ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1089-1092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The U.S. upper Midwest was subjected to severe flooding during the summer of 1993. Heavy rainfall in the Mississippi River basin from April through July caused flooding on many Midwest rivers, including the Mississippi, Illinois, Missouri, and Kansas Rivers. The flood crest of 15.1 m at St. Louis, Missouri, on 1 August 1993 was the highest ever measured, surpassing the previous record of 13.2 m set on 28 April 1973. Damage estimates include at least 47 flood-related deaths and a total damage cost of $12 billion. Remotely sensed imagery of severe flooding in the U.S. Midwest was obtained under cloud-free skies on 29 July 1993 by the MODIS (Moderate Resolution Imaging Spectroradiometer) Airborne Simulator (MAS). The MAS is a newly developed scanning spectrometer with 50 spectral bands in the wavelength range 0.55-14.3 micrometers. Estimation of the total flooded area in the MAS scene acquired near St. Louis was accomplished by comparing the MAS scene to a Landsat-5 thematic mapper (TM) scene of the same area acquired on 14 April 1984 in nonflood conditions. For comparison, the MAS band centered at 0.94 micrometers and the TM band centered at 1.65 micrometers were selected because of the high contrast seen in these bands between land and water-covered surfaces. An estimate of the area covered by water in the MAS and TM scenes was obtained by developing land/water brightness thresholds from histograms of the MAS and TM digital image data. Afetr applying the thresholds, the difference between the area covered by water in the MAS and TM scenes, and hence the flooded area in the MAS scene, was found to be about 396 sq km, or about 153 square miles.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 933-943
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 905-922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate. This paper reviews the concepts of wind measurement by Doppler lidar, highlights the results of some observing system simulation experiments with lidar winds, and discusses the important advances in earth system science anticipated with lidar winds. Observing system simulation experiments, conducted using two different general circulation models, have shown (1) that there is a significant improvement in the forecast accuracy over the Southern Hemisphere and tropical oceans resulting from the assimilation of simulated satellite wind data, and (2) that wind data are significantly more effective than temperature or moisture data in controlling analysis error. Because accurate wind observations are currently almost entirely unavailable for the vast majority of tropical cyclones worldwide, lidar winds have the potential to substan- tially improve tropical cyclone forecasts. Similarly, to improve water vapor flux divergence calculations, a direct measure of the ageostrophic wind is needed since the present level of uncer- tainty cannot be reduced with better temperature and moisture soundings alone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 869-888
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The 'satellite-gauge model' (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global precipitation. Throughout, monthly estimates on a 2.5 degrees x 2.5 degrees lat-long grid are employed. First, a multisatellite product is developed using a combination of low-orbit microwave and geosynchronous-orbit infrared data in the latitude range 40 degrees N - 40 degrees S (the adjusted geosynchronous precipitation index) and low-orbit microwave data alone at higher latitudes. Then the rain gauge analysis is brougth in, weighting each field by its inverse relative error variance to produce a nearly global, observationally based precipitation estimate. To produce a complete global estimate, the numerical model results are used to fill data voids in the combined satellite-gauge estimate. Our sequential approach to combining estimates allows a user to select the multisatellite estimate, the satellite-gauge estimate, or the full SGM estimate (observationally based estimates plus the model information). The primary limitation in the method is imperfections in the estimation of relative error for the individual fields. The SGM results for one year of data (July 1987 to June 1988) show important differences from the individual estimates, including model estimates as well as climatological estimates. In general, the SGM results are drier in the subtropics than the model and climatological results, reflecting the relatively dry microwave estimates that dominate the SGM in oceanic regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 5, pt; p. 1284-1295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 6; p. 691-694
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 827-830
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 2; p. 230-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Analysis of the version 16 Halogen Occultation Experiment (HALOE) CH4 data shows that this long-lived trace gas is well correlated with potential vorticity (PV) computed from National Meteorological Center balanced winds. Analyzing late September and October 1992 data, we show that very low CH4 values are confined to the interior of a vortex edge defined by the maximum gradient in PV. The CH4 and HF time tendency is used to estimate the descent rate in the Antarctic vortex. After removing a component of the trend correlated with the HALOE sampling pattern, we compute the lower stratosphere vertical descent rates and net heaing rates in the spring Antarctic vortex. Our computations of the spring Antarctic vortex heating rates give -0.5 to -0.1 K/day. Over the winter season, the overall lower stratospheric descent rate averages about 1.8-1.5 km/month. These computations are in line with radiative transfer estimates of the heating and descent rate. The HALOE data thus appear to be consistent with the picture of an isolated lower stratospheric Antarctic vortex.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D3; p. 5159-5172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Using delta C-13 measurements in atmospheric CO2 from a cooperative global air sampling network, we determined the partitioning of the net uptake of CO2 between ocean and land as a function of latitude and time. The majority of delta C-13 measurements were made at the Institute of Arctic and Alpine Research (INSTAAR) of the University of Colorado. We perform an inverse deconvolution of both CO2 and delta C-13 observations, using a two-dimensional model of atmospheric transport. Also, the discrimination against C-13 by plant photosynthesis, as a function of latitude and time, is calculated from global runs of the simple biosphere (SiB) model. Uncertainty due to the longitudinal structure of the data, which is not represented by the model, is studied through a bootstrap analysis by adding and omitting measurement sites. The resulting error estimates for our inferred sources and sinks are of the order of 1 GTC (1 GTC = 10(exp 15) gC). Such error bars do not reflect potential systematic errors arising from our estimates of the isotopic disequilibria between the atmosphere and the oceans and biosphere, which are estimated in a separate sensitivity analysis. With respect to global totals for 1992 we found that 3.2 GTC of carbon dissolved into the ocean and that 1.5 GTC were sequestered by land ecosystems. Northern hemisphere ocean gyres north of 15 deg N absorbed 2.7 GTC. The equatorial oceans between 10 deg S and 10 deg N were a net source to the atmosphere of 0.9 GTC. We obtained a sink of 1.6 GTC in southern ocean gyres south of 20 deg S, although the deconvolution is poorly constrained by sparse data coverage at high southern latitudes. The seasonal uptake of CO2 in the northern gyres appears to be correlated with a bloom of phytoplankton in surface waters. On land, northern temperate and boreal ecosystems between 35 deg N and 65 deg N were found to be a major sink of CO2 in 1992, as large as 3.5 GTC. Northern tropical ecosystems (equator-30 deg N) appear to be a net source to the source to the atmosphere of 2 GTC which could reflect biomass burning. A small sink, 0.3 GTC, was inferred for southern tropical ecosystems (30 deg S-equator).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D3; p. 5051-5070
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 2; p.315-328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 2; p. 241-249
