to the standard method, such as number of failures, average warning duration, and total time under warnings. This risk configuration produced fewer failures than the standard method, but longer total time under warnings and higher false alarm ratios. Median lead times associated with the risk configuration were longer than the standard method for all units considered, while median down times were shorter for risk 10min−1 and risk 15min−1. Overall, the risk method provides a baseline framework to quantify the changing lightning hazard on the storm-scale, and could be a useful tool to aid in lightning decision support scenarios.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-02-01
    Description: Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-03-30
    Description: In the present work, the trend of extreme rainfall indices in the Macro-Metropolis of São Paulo (MMSP) was analyzed and correlated with largescale climatic oscillations. A cluster analysis divided a set of rain gauge stations into three homogeneous regions within MMSP, according to the annual cycle of rainfall. The entire MMSP presented an increase in the total annual rainfall, from 1940 to 2016, of 3 mm per year on average, according to Mann-Kendall test. However, there is evidence that the more urbanized areas have a greater increase in the frequency and magnitude of extreme events, while coastal and mountainous areas, and regions outside large urban areas, have increasing rainfall in a better-distributed way throughout the year. The evolution of extreme rainfall (95th percentile) is significantly correlated with climatic indices. In the center-north part of the MMSP, the combination of Pacific Decadal Oscillation (PDO) and Antarctic Oscillation (AAO) explains 45% of the P95th increase during the wet season. In turn, in southern MMSP, the Temperature of South Atlantic (TSA), the AAO, the El Niño South Oscillation (ENSO) and the Multidecadal Oscillation of the North Atlantic (AMO) better explain the increase in extreme rainfall (R2 = 0.47). However, the same is not observed during the dry season, in which the P95th variation was only negatively correlated with the AMO, undergoing a decrease from the ‘70s until the beginning of this century. The occurrence of rainy anomalous months proved to be more frequent and associated with climatic indices than dry months.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-03-29
    Description: Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-03-29
    Description: The Conway-Maxwell-Poisson distribution improves the precision with which seasonal counts of tropical cyclones may be modelled. Conventionally the Poisson is used, which assumes that the formation and transit of tropical cyclones is the result of a Poisson process, such that their frequency distribution has equal mean and variance (‘equi-dispersion’). However, earlier studies of observed records have sometimes found over-dispersion, where the variance exceeds the mean, indicating that tropical cyclones are clustered in particular years. The evidence presented here demonstrates that at least some of this over-dispersion arises from observational inhomogeneities. Once this is removed, and particularly near the coasts, there is evidence for equi-dispersion or under-dispersion. In order to more accurately model numbers of tropical cyclones, we investigate the use of the Conway-Maxwell-Poisson as an alternative to the Poisson that represents any dispersion characteristic. An example is given for east China where using it improves the skill of a prototype seasonal forecast of tropical cyclone landfall.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-03-29
    Description: Today, the vast majority of meteorological data are collected in open, rural environments to comply with the standards set by the World Meteorological Organization. However, these traditional networks lack local information that would be of immense value, for example, for studying urban microclimate, evaluating climate adaptation measures, or improving high-resolution numerical weather predictions. Therefore an urgent need exists for reliable meteorological data in other environments (e.g. cities, lakes, forests) to complement these conventional networks. At present, however, high-accuracy initiatives tend to be limited in space and/or time as a result of the substantial budgetary requirements faced by research teams and operational services. We present a novel approach for addressing the existing observational gaps based on an intense collaboration with high schools. This methodology resulted in the establishment of a region-wide climate monitoring network of 59 accurate weather stations in a wide variety of locations across northern Belgium. The project is also of large societal relevance as it bridges the gap between the youth and atmospheric science. To guarantee a sustainable and mutually valuable collaboration, the schools and their students are involved at all stages, ranging from proposing measurement locations, building the weather stations, and even data analysis. We illustrate how the approach received an overwhelming enthusiasm from high schools and students and resulted in a high-accuracy monitoring network with unique locations offering novel insights.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-03-30
    Description: Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes: the Dual-Frequency Precipitation Radar (DPR) retrieval and its single frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE) and two passive microwave retrievals, i.e., the Goddard PROFiling algorithm (GPROF) and the Snow retrievaL ALgorithm fOr gMi (SLALOM). The 2C-SNOW retrieval has the highest Heidke Skill Score (HSS) for detecting snowfall among the products analysed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of two compared to MRMS. Large discrepancies (RMSE of 0.7 to 1.5 mm h-1) between space-borne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-03-30