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 271-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: An automated scheme to characterize precipitation echoes within small windows in the radar field is presented and applied to previously subjectively classified tropical rain cloud systems near Darwin, Australia. The classification parameters are (a) E(sub e), effective efficiency, as determined by cloud-top and cloud-base water vapor saturation mixing ratios; (b) BBF, brightband fraction, as determined by the fraction of the radar echo area in which the maximal reflectivity occurs within +/- 1.5 km of the 0 C isotherm level; and (c) del(sub r) Z, radial reflectivity gradients (dB/km). These classification criteria were applied to tropical rain cloud systems near Darwin, Australia, and to winter convective rain cloud systems in Israel. Both sets of measurements were made with nearly identical networks of C-band radars and rain gauge networks. The results of the application of these objective classification criteria to several independently predetermined rain regimes in Darwin have shown that better organized rain systems have smaller del(sub r) Z and larger BBF. Similarly, smaller del(sub r)Z and larger BBF were also observed from maritime rain cloud systems, as compared to continental rain cloud systems with the same degree of organization. Continental rain cloud system, regardless of their degree of organization, have larger depths, as expressed by E(sub e). The rainfall analyses presented in this study are based exclusively on rain gauge measurements, while radar information was used only to classify the individual gauge measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 198-211
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Results of a simulation study on the effects of optically thick stratospheric sulfate aerosol layers on the backscattered ultraviolet radiation (buv) in the range 256-340 nm are presented. In general, the increased Mie scattering produced by the aerosols results in an enhancement of the buv radiation. The increase is approximately linear with optical depth and strongly depends on solar zenith angle and aerosol layer altitude in relation to the ozone maximum. The effect is greatest at those wavelenghts whose contribution functions peak in the vicinity of the densest part of the aerosol layer. The aerosol induced perturbation of the buv field affects the ozone profile retrieval from space measurements by the Solar Backscatter Ultraviolet Experiment (SBUV) experiment. In the tropical stratosphere, the retrieved ozone between 25 and 45 km is underestimated as a result of increased Mie scattering. On the other hand, an algorithm related effect causes the retrieved ozone below 25 km to be overestimated by an amount similar to the stratospheric deficit.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 235-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Application of the window probability matching method to radar and rain gauge data that have been objectively classified into different rain types resulted in distinctly different Z(sub e)-R relationships for the various classifications. These classification parameters, in addition to the range from the radar, are (a) the horizontal radial reflectivity gradients (dB/km); (b) the cloud depth, as scaled by the effective efficiency; (c) the brightband fraction within the radar field window; and (d) the height of the freezing level. Combining physical parameters to identify the type of precipitation and statistical relations most appropriate to the precipitation types results in considerable improvement of both point and areal rainfall measurements. A limiting factor in the assessment of the improved accuracy is the inherent variance between the true rain intensity at the radar measured volume and the rain intensity at the mouth of the rain guage. Therefore, a very dense rain gauge network is required to validate most of the suggested realized improvement. A rather small sample size is required to achieve a stable Z(sub e)-R relationship (standard deviation of 15% of R for a given Z(sub e)) -- about 200 mm of rainfall accumulated in all guages combined for each classification.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 212-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: We have studied the implications of recent trends in the annual mean and the amplitude of the annual harmonic of ozone in the upper stratosphere from the 15 years of the combined data from the Nimbus-7 SBUV and the NOAA-11 SBUV/2 instruments. This was done in the context of the GSFC 2D model predictions of these trends which are based on plausible scenarios of anthropogenic Cly increase in the atmosphere. The comparison of the observed and model-estimated annual mean ozone trends show some similarity in their latitude and altitude characteristics. Both the model and data show a maximum ozone decrease of -6 to -10 % per decade at high latitudes in the upper stratosphere. However, there are also significant differences between the observed and computed trends which may be related to both the model uncertainty and the uncertainty in correcting for the long term instrument drift. The observations also suggest a decrease of 10-25 % per decade in the annual amplitude of ozone at 2 mb between 40 deg - 60 deg in both hemispheres, with a relatively larger interannual variability in the northern hemisphere. These values are in general agreement with the model predictions and thus provide additional support in favor of the chlorine induced changes in ozone in the upper stratosphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 843-846
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: BrO measured from the NASA ER-2 during Airborne Arctic Stratospheric Expedition (AASE) II exhibited a mean value (for 20-minute averages) of 5.4 +/- 0.3 pptv, with a standard deviation of 3.1 pptv. Ratios of BrO to available inorganic bromine (Br(sub y)) show only slight increases in polar regions relative to midlatitudes. A comparison between observed latitudinal and diurnal variations of this same ratio and that calculated by photochemical models shows reasonable agreement in behavior, but significant discrepancies in magnitude. It is unclear whether this difference is due to errors in measurements, models or both.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 831-834
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: Measurements of stratospheric hydrofluoric acid (HF) have been made by the JPL MkIV interferometer during high-altitude balloon flights. Infrared solar absorption spectra were acquired near 35 deg N at altitudes between local tropopause and 38 km. Volume mixing ratio profiles of HF derived from 4 flights (1990-93), in conjunction with simultaneously observed N2O profiles, indicate an average rate of HF increase of (5.5 +/- 0.3)% per year, in agreement with time-dependent, two-dimensional model simulations (6% per year) and ATMOS measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 835-838
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) measurements of lower stratospheric ClO during 1992-93 and 1993-94 Arctic winters are presented. Enhanced ClO in the 1992-93 winter was first observed in early December, and extensively during February when temperatures were continually low enough for polar stratospheric cloud (PSCs). Sporadic episodes of enhanced ClO were observed for most of the 1993-94 winter as minimum temperatures hovered near the PSC threshold, with largest ClO amounts occurring in early March after a sudden deep cooling in late February.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 823-826
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: The thermal-infrared (longwave) emission from a vegetated terrain is generally anisotropic, i.e., the emission temperature varies with the view direction. If a directional measurement of temperature is considered to be equal to the effective temperature of the hemispheric emission, then the estimate of the latter can be significantly in error. The view-direction (zenith angle theta(sub eq) at which the emission equivalence does hold is determined in our modeling study. In a two-temperature field-of-view (soil and plants), theta(sub eq) falls in a narrow range depending on plant density and canopy architecture. Theta(sub eq) does not depend on soil and (uniform) plant temperatures nor on their ratio, even though the pattern of emission vs. the view direction depends crucially on this ratio. For a sparse canopy represented as thin, vertical cylindrical stalks (or vertical blades uniformly distributed in azimuth) with horizontal facets, theta(sub eq) ranges from 48 to 53 deg depending on the optical density of the vertical elements alone. When plant elements are modeled as small spheres, theta(sub eq) lies between 53 to 57 deg (for the same values of the canopy optical density). Only for horizontal leaves (a truly planophile canopy) is the temperature measured from any direction equal to the temperature of the hemispheric emission. When the emission temperature changes with optical depth within the canopy at a specified rate, theta(sub eq) depends to some extent on that rate. For practically any sparsely vegetated surface, a directional measurement at the zenith angle of 50 deg offers an appropriate evaluation of the hemispheric emission, since the error in the estimate will, at most, only slightly exceed 1% (around 4 W/sq m). Estimates of the hemispheric emission through a nadir measurement, on the other hand, can be in error in some cases by about 10%, i.e., on the order of 40 W/sq m.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Boundary-Layer Meteorology (ISSN 0006-8314); 74; 1-2; p. 163-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 3; p. 346-361
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: A steady-state scheme for data assimilation in the context of a single, short period (relative to a day), sun-synchronous, polar-orbiting satellite is examined. If the satellite takes observations continuously, the gains, which are the weights for blending observations and predictions together, are steady in time. For a linear system forced by random noise, the optimal steady-state gains (Wiener gains) are equivalent to those of a Kalman filter. Computing the Kalman gains increases the computational cost of the model by a large factor, but computing the Wiener gains does not. The latter are computed by iteration using prior estimates of the gains to assimilate simulated observations of one run of the model, termed 'truth' into another run termed 'prediction'. At each stage, the prediction errors form the basis for the next estimate of the gains. Steady state is achieved after three or four iterations. Further simplification is achieved by making the gains depend on longitudinal distance from the observation point, not on absolute longitude. For a single-layer primitive equation model, the scheme works well even if only the mass field is observed but not the velocity field. Although the scheme was developed for Mars Observer, it should be applicable to data retrieved from Earth atmosphere satellites, for example, UARS.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 52; 6; p. 737-753
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 2; p. 447-459
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: An examination and analysis of video images of lightning, captured by the payload bay TV cameras of the space shuttle, provided a variety of examples of lightning in the stratosphere above thunderstorms. These images were obtained on several recent shuttle flights while conducting the Mesoscale Lightning Experiment (MLE). The images of stratospheric lightning illustrate the variety of filamentary and broad vertical discharges in the stratosphere that may accompany a lightning flash. A typical event is imaged as a single or multiple filament extending 30 to 40 km above a thunderstorm that is illuminated by a series of lightning strokes. Examples are found in temperate and tropical areas, over the oceans, and over the land.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1465-1475
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-31
    Description: The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1309-1318
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: The Radar Wind Sensor (RAWS) was proposed as a complement to laser wind sensors, allowing coverage in cloudy regions excluded from laser coverage. Previous University of Kansas studies showed the feasibility of the wind measurement at various levels in the atmosphere and indicated that RAWS can also measure rain rates and ocean-surface winds. Here we discuss measurement of the wind vector in terms of the scan patterns for a conically scanned antenna. By using many measurements from cells about 66 km square and 132 km square, a least-squares algorithm gives results that are reasonable for insertion into global atmospheric models. For RAWS to be used successfully as a complement to a laser wind sensor, the design of the two sensors should be integrated and radial velocity measurements in a given atmospheric cell should be combined to get the most accurate results.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199791 , NAS 1.26:199791 , RSL-TR-11170-2 , NIPS-95-06461
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-110159 , NAS 1.15:110159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: The purpose of the CS/LAB project was to obtain images of cloud to stratosphere lightning discharges from aboard NASA's DC-8 Airborne Laboratory while flying in the vicinity of thunderstorms over the Amazon Basin. We devised a low light level imaging package as an add-on experiment to an airborne Laboratory deployment to South America during May-June, 1993. We were not successful in obtaining the desired images during the South American deployment. However, in a follow up flight over the American Midwest during the night of July 8-9, 1993 we recorded nineteen examples of the events over intense thunderstorms. From the observations were estimated absolute brightness, terminal altitudes, flash duration, horizontal extents, emission volumes, and frequencies relative to negative and positive ground strokes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199305 , NAS 1.26:199305
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199767 , NAS 1.26:199767 , NIPS-95-06425
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch systems operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided . Current versions of prototype Process Management Environment tools are being provided to the customer.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199710 , NAS 1.26:199710 , NIPS-95-06060
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: This document presents results of a field study of the effect of sheltering of wind sensors by nearby foliage on the validity of wind measurements at the Space Shuttle Landing Facility (SLF). Standard measurements are made at one second intervals from 30-feet (9.1-m) towers located 500 feet (152 m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. A companion study, Merceret (1995), quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. This work examines the effect of nearby foliage on the accuracy of the measurements made by any one sensor, and the effects of averaging on interpretation of the measurements. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions as a function of distance from the obstructing foliage. Appropriate statistics were computed. The results suggest that accurate measurements require foliage be cut back to OFCM standards. Analysis of averaging techniques showed that there is no significant difference between vector and scalar averages. Longer averaging periods reduce measurement error but do not otherwise change the measurement in reasonably steady flow regimes. In rapidly changing conditions, shorter averaging periods may be required to capture trends.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TM-111262 , NAS 1.15:111262 , NIPS-95-05903
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Use of a spaceborne scatterometer to determine the ocean-surface wind vector requires accurate measurement of radar backscatter from ocean. Such measurements are hindered by the effect of attenuation in the precipitating regions over sea. The attenuation can be estimated reasonably well with the knowledge of brightness temperatures observed by a microwave radiometer. The NASA SeaWinds scatterometer is to be flown on the Japanese ADEOS2. The AMSR multi-frequency radiometer on ADEOS2 will be used to correct errors due to attenuation in the SeaWinds scatterometer measurements. Here we investigate the errors in the attenuation corrections. Errors would be quite small if the radiometer and scatterometer footprints were identical and filled with uniform rain. However, the footprints are not identical, and because of their size one cannot expect uniform rain across each cell. Simulations were performed with the SeaWinds scatterometer (13.4 GHz) and AMSR (18.7 GHz) footprints with gradients of attenuation. The study shows that the resulting wind speed errors after correction (using the radiometer) are small for most cases. However, variations in the degree of overlap between the radiometer and scatterometer footprints affect the accuracy of the wind speed measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NIPS-95-05617 , NASA-CR-199644 , NAS 1.26:199644