    Description: Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4-5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the KOUN WSR-88D radar with ~1 minute temporal resolution is used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min) is used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1-km/5-min), spaced-based observations (10-km/30-min), and hourly rainfall products (1-km/60-min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1-km/1-min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that: 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation, 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser, and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-03-30
    Description: Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on the environment, human activities, and economy.Microwave (MW) telecommunication links carry information on rainfall rates along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inexpensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing. Processing satellite telecom signals bring some specific complexities related to the effects of rainfall boundaries, melting layer, and non-weather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An EnKF-based (Ensemble Kalman Filter) method has been developed to dynamically retrieve rainfall fields in gridded domains, which manages such probabilistic information and exploits the high sampling rate of measurements. The paper presents the EnKF method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available operational meteorological satellites and models, for advection, initial and boundary conditions, rain height. The method reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. It results computationally viable also for operational implementation and applicable to different link observation geometries and characteristics.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-03-29
    Description: Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multi-seasonal global simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) under present-day and projected future conditions. High-resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea-level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4–5° northward latitudinal shift and a ~6 hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough-TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius-Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-24
    Description: Assimilation of dual-polarization (dual-pol) observations provides more accurate storm-scale analyses to initialize forecasts of severe convective thunderstorms. This study investigates the impact assimilating experimental sector-scan dual-pol observations has on storm-scale ensemble forecasts and how this impact changes over different data assimilation (DA) windows using the ensemble Kalman filter (EnKF). Ensemble forecasts are initialized after 30, 45, and 60 minutes of DA for two sets of experiments that assimilate either reflectivity and radial velocity only (EXPZ) or reflectivity and radial velocity plus differential reflectivity (EXPZZDR). This study uses the 31 May 2013 Oklahoma event which included multiple storms that produced tornadoes and severe hail, with focus placed on two storms that impacted El Reno and Stillwater during the event.The earliest initialized forecast of EXPZZDR better predicts the evolution of the El Reno storm than EXPZ, but the two sets of experiments become similar at subsequent forecast times. However, the later EXPZZDR forecasts of the Stillwater storm, which organized towards the end of the DA window, produce improved results compared to EXPZ, in which the storm is less intense and weakens. Evaluation of forecast products for supercell mesocyclones (updraft helicity [UH]) and hail show similar results with earlier EXPZZDR forecasts better predicting the UH swaths of the El Reno storm and later forecasts producing improved UH and hail swaths for the Stillwater storm. The results indicate that the assimilation of ZDR over fewer DA cycles can produce improved forecasts when DA windows sufficiently cover storms during their initial development and organization.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-03-24
    Description: The characteristics of El-Niño-Southern Oscillation (ENSO) phase-locking in observations and CMIP5 and CMIP6 models are examined in this study. Two metrics based on the peaking month histogram for all El Niño and La Niña events are adopted to delineate the basic features of ENSO phase-locking in terms of the preferred calendar month and strength of this preference. It turns out that most models are poor at simulating the ENSO phase-locking, either showing little peak strengths or peaking at the wrong seasons. By deriving ENSO’s linear dynamics based on the conceptual recharge oscillator (RO) framework through the seasonal linear inverse model (sLIM) approach, various simulated phase-locking behaviors of CMIP models are systematically investigated in comparison with observations. In observations, phase-locking is mainly attributed to the seasonal modulation of ENSO’s SST growth rate. In contrast, in a significant portion of CMIP models, phase-locking is co-determined by the seasonal modulations of both SST growth and phase-transition rates. Further study of the joint effects of SST growth and phase-transition rates suggests that for simulating realistic winter peak ENSO phase-locking with the right dynamics, climate models need to have four key factors in the right combination: (1) correct phase of SST growth rate modulation peaking at the fall; (2) large enough amplitude for the annual cycle in growth rate; (3) amplitude of semi-annual cycle in growth rate needs to be small; and (4) amplitude of seasonal modulation in SST phase-transition rate needs to be small.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-03-24