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: The Telecommunications and Data Acquisition Progress Report 42-123; p 30-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: This reference publication presents selected results from space-time spectral analyses of 13 years of version 6 daily global ozone fields from the Total Ozone Mapping Spectrometer (TOMS). One purpose is to illustrate more quantitatively the well-known richness of structure and variation in total ozone. A second purpose is to provide, for use by modelers and for comparison with other analysts' work, quantitative measures of zonal waves 1, 2, 3, and medium-scale waves 4-7 in total ozone. Their variations throughout the year and at a variety of latitudes are presented, from equatorial to polar regions. The 13-year averages are given, along with selected individual years which illustrate year-to-year variability. The largest long wave amplitudes occur in the polar winters and early springs of each hemisphere, and are related to strong wave amplification during major warning events. In low attitudes total ozone wave amplitudes are an order of magnitude smaller than at high latitudes. However, TOMS fields contain a number of equatorial dynamical features, including Rossby-gravity and Kelvin waves.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-RP-1360 , REPT-95B00045 , NAS 1.61:1360
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: The demands of accurate predictions of radiative transfer for climate applications are well-documented. While much effort is being devoted to evaluating the accuracy of the GCM radiative transfer schemes, the problem of developing accurate, computationally efficient schemes for climate models still remains. This paper discusses our efforts in developing accurate and fast computational methods for global and regional climate models.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199014 , NAS 1.26:199014
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-189437 , NAS 1.26:189437
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-06-28
    Description: A formvar replicator for installation in an aircraft pod has been designed, built, and flight tested on the NASA DC-8. The system incorporates a deicing capability (which can be pressure activated) to enable climb out through icing situations prior to deployment. The system can be operated at preselected speeds such that data can be recorded over a period of one to ten hours on 200 ft of 16mm film. A x2 speed control can be used during flight. Capability exists for detection of chemical constituents by appropriate doping of the formvar solution. An article entitled 'Measurements of ice particles in tropical cirrus anvils: importance in radiation balance' is attached as appendix A.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-197992 , NAS 1.26:197992
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198880 , JPL-PUBL-95-3 , NAS 1.26:198880
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 1-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: The stated goals of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) are 'to promote the development of improved cloud and radiation parameterization for use in climate models, and to provide for assessment and improvement of ISCCP projects'. FIRE Phase 2 has focused on the formation, maintenance and dissipation of cirrus and marine stratocumulus cloud systems. These objectives have been approached through a combination of modeling, extended-time observations and intensive field observation (IFO) periods. The work under this grant was associated with the FIRE Cirrus IFO 2. This field measurement program was conducted to obtain observations of cirrus cloud systems on a range of scales from the synoptic to the microscale, utilizing simultaneous measurements from a variety of ground-based, satellite and airborne platforms. By combining these remote and in situ measurements a more complete picture of cirrus systems can be obtained. The role of the University of North Dakota in Phase 2 was three-fold: to collect in situ microphysical data during the Cirrus IFO 2; to process and archive these data; and to collaborate in analyses of IFO data. This report will summarize the activities and findings of the work performed under this grant; detailed description of the data sets available and of the analyses are contained in the Semi-annual Status Reports submitted to NASA.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198038 , NAS 1.26:198038
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: SAIC-94/1062 , NASA. Goddard Space Flight Center, The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies; p 179-191
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: A formvar replicator for installation in an aircraft pod has been designed, built, and flight tested on the NASA DC-8. The system incorporates a deicing capability (which can be pressure activated) to enable climb out through icing situations prior to deployment. The system can be operated at preselected speeds such that data can be recorded over a period of 1 to ten hours on 200 ft of 16mm film. A x2 speed control can be used during flight. Capability exists for detection of chemical constituents by appropriate doping of formvar solution.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-197785 , NAS 1.26:197785
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: The general objective of this effort is to increase understanding of how frontal scale contraction processes may create and sustain intense mesoscale precipitation along intensifying cold fronts. The five-part project (an expansion of the originally proposed two-part project) employed conventional meteorological data, special mesoscale data, remote sensing measurements, and various numerical models. First an idealized hydrostatic modeling study of the scale contraction effects of differential cloud cover on low-level frontal structure and dynamics was completed and published in a peer-reviewed journal. The second objective was to complete and publish the results from a three dimensional numerical model simulation of a cold front in which differential sensible heating related to cloud coverage patterns was apparently crucial in the formation of a severe frontal squall line. The third objective was to use a nonhydrostatic model to examine the nonlinear interactions between the transverse circulation arising from inhomogeneous cloud cover, the adiabatic frontal circulation related to semi-geostrophic forcing, and diabatic effects related to precipitation processes, in the development of a density current-like microstructure at the leading edge of cold fronts. Although the development of a frontal model that could be used to initialize such a primitive equation model was begun, we decided to focus our efforts instead on a project that could be successfully completed in this short time, due to the lack of prospects for continued NASA funding beyond this first year (our proposal was not accepted for future funding). Thus, a fourth task was added, which was to use the nonhydrostatic model to test tentative hypotheses developed from the most detailed observations ever obtained on a density current (primarily sodar and wind profiler data). These simulations were successfully completed, the findings were reported at a scientific conference, and the results have recently been submitted to a peer-reviewed journal. The fifth objective was to complete the analysis of data collected during the Cooperative Oklahoma Profiler Studies (COPS-91) field project, which was supported by NASA. The analysis of the mesoscale surface and sounding data, Doppler radar imagery, and other remote sensing data from multi frequency wind profiler, microwave radiometer, and the Radio Acoustic Sounding System has been completed. This study is a unique investigation of processes that caused the contraction of a cold front to a microscale zone exhibiting an undular bore-like structure. Results were reported at a scientific conference and are being prepared for publication. In summary, considerable progress has been achieved under NASA funding in furthering our understanding of frontal scale contraction and density current - gravity wave interaction processes, and in utilizing models and remotely sensed data in such studies.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199480 , NAS 1.26:199480
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: In this review we briefly summarize some current models of evaporation and the atmospheric boundary layer (ABL) and discuss new experimental and computational oppurtunities that may aid our understanding of evaporation at these larger scales. In particular, consideration is given to remote sensing of the atmosphere, computational fluid dynamics and the role numerical models can play in understanding land-atmosphere interactions. These powerful modeling and measurement tools are allowing us to visualize and study spatial and temporal scales previously untouched, thereby increasing the oppurtunities to improve our understanding of land-atmosphere interaction.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Reviews of Geophysics (ISSN 8755-1209); 33; 1; p. 99-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The performance of 2- and 10-micron coherent Doppler lidar is presented in terms of the statistical distribution of the maximum-likelihood velocity estimator from simulations for fixed range resolution and fixed velocity search space as a function of the number of coherent photoelectrons per estimate. The wavelength dependence of the aerosol backscatter coefficient, the detector quantum efficiency, and the atmospheric extinction produce a simple shift of the performance curves. Results are presented for a typical boundary layer measurement and a space-based measurement for two regimes: the pulse-dominated regime where the signal statistics are determined by the transmitted pulse, and the atmospheric-dominated regime where the signal statistics are determined by the velocity fluctuations over the range gate. The optimal choice of wavelength depends on the problem under consideration.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 2; p. 415-420
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Radar reflectivity is used to estimate meteorological quantities such as rainfall rate, liquid water content, and the related quantity, vertically integrated liquid (VIL) water content. The estimation of any of these quantities depends on several assumptions related to the characteristics of the physical processes controlling the occurrence and character of water in the atmosphere. Additionally, there are many sources of error associated with radar observations, such as those due to brighthand, hail, and drop size distribution approximations. This work addresses one error of interest, the radar reflectivity observation error; other error sources are assumed to be corrected or negligible. The result is a relationship between the uncertainty in VIL water content and radar reflectivity measurement error. An example application illustrates the estimation of VIL uncertainty from typical radar reflectivity observations and indicates that the coefficient of variation in VIL is much larger than the coefficient of variation in radar reflectivity.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 2; p. 404-409
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: In this paper, the interannual variability of the East Asian summer monsoon (EASM) rainfall and the tropical sea surface temperature (SST) have been studied. It is found that the EASM rainfall prossesses a strong biennial signal, which is particularly pronounced over the southeast China. For the SST, the biennial oscillation is the second most significant quasi-periodic signal over the entire tropical Indian and Pacific Oceans. Results indicate that the biennial variations in the SST and EASM rainfall are closely linked. The SST pattern which is best correlated with EASM rainfall appears in the form of a double see-saw with quasi-stationary centers of action over the Indian Ocean, the Asian monsoon region and the eastern Pacific. The most pronounced SST signals are found in the equatorial eastern Pacific and Indian Ocean about two seasons preceding and following the EASM rainfall. Evidence is presented suggesting that the biennial variability of the EASM rainfall is phase-locked to a global scale biennial oscillation involving the interplay of the Asian monsoon, the Hadley and Walker circulations, and basin wide fluctuations in SST. In particular, the eastward propagation of zonal wind anomalies from the Indian Ocean to the western Pacific, which regulates the moisture fluxes from the western Pacific to the East Asian region, appears to be a key component of the biennial fluctuation associated with EASM rainfall. Results suggest that the relationship between the Asian monsoon and tropical SST is more robust in the biennial that the El Nino/Southern Oscillation (ENSO) time scale, hence raising the possibility that the biennial oscillation may be more fundamentally related to monsoon-ocean-atmosphere interaction than ENSO itself.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Meteorological Society of Japan, Journal (ISSN 0026-1165); 73; 1; p. 105-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: A composite of 10 cases of zonal wind maxima at 200 hPa over the subtropical region stretching from Australia to the central Pacific is examined for the six-month period, November 1984-April 1985. This region is unique in that distinct westerly jets frequently form and propagate eastward at latitudes between 20 deg and 35 deg S in the summer season. Some statistical tests were applied and suggest that the flow patterns are quasi periodic, consisting of a tendency for new jet streaks to develop over the eastern Australian region approximately every one to two weeks. These jets then take about 10 days to propagate across the western Pacific before dissipating or, perhaps, moving toward higher latitudes. Their average propagation speed is approximately 4 m/s. An examination of the case-to-case variability of the jets provides additional evidence that they are significant features. A diagnosis of the trough/ridge systems at 200 and 850 hPa, together with calculations of the vertically integrated mean and shear kinetic energies suggests that baroclinic processes dominate in the entrance and center regions of the jet, whereas barotropic processes dominate in the exit and downstream regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 3; p. 579-588
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975-1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of cloud-layer top and base by testing for dewpoint temperature depressions below some threshold value. Surface observations serve as quality checks on the rawinsonde-determined cloud properties and provide cloud amount and cloud-type information. The dataset provides layer-cloud amount, cloud type, high, middle, or low height classes, cloud-top heights, base heights and layer thicknesses, covering a range of latitudes from 0 deg to 80 deg N. All data comes from land sites: 34 are located in continental interiors, 14 are near coasts, and 15 are on islands. The uncertainties in the derived cloud properties are discussed. For clouds classified by low-, mid-, and high-top altitudes, there are strong latitudinal and seasonal variations in the layer thickness only for high clouds. High-cloud layer thickness increases with latitude and exhibits different seasonal variations in different latitude zones: in summer, high-cloud layer thickness is a maximum in the Tropics but a minimum at high latitudes. For clouds classified into three types by base altitude or into six standard morphological types, latitudinal and seasonal variations in layer thickness are very small. The thickness of the clear surface layer decreases with latitude and reaches a summer minimum in the Tropics and summer maximum at higher latitudes over land, but does not vary much over the ocean. Tropical clouds occur in three base-altitude groups and the layer thickness of each group increases linearly with top altitude. Extratropical clouds exhibit two groups, one with layer thickness proportional to their cloud-top altitude and one with small (less than or equal to 1000 m) layer thickness independent of cloud-top altitude.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 3; p. 550-568
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Analyses of global isentropic maps of potential vorticity from the United Kingdom Meteorological Office (UKMO) data assimilation system reveal that there is a region of strong meridional potential vorticity (PV) gradients in the equatorial lower stratosphere. A semi-Lagrangian tracer transport model is used to show that this region of strong PV gradients acts as a quasipermeable barrier to cross-equator mass exchange on isentropic surfaces.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 259-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D2; p. 2727-2738
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Global precipitation estimates derived from satellite data at the Goddard Laboratory for Atmospheres for 1979-80 were used to explore time variations in global precipitation. Time series of the area-averaged precipitation (P) over the Asian-Australian (AA) monsoon (60 deg E - 120 deg W), and the extra-AA monsoon (120 deg W - 60 deg E) hemispheres were used in describing the variations. A distinct seesawlike intraseasonal variation of precipitation between these two hemispheres emerges from the two time series. Two intraseasonal (30 - 60 and 12 - 24 day) modes stand out in the spectral analysis of the two (P) time series. The 30 - 60-day mode is well known, while the 12 - 14-day mode is identified here for the first time. Using data generated by the Global Data Assimilation System of the National Meteorological Center, an effort was made to investigate the characteristics of the 12 - 14-day mode of global precipitation via potential functions for the 200-mb wind, water vapor transport, and precipitation. It is found that the 12 - 24-day mode exhibits a wavenumber 1 structure and propagates eastward. The seesaw intraseasonal variation of precipitation between the AA and extra-AA monsoon hemispheres is caused not only by the 30 - 60-day mode but also by the 12 - 24-day mode.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 123; 1; p. 140-152