    Description: Undisturbed trade-wind conditions comprise the most prevalent synoptic weather pattern in Hawai’i and produces a distinct pattern of orographic rainfall. Significant total rainfall contributions and extreme events are linked to four types of atmospheric disturbances: cold fronts, Kona lows, upper-tropospheric disturbances, and tropical cyclones. In this study, a 20- year (1990-2010) categorical disturbance time series is compiled and analyzed in relation to daily rainfall over the same period. The primary objective of this research is to determine how disturbances contribute to total wet season rainfall on the Island of O’ahu, Hawai’i. On average, 41% of wet seasonal rainfall occurs on disturbance days. Seventeen percent of seasonal rainfall can be directly attributed to disturbances (after a background signal is removed) and as much as 48% in a single season. The intensity of disturbance rainfall (mm/day) is a stronger predictor (r2 = 0.49; p 〈 0.001) of the total seasonal rainfall than the frequency of occurrence (r2 = 0.11; p = 0.153). Cold fronts are the most common disturbance type; however, the rainfall associated with fronts that cross the island is significantly higher than rainfall produced from non-crossing fronts. In fact, non-crossing fronts produce significantly less rainfall than under mean non-disturbance conditions 76% of the time. While the combined influence of atmospheric disturbances can account for almost half of the rainfall received during the wet season, the primary factor in determining a relatively wet or dry season/year on O’ahu are the frequency and rainfall intensity of Kona Low events.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-03-24
    Description: We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km3month-1yr-1 on average over 2002-2019 derived from satellite observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-03-24
    Description: Message diffusion and message persuasion are two important aspects of success for official risk messages about hazards. Message diffusion enables more people to receive lifesaving messages, and message persuasion motivates them to take protective actions. This study helps to identify win-win message strategies by investigating how an under-examined factor, message content that is theoretically important to message persuasion, influences message diffusion for official risk messages about heat hazards on Twitter. Using multilevel negative binomial regression models, the respective and cumulative effects of four persuasive message factors, hazard intensity, health risk susceptibility, health impact, and response instruction on retweet counts were analyzed using a dataset of heat-related tweets issued by U.S. National Weather Service accounts. Two subsets of heat-related tweets were also analyzed: 1) heat warning tweets about current or anticipated extreme heat events and 2) tweets about non-extreme heat events. This study found that heat-related tweets that mentioned more types of persuasive message factors were retweeted more frequently, and so were two subtypes of heat-related tweets. Mentions of hazard intensity also consistently predicted increased retweet counts. Mentions of health impacts positively influenced message diffusion for heat-related tweets and tweets about non-extreme heat events. Mentions of health risk susceptibility and response instructions positively predicted retweet counts for tweets about non-extreme heat events and tweets about official extreme heat warnings respectively. In the context of natural hazards, this research informs practitioners with evidence-based message strategies to increase message diffusion on social media. Such strategies also have the potential to improve message persuasion.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-03-22
    Description: The very strong Typhoon Goni passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on August 23, 2015. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface.Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices approximately 10 km in diameter were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall.The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-03-22
    Description: Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-03-22
    Description: A small integrated oceanographic thermometer with a nominal response time of 1 s was affixed to a floating hose “sea snake” towed near the bow of a research vessel. The sensor measured the near-surface ocean temperature accurately and in agreement with other platforms. The effect of conduction and evaporation is modeled for a sensor impulsively alternated between water and air. Large thermal mass makes most sea snake thermometers insensitive to temperature impulses. The smaller 1-s thermometer cooled by evaporation, but the sensor never reached the wet bulb temperature. The cooling was less than 6% of the (~2.7 °C) difference between the ocean temperature and the wet bulb temperature in 99% of 2 s–1 samples. Filtering outliers, such as with a median, effectively removes the evaporative cooling effect from 1- or 10-minute average temperatures.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-03-22