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Laser Atmospheric Wind Sounder (LAWS) has recently been deselected from the Earth Observing System (EOS). A broad range of orbital altitudes and laser power are being considered for future wind lidar missions. As a result, as was anticipated in the proposed work, it may be impossible to meaningfully study tropical cyclones with lidar wind data because data coverage (i.e., swath width) is insufficient. Research on this grant has focused on how to maximize the benefits of a wind lidar regardless of the choice of platform or laser. Our studies have shown that major unsolved problems in tropical meteorology relate to the structure, dynamics, and role in tropical cyclogenesis of 'easterly waves'. These disturbances exist almost everywhere in the global subtropics. Results are described that focus upon easterly wave impacts on eastern Pacific tropical cyclogenesis. The availability of wind lidar data would create tremendous opportunities for the study of these waves and their role in the general circulation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-189438 , REPT-320-6597B , NAS 1.26:189438
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198925 , NAS 1.26:198925
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: There is a well-documented requirement for a comprehensive and accurate global moisture data set to assist many important studies in atmospheric science. Currently, atmospheric water vapor measurements are made from a variety of sources including radiosondes, aircraft and surface observations, and in recent years, by various satellite instruments. Creating a global data set from a single measuring system produces results that are useful and accurate only in specific situations and/or areas. Therefore, an accurate global moisture data set has been derived from a combination of these measurement systems. Under a NASA peer-reviewed contract, STC-METSAT produced two 5-yr (1988-1992) global data sets. One is the total column (integrated) water vapor data set and the other, a global layered water vapor data set using a combination of radiosonde observations, Television and Infrared Observation Satellite (TIROS) Operational Satellite (TOVS), and Special Sensor Microwave/Imager (SSM/I) data sets. STC-METSAT also produced a companion, global, integrated liquid water data set. The complete data set (all three products) has been named NVAP, an anachronym for NASA Water Vapor Project. STC-METSAT developed methods to process the data at a daily time scale and 1 x 1 deg spatial resolution.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198955 , NAS 1.26:198955 , STC-TR-2927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Thunderstorms and the activities associated with them was the emphasis of this final report. The primary goal of the investigation of the dynamics, microphysics, and the electrical properties of tropical thunderstorms, was to understand the process or processes which initiate the precipitation in various convective clouds. A concept that the degree of atmospheric instability that determines the updraft velocity is different between those storms that generate electrical activity and those that do not. This is apparent in temperate latitudes, but in tropical regions, little knowledge of these interactions is available. Several ground monitoring stations have been set up and, along with a waveform recorder at one of the stations, the data collected from these stations will be analyzed in conjunction with other data collected from ship and airborne radars and airborne in situ measurements of electrical activity in coordination with the TOGA-COARE program.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198577 , NAS 1.26:198577
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: This document describes the current status of Millimeter-wave Imaging Radiometer (MIR) data processing and the technical development of the first version of a water vapor retrieval algorithm. The algorithm is being used by NASA/GSFC Microwave Sensors Branch, Laboratory for Hydrospheric Processes. It is capable of a three dimensional mapping of moisture fields using microwave data from airborne sensor of MIR and spaceborne instrument of Special Sensor Microwave/T-2 (SSM/T-2).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-198593 , REPT-95FTC001 , NAS 1.26:198593
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The scientific objectives of this grant are: (1) thoroughly evaluate, both theoretically and empirically, all available Special Sensor Microwave Imager (SSM/I) retrieval algorithms for column water vapor, column liquid water, and surface wind speed; (2) where both appropriate and feasible, develop, validate, and document satellite passive microwave retrieval algorithms that offer significantly improved performance compared with currently available algorithms; and (3) refine and validate a novel physical inversion scheme for retrieving rain rate over the ocean. This report summarizes work accomplished or in progress during the first year of a three year grant. The emphasis during the first year has been on the validation and refinement of the rain rate algorithm published by Petty and on the analysis of independent data sets that can be used to help evaluate the performance of rain rate algorithms over remote areas of the ocean. Two articles in the area of global oceanic precipitation are attached.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-197915 , NAS 1.26:197915
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 791-794
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 5; p. 615-618
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: We conducted year-around measurements of mid infrared atmospheric emission over the South Pole in 1992. We were able to observe a large seasonal change of the total column of nitric acid (HNO3) vapor. During the summer the HNO3 column abundance was about 2 x 10(exp 16) molecules/sq cm. There was a small increase in the fall. A rapid decrease of 50% was observed in late June, soon after the stratospheric temperature reached the threshold for formation of type I polar stratospheric clouds (PSCs). By early July, the stratospheric temperature was cold enough to form type II PSCs, and the HNO3 column decreased to 7 x 10(exp 15) molecules/sq cm. Measured nitric acid values in the spring remained extremely low even after the stratosphere warmed well above PSC temperatures. This may indicate permanent removal of HNO3 by gravitational settling, or long-term sequestering in large particles. Normal summer values were not observed until the vortex dissipated and allowed the lateral transport of HNO3 to the south polar region.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 1; p. 49-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: The first part of this paper presents the description of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) 1 rain-rate data and its two-dimensional spectral and correlation characteristics, which has made it possible to accomplish the following: to show the concentration of a significant power along the frequency axis in the spatiotemporal spectra; to detect a diurnal cycle (which has a range of variation of about 3.4-5.4 mm/n) as one of the sources of bias in the rain statistics of satellite data; to study the distinction between the north-south and east-west transport of spatial rain-rate field and character of its anisotropy; to evaluate the scales of the distinction between second-moment estimates associated with ground and satellite samples; and to determine the appropriate spatial and temporal scales of simple linear stochastic models fitted to averaged rain-rate fields. The second part of this paper is devoted to an analysis of the diffusion of the rain rate by establishing a relationship between the parameters of the multivariate autoregressive model and the coefficients of a diffusion equation. This analysis led to the use of rain data to estimate the rain advection velocity as well as other coefficients of the diffusion equation of the corresponding field. The results obtained can be used for comparison with corresponding estimates of other sources of data (satellite, Tropical Oceans Global Atmosphere Coupled Ocean - Atmosphere Response Experiment (TOGA, COARE) or simulated by physical models), for generating multiple samples of any size, for solving the inverse problems of some of the hydrodynamic equations, and in some other areas of rain data analysis and modeling.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 4; p. 535-550
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: A numerical scheme has been developed to remove the solar component in the Advanced Very High Resolution Radiometer (AVHRR) 3.7- micrometer channel for the retrieval of cirrus parameters during daytime. This method uses a number of prescribed threshold values for AVHRR channels 1 (0.63 micrometer), 2 (0.8 micrometer), 3 (3.7 micrometer), 4 (10.9 micrometer), and 5 (12 micrometer) to separate clear and cloudy pixels. A look-up table relating channels 1 and 3 solar reflectances is subsequently constructed based on the prescribed mean effective ice crystal sizes and satellite geometric parameters. An adding-doubling radiative transfer program has been used to generate numerical values in the construction of the look-up table. Removal of the channel 3 solar component is accomplished by using the look-up table and the measured channel 1 reflectance. The cloud retrieval scheme described in Ou et al. has been modified in connection with the removal program. The authors have applied the removal-retrieval scheme to the AVHRR global area coverage daytime data, collected during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment cirrus intensive field observation (FIRE IFO) at 2100 UTC 28 October 1986 over the Wisconsin area. Distributions of the retrieved cloud heights and optical depths are comparable to those determined from Geostationary Operational Environmental Satellite (GOES) visible and IR channels data reported by Minnis et al. Moreover, verifications of the retrieved cirrus temperature and height against lidar data have been carried out using results reported from three FIRE IFO stations. The retrieved cloud heights are within 0.5 km of the measured lidar values.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 2; p. 482-499
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A simple one-dimensional microphysical retrieval model is developed for estimating vertical profiles of liquid and frozen hydrometeor mixing ratios from observed vertical profiles of area-mean vertical velocity in regions of convective and/or stratiform precipitation. The mean vertical-velocity profiles can be obtained from Doppler radar (single and dual) or other means. The one-dimensional results are shown to be in good agreement with two-dimensional microphysical fields from a previous study. Sensitivity tests are performed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Royal Meteorological Society, Quarterly Journal (ISSN 0035-9009); 121; 521; p. 23-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Preliminary results from NWP impact studies are indicating that upper-tropospheric wind information provided by tracking motions in sequences of geostationary satellite water vapor imagery can positively influence forecasts on regional scales, and possibly on global scales as well. The data are complimentary to cloud-tracked winds by providing data in cloud-free regions, as well as comparable in quality. First results from GOES-8 winds are encouraging, and further efforts and model impacts will be directed towards optimizing these data in numerical weather prediction (NWP). Assuming successful launches of GOES-J and GMS-5 satellites in 1995, high quality and resolution water vapor imagers will be available to provide nearly complete global upper-tropospheric wind coverage.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199789 , NAS 1.26:199789 , NIPS-95-06456 , AMS Conference on Weather Analysis and Forecasting; Jan 01, 1995; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: GOES-8 was successfully launched in 1994, and has performed up to expeditions and in some cases has actually exceeded pre-launch specifications. A similar geostationary satellite, GOES-9, was launched in May of 1995. This new generation of NOAA's geostationary satellites carry a superior design and instrumentation package that allow for greater detection of meteorological features and parameters. The new GOES imager has a 5 band multispectral capability with high spatial resolution, while the sounder contains 18 thermal infrared (IR) bands plus a low resolution visible band. The imager carries a visible channel with 1 10-bit quantization and increased sampling frequency, a short-wave and long-wave window channel, and a water vapor band with a twofold increase in spatial resolution and a factor of 3 improvement in signal-to-noise over that obtained from previous GOES sensors. The advances in observing the earth's atmospheric system anticipated from these improvements are outlined in Menzel and Purdom (1994). The specific impact of this improved remote sensing capability on the analysis of tropical cyclones is discussed here.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199770 , NAS 1.26:199770 , NIPS-95-06429 , AMS Conference on Hurricanes and Tropical Meteorology; Apr 01, 1995; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: One of the fundamental difficulties in modeling cloud fields is the large variability of cloud optical properties (liquid water content, reflectance, emissivity). The stratocumulus and cirrus clouds, under special consideration for FIRE, exhibit spatial variability on scales of 1 km or less. While it is impractical to model individual cloud elements, the research direction is to model a statistical ensembles of cloud elements with mean-cloud properties specified. The major areas of this investigation are: (1) analysis of cloud field properties; (2) intercomparison of cloud radiative model results with satellite observations; (3) radiative parameterization of cloud fields; and (4) development of improved cloud classification algorithms.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199778 , NAS 1.26:199778 , NIPS-95-06499
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: The research objectives in this proposal were part of a continuing program at UW-CIMSS to develop and refine an automated geostationary satellite winds processing system which can be utilized in both research and operational environments. The majority of the originally proposed tasks were successfully accomplished, and in some cases the progress exceeded the original goals. Much of the research and development supported by this grant resulted in upgrades and modifications to the existing automated satellite winds tracking algorithm. These modifications were put to the test through case study demonstrations and numerical model impact studies. After being successfully demonstrated, the modifications and upgrades were implemented into the NESDIS algorithms in Washington DC, and have become part of the operational support. A major focus of the research supported under this grant attended to the continued development of water vapor tracked winds from geostationary observations. The fully automated UW-CIMSS tracking algorithm has been tuned to provide complete upper-tropospheric coverage from this data source, with data set quality close to that of operational cloud motion winds. Multispectral water vapor observations were collected and processed from several different geostationary satellites. The tracking and quality control algorithms were tuned and refined based on ground-truth comparisons and case studies involving impact on numerical model analyses and forecasts. The results have shown the water vapor motion winds are of good quality, complement the cloud motion wind data, and can have a positive impact in NWP on many meteorological scales.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199766 , NAS 1.26:199766 , NIPS-95-06378
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: The demands of accurate predictions of radiative transfer for climate applications are well-documented. While much effort is being devoted to evaluating the accuracy of the GCM radiative transfer schemes, the problem of developing accurate, computationally efficient schemes for climate models still remains. This paper discusses our efforts in developing accurate and fast computational methods for global and regional climate models.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199412 , NAS 1.26:199412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199276 , NAS 1.26:199276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: In the past six months several milestones were accomplished. The MODIS Airborne Simulator (MAS) was flown in a 50 channel configuration for the first time in January 1995 and the data were calibrated and validated; in the same field campaign the approach for validating MODIS radiances using the MAS and High resolution Interferometer Sounder (HIS) instruments was successfully tested on GOES-8. Cloud masks for two scenes (one winter and the other summer) of AVHRR local area coverage from the Gulf of Mexico to Canada were processed and forwarded to the SDST for MODIS Science Team investigation; a variety of surface and cloud scenes were evident. Beta software preparations continued with incorporation of the EOS SDP Toolkit. SCAR-C data was processed and presented at the biomass burning conference. Preparations for SCAR-B accelerated with generation of a home page for access to real time satellite data related to biomass burning; this will be available to the scientists in Brazil via internet on the World Wide Web. The CO2 cloud algorithm was compared to other algorithms that differ in their construction of clear radiance fields. The HIRS global cloud climatology was completed for six years. The MODIS science team meeting was attended by five of the UW scientists.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-CR-199131 , NAS 1.26:199131