    Description: This paper presents applications of wavelet artificial neural networks (WANN) to forecast rainfalls one, three, six, and twelve months in advance using lagged monthly rainfall, maximum, minimum temperatures, Southern Oscillation Index (SOI), Inter-decadal Pacific Oscillation (IPO), and Nino3.4 as predictors. Eight input datasets comprised of different combinations of predictive variables were used for ten candidate climate stations in Queensland, Australia. Datasets were split as 1908 to 1999 for the training of the model and 2000 to 2016 for the verification of the model. Also, the conventional Artificial Neural Network (ANN) model was developed with the same input datasets to compare with WANN results. Moreover, the skillfulness of the WANN was investigated with the current climate prediction system used by the Australian Bureau of Meteorology (BOM), Australian Community Climate Earth-System Simulator–Seasonal (ACCESS–S) as well as climatology forecasts. The comparisons showed that the WANN achieved the lowest errors for three-month lagged prediction with an average Root Mean Square Error (RMSE) of 38.6mm. In contrast, for the same lag-period, the average RMSEs from ANN, ACCESS-S, and climatology predictions were 72.2mm, 102.7mm, and 72.2mm, respectively. It is also found that the ANN underestimates the peak values with an average value of 49%, 47%, 52%, and 53% at one, three, six, and twelve months lead times, correspondingly. However, the corresponding peak values underestimation through the WANN were 0%, 1%, 22%, and 39%, respectively. This research provides promising insights into using hybrid methods for predicting rainfall a few months in advance, which is extremely beneficial for Australia’s agricultural industries.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-03-24
    Description: Soil moisture atmosphere interactions are key elements of the regional climate system. There is a well-founded hope that a more accurate representation of the soil moisture-precipitation feedback would improve the simulation of summer precipitation on daily to seasonal, to climate time scales. However, uncertainties have persistently remained as the simulated feedback is strongly sensitive to the model representation of deep convection. Here we assess the feedback representation using a GPU-accelerated version of the regional climate model COSMO. We simulate and compare the impact of continental-scale springtime soil-moisture anomalies on summer precipitation at convection-resolving (2.2 km) and convection-parameterizing resolution (12 km). We conduct re-analysis-driven simulations of 10 summer seasons (1999-2008) in continental Europe. While both simulations qualitatively agree on a positive sign of soil moisture-induced precipitation, they strongly differ in precipitation frequency: When convection is parameterized, wetter soil predominantly leads to more frequent precipitation events, and when convection is treated explicitly, they primarily become more intense. The results indicate that the sensitivity to soil moisture is stronger with parameterized convection, suggesting that the land surface-atmosphere coupling may be overestimated. In addition, the feedback’s sensitivity in complex terrain is assessed for soil perturbations of different horizontal scales. The convection-resolving simulations confirm a negative feedback for sub-continental soil moisture anomalies, which manifests itself in a local decrease of wet-hour frequency. However, the intensity feedback reinforces precipitation events at the same time (positive feedback). The two processes are represented differently in simulations with explicit and parameterized convection, explaining much of the difference between the two simulations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-03-22
    Description: Although environmental controls on bulk supercell potential and hazards have been studied extensively, relationships between environmental conditions and temporal changes to storm morphology remain less explored. These relationships are examined in this study using a compilation of sounding data collected during field campaigns from 1994–2019 in the vicinity of 216 supercells. Environmental parameters are calculated from the soundings and related to storm-track characteristics like initial cell motion and the time of the right turn (i.e., the time elapsed between the cell initiation and the first time when the supercell obtains a quasi-steady motion that is directed clockwise from its initial motion.). We do not find any significant associations between environmental parameters and the time of the right turn. Somewhat surprisingly, no relationship is found between storm-relative environmental helicity and the time elapsed between cell initiation and the onset of deviant motion. Initial cell motion is best approximated by the direction of the 0–6-km mean wind at two-thirds the speed. This is a result of advection and propagation in the 0–4- and 0–2-km layers, respectively. Unsurprisingly, Bunkers-right storm motion is a good estimate of post-turn motion, but storms that exhibit a post-turn motion left of Bunkers-right are less likely to be tornadic. These findings are relevant for real-time forecasting efforts in predicting the path and tornado potential of supercells up to hours in advance.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-03-22
    Description: Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-03-24
    Description: The prediction skill of the North Atlantic Oscillation (NAO) in boreal winter is assessed in the operational models of the WCRP/WWRP Subseasonal-to-Seasonal (S2S) prediction project. Model performance in representing the contribution of different processes to the NAO forecast skill is evaluated. The S2S models with relatively higher stratospheric vertical resolutions (high-top models) are in general more skillful in predicting the NAO than those models with relatively lower stratospheric resolutions (low-top models). Comparison of skill is made between different groups of forecasts based on initial condition characteristics: phase and amplitude of the NAO, easterly and westerly phases of the quasi-biennial oscillation (QBO), warm and cold phases of ENSO, and phase and amplitude of the Madden-Julia Oscillation (MJO). The forecasts with a strong NAO in the initial condition are more skillful than with a weak NAO. Those with negative NAO tend to have more skillful predictions than positive NAO. Comparisons of NAO skill between forecasts during easterly and westerly QBO and between warm and cold ENSO show no consistent difference for the S2S models. Forecasts with strong initial MJO tend to be more skillful in the NAO prediction than weak MJO. Among the eight phases of MJO in the initial condition, phases 3-4 and phase 7 have better NAO forecast skills compared with the other phases.The results of this study have implications for improving our understanding of sources of predictability of the NAO. The situation dependence of the NAO prediction skill is likely useful in identifying “ windows of opportunity” for subseasonal to seasonal predictions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-02-01
    Description: This study presents results from the Polar Amplification Multimodel Intercomparison Project (PAMIP) single-year time-slice experiments that aim to isolate the atmospheric response to Arctic sea ice loss at global warming levels of +2°C. Using two General Circulation Models (GCMs), the ensemble size is increased up to 300 ensemble members, beyond the recommended 100 members. After partitioning the response in groups of 100-ensemble members, the reproducibility of the results is evaluated, with a focus on the response of the mid-latitude jet streams in the North Atlantic and North Pacific. Both atmosphere-only and coupled ocean-atmosphere PAMIP experiments are analyzed. Substantial differences in the mid-latitude response are found among the different experiment subsets, suggesting that 100-member ensembles are still significantly influenced by internal variability, which can mislead conclusions. Despite an overall stronger response, the coupled ocean-atmosphere runs exhibit greater spread due to additional ENSO-related internal variability when the ocean is interactive. The lack of consistency in the response is true for anomalies that are statistically significant according to Student’s-t and False Discovery Rate tests. This is problematic for the multi-model assessment of the response, as some of the spread may be attributed to different model sensitivities while it is due to internal variability. We propose a method to overcome this consistency issue, that allows for more robust conclusions when only 100 ensemble members are used.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-03-22
    Description: Ancillary information that exists within rain gauge and radar-based data sets provides opportunities to better identify error and bias between the two observing platforms as compared to error and bias statistics without ancillary information. These variables include precipitation type identification, air temperature, and radar quality. There are two NEXRAD based data sets used for reference; the National Centers for Environmental Prediction (NCEP) stage IV and the NOAA NEXRAD Reanalysis (NNR) gridded data sets. The NCEP stage IV data set is available at 4km hourly and includes radar-gauge bias adjusted precipitation estimates. The NNR data set is available at 1km at 5-minute and hourly time intervals and includes several different variables such as reflectivity, radar-only estimates, precipitation flag, radar quality indicator, and radar-gauge bias adjusted precipitation estimates. The NNR data product provides additional information to apply quality control such as identification of precipitation type, identification of storm type and Z-R relation. Other measures of quality control are a part of the NNR data product development. In addition, some of the variables are available at 5-minute scale. We compare the radar-based estimates with the rain gauge observations from the U.S. Climate Reference Network (USCRN). The USCRN network is available at the 5-minute scale and includes observations of air temperature, wind, and soil moisture among others. We present statistical comparisons of rain gauge observations with radar-based estimates by segmenting information based on precipitation type, air temperature, and radar quality indicator.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-03-24
    Description: Current-topography interactions in the ocean give rise to eddies spanning a wide range of spatial and temporal scales. Latest modeling efforts indicate that coastal and underwater topography are important generation sites for submesoscale coherent vortices (SCVs), characterized by horizontal scales of (0.1 – 10) km. Using idealized, submesoscale and BBL-resolving simulations and adopting an integrated vorticity balance formulation, we quantify precisely the role of bottom boundary layers (BBLs) in the vorticity generation process. In particular, we show that vorticity generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the bottom. We refer to this as the Bottom Stress Divergence Torque (BSDT). BSDT is a fundamentally nonconservative torque that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar Bottom Stress Curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an interpretation of BPT as the sum of a viscous, vorticity generating component (BSDT) and an inviscid, ‘flow-turning ’ component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially less energetic, and have smaller spatial scales.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-03-22
    Description: The response of the meridional overturning circulation (MOC) to changes in Southern Ocean (SO) zonal wind forcing and Pacific basin vertical diffusivity is investigated under varying buoyancy forcings, corresponding to ‘warm’, ‘present-day’ and ‘cold’ states, in a two-basin general circulation model connected by a southern circumpolar channel. We find that the Atlantic MOC (AMOC) strengthens with increased SO wind stress or diffusivity in the model Pacific, under all buoyancy forcings. The sensitivity of the AMOC to wind stress increases as the buoyancy forcing is varied from a warm to a present-day or cold state, whereas it is most sensitive to the Pacific diffusivity in a present-day or warm state. Similarly, the AMOC is more sensitive to buoyancy forcing over the Southern Ocean under reduced wind stress or enhanced Pacific diffusivity. These results arise because of the increased importance of the Pacific pathway in the warmer climates, giving an increased linkage between the basins and so the opportunity for the diffusivity in the Pacific to affect the overturning in the Atlantic. In cooler states, such as in glacial climates, the two basins are largely decoupled and the wind strength over the SO is the primary determinant of the AMOC strength. Both wind- and diffusively-driven upwelling sustain the AMOC in the warmer (present-day) state. Changes in SO wind stress alone do not shoal the AMOC to resemble that observed at the last glacial maximum; changes in the buoyancy forcing are also needed to decouple the two basins.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-03-24
    Description: A previous study of currents in the Gulf of Mexico by the author used long-term means from three independent data sources. Ship-drift results are in good agreement with surface drifters, but these two do not agree with satellite sea-surface heights (SSH). The agreement between the first two suggested the possibility that there could be errors in the SSH or that the mean surface flow is not in geostrophic balance. The present results, using the addition of a fourth long-term mean from hydrographic data, which agrees with the SSH, resolves the issue. The lack of agreement between different long-term means is from inadequate coverage in space and time in data from ship drifts and drifters.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-03-22
    Description: The CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatio-temporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large scale ocean structure, transports and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multi-year to decadal time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-03-22
    Description: We detail the system design, model configuration and data assimilation evaluation for the CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1. CAFE60v1 has been designed with the intention of simultaneously generating both initial conditions for multi-year climate forecasts and a large ensemble retrospective analysis of the global climate system from 1960 to present. Strongly coupled data assimilation (SCDA) is implemented via an ensemble transform Kalman filter in order to constrain a general circulation climate model to observations. Satellite (altimetry, sea surface temperature, sea ice concentration) and in-situ ocean temperature and salinity profiles are directly assimilated each month, whereas atmospheric observations are sub-sampled from the JRA-55 atmospheric reanalysis. Strong coupling is implemented via explicit cross domain covariances between ocean, atmosphere, sea ice and ocean biogeochemistry. Atmospheric and surface ocean fields are available at daily resolution and monthly resolution for the land, subsurface ocean and sea ice. The system produces 96 climate trajectories (state estimates) over the most recent six decades as well as a complete data archive of initial conditions potentially enabling individual forecasts for all members each month over the 60 year period. The size of the ensemble and application of strongly coupled data assimilation lead to new insights for future reanalyses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-03-24
    Description: The intermediate circulation of the Strait of Georgia, British Columbia, Canada, plays a key role in dispersing contaminants throughout the Salish Sea, yet little is known about its dynamics. Here, we use hydrographic observations and hindcast fields from a regional 3D model to approach the intermediate circulation from three perspectives. Firstly, we derive and model a “seasonality” tracer from temperature observations to age the water, estimate mixing, and infer circulation. Secondly, we analyze modeled velocity fields to create mean current maps and examine the advective and diffusive components of the mean flow field. Lastly, we calculate Lagrangian trajectories to derive Transit Time Distributions and Lagrangian statistics. In combination, these analyses provide an overview of the mean intermediate circulation that can be summarized as follows: subducting water in Haro Strait ventilates the intermediate water primarily via an up-strait boundary current that flows along the eastern shores of the southernmost basin in 1–2 months. This inflowing water is either incorporated into the interior of the basin, recirculated southwards, or transported into the northernmost basin, mixing steadily with adjacent water masses during its transit. A second, shallower ventilating jet emanates southwards from Discovery Passage, locally modifying the Haro Strait inflow signal. Outside of these well-defined advective features, diffusive transport dominates in the majority of the region. The intermediate renewal signal fully ventilates the region in 100–140 days, which serves as a benchmark for contaminant dispersal timescale estimates.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-03-23
    Description: The occurrence of environmental disasters affects different social segments, impacting health, education, housing, economy and the provision of basic services. Thus, the objective of this study was to estimate the relationship between the occurrence of disasters and extreme climate, sociosanitary and demographic conditions in the Northeast region of Brazil during the period from 1993 to 2013. Initially, we analyzed the spatial pattern of the incidence of events and, subsequently, generalized additive models for location, scale and shape were used in order to identify and estimate the magnitude of associations between factors. Results showed that droughts are the predominant disasters in the NEB representing 81.1% of the cases, followed by events triggered by excessive rainfall such as flash floods (11.1%) and floods (7.8%). Climate conditions presented statistically significant associations with the analyzed disasters, in which indicators of excess rainfall positively contributed to the occurrence of flash floods and floods, but negatively contributed to the occurrence of drought. Sociosanitary factors, such as percentage of households with inadequate sewage, waste collection and water supply, were also positively associated with the model’s estimations, i.e., contributing to an increase in the occurrence of events, with the exception of floods, which were not significantly influenced by sociosanitary parameters. A decrease of 19% in the risk of drought occurrence was estimated, on average. On the other hand, events caused by excessive rainfall increased by 40% and 57%, in the cases of flash floods and floods, respectively.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-03-23
    Description: Variability in the tropical atmosphere is concentrated at wavenumber-frequency combinations where linear theory indicates wave-modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small scale convection triggering large scale waves via wave-wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only anti-symmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave-modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave-modes, and also provides a solid footing for the common assumption that the back-ground spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as -5/3. However it does explain why the cascade should be towards lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave-modes are important for tropical dynamics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-03-23
    Description: Since the tragic tornado outbreaks in Central Alabama and Joplin, Missouri in 2011, the National Weather Service (NWS) has increasingly emphasized the importance of supporting community partners who help protect public safety. Through impact-based decision support services (IDSS), NWS forecasters develop relationships with their core partners to meet their partners’ decision-making needs. IDSS presents a fundamental shift in NWS forecasting through highlighting the importance of connecting with partners instead of simply providing partners with forecasts. A critical challenge to the effective implementation of IDSS is a lack of social science research evaluating the success of IDSS. This paper addresses this gap through a cross-sectional survey with 119 NWS forecasters and managers in the Central and Southern regions of the U.S. Findings uncover how NWS forecasters and management team members evaluate the importance of IDSS. Findings also provide a new instrument for NWS field offices to assess and improve their relationships with core partners.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-03-23
    Description: Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of paired papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in the second paper.For all estimates, the meridional transport integrated zonally and averaged over a hemisphere, 〈Vk〉, is southward between 1000-4000 m in both hemispheres, northward between 4000-5000 m in the South Atlantic, and insignificant between 4000-5000 m in the North Atlantic. Estimates of 〈Vk〉 obtained from two distinct prior circulations - one based on a level of no motion at 4000 m and one based on Argo oat velocities at 1000 m - become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk = /〈Vk〉, where is the volume of the kth layer, is estimated to about a century between 1000-3000 m in both the South and North Atlantic, 124±9 yr (203±23 yr) between 3000-4000 m in the South (North) Atlantic, and 269±115 yr between 4000-5000 m in the South Atlantic.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-03-10
    Description: Infrequent lightning flashes occurring outside of surface precipitation pose challenges to Impact-based Decision Support Services (IDSS) for outdoor activities. This paper examines the remote sensing observations from an event on 20 August 2019 where multiple cloud-to-ground flashes occurred over 10 km outside surface precipitation (lowest radar tilt reflectivity
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-03-10
    Description: This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...