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for Northern Hemisphere ocean, and 70% for Southern Hemisphere ocean, giving a global average of 64%. The global average for daytime is 64.6%; for nighttime 63.3%.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 5 pt; p. 1429-1446
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Ramp patterns in scalar traces such as temperature are the signature of coherent structures. A pseudo-wavelet analysis technique was developed in which ideal saw-tooth patterns of varying size were used as basis functions and fitted to temperature and velocity data. Data recorded from three very different vegetation stands were examined in this study. It was found that the most probable structure duration for the forest canopy was in the range 35-40 s, for the orchard canopy it was 20-25 s and for the maize it was 15-20 s. When expressed in non-dimensional form, the structure duration probability distribution for the maize canopy was about a decade larger than for the forest canopy, with the orchard canopy intermediate. The mean eddy duration versus wind shear relation falls on a narrow band for all three canopies, indicating that wind shear at the canopy top is the determining factor for the scale of the coherent eddies. The inverse of duration and intermittency of coherent structures exhibits a tendency of independence from wind shear at higher wind shear values. Coherent structures transport heat in a more efficient way than do smaller scale, less coherent motions. In all the canopies, the heat flux fractions associated with coherent structures are at least 10% higher than the corresponding time fraction.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Boundary-Layer Meteorology (ISSN 0006-8314); 72; 2-Jan; p. 177-204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The theory of mountain waves is usually discussed for the case of a steady background wind. Here, the consequences of a superimposed diurnal (or other periodic) background wind variation are considered in outline. They are found to be sufficiently complicated as to warrant avoidance in detailed case studies. They include, however, the production of freely propagating waves and may be of interest on that account for other purposes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 52; 5; p. 602-606
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 2; p. 172-190
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 260-279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: This document presents results of a field study of the effect of sensor spacing on the validity of wind measurements at the Space Shuttle landing Facility (SLF). Standard measurements are made at one second intervals from 30 foot (9.1m) towers located 500 feet (152m) from the SLF centerline. The centerline winds are not exactly the same as those measured by the towers. This study quantifies the differences as a function of statistics of the observed winds and distance between the measurements and points of interest. The field program used logarithmically spaced portable wind towers to measure wind speed and direction over a range of conditions. Correlations, spectra, moments, and structure functions were computed. A universal normalization for structure functions was devised. The normalized structure functions increase as the 2/3 power of separation distance until an asymptotic value is approached. This occurs at spacings of several hundred feet (about 100m). At larger spacings, the structure functions are bounded by the asymptote. This enables quantitative estimates of the expected differences between the winds at the measurement point and the points of interest to be made from the measured wind statistics. A procedure is provided for making these estimates.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA-TP-3529 , NAS 1.60:3529
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-27
    Description: Simulations of observations from potential spaceborne radars are made based on storm structure generated from the three-dimensional (3D) Goddard cumulus ensemble model simulation of an intense overland convective system. Five frequencies of 3, 10, 14, 35, and 95 GHz are discussed, but the Tropical Rainfall Measuring Mission precipitation radar sensor frequency (14 GHz) is the focus of this study. Radar reflectives and their attenuation in various atmospheric conditions are studied in this simulation. With the attenuation from cloud and precipitation in the estimation of reflectivity factor (dBZ), the reflectivities in the lower atmosphere in the convective cores are significantly reduced. With spatial resolution of 4 km X 4 km, attenuation at 14 GHz may cause as large as a 20-dBZ difference between the simulated measurements of the peak, Z(sub mp) and near-surface reflectivity, Z(sub ms) in the most intense convective region. The Z(sub mp) occurs at various altitudes depending on the hydrometeor concentrations and their vertical distribution. Despite the significant attenuation in the intense cores, the presence of the rain maximum is easily detected by using information of Z(sub mp). In the stratiform region, the attenuation is quite limited (usually less than 5 dBZ), and the reduction of reflectivity is mostly related to the actual vertical structure of cloud distribution. Since Z(sub ms) suffers severe attenuation and tends to underestimate surface rainfall intensity in convective regions. Z(sub mp) can be more representative for rainfall retrieval in the lower atmosphere in these regions. In the stratiform region where attenuation is negligible, however, Z(sub mp) tends to overestimate surface rainfall and Z(sub ms) is more appropriate for rainfall retrieval. A hybrid technique using a weight between the two rain intensities is tested and found potentially usefull for future applications. The estimated surface rain-rate map based on this hybrid approach captures many of the details of the cloud model rain field but still slightly underestimates the rain-rate maximum.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 175-197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-28
    Description: The variabilities of the upper layer of the western Pacific warm pool (WPWP) were observed using satellite infrared data from 1982 to 1991 and altimeter data from November 1986 to September 1989. The warm pool was defined as the area where the sea surface temperatures are above 28 C. The eastern boundary oscillation, the centroid movement, and the upper-layer volume variation of the WPWP were intensively studied. Spectral analysis revealed that the eastern boundary oscillation of the WPWP was related to the El Nino event and the annual cycle. The centroid of the WPWP traced an ellipselike trajectory during a year and moved counterclockwise in most years. However, in 1982 and 1986, the years of the onset of El Nino events, the movements were clockwise. The upper-layer volume of the WPWP was divided latitudinally into three sections. The annual cycles in the northern (from 3 deg to 30 deg N) and southern (from 3 deg to 30 deg S) sections were dominant. No annual cycle was found in the equatorial section (from 3 deg S to 3 deg N), but the volume of warm water in the equatorial Pacific increased during the 1986/87 El Nino event. The equatorial section was further divided into the eastern and western sectors along 165 deg W. During the 1986/87 El Nino event, the volume of warm water increased in the eastern sector, but the variation was smaller in the western sector than that in the eastern sector. During the 1988 La Nina event, the warm water volumes decreased in both sectors.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 5; p. 669-679
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-28
    Description: A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the Millimeter-wave Imaging Radiometer aircraft instrument to be flown in the near future. All three of these frequencies are able to discriminate the convective and anvil portions of the system, providing useful information similar to that from the frequencies below 183 GHz but with potentially enhanced spatial resolution from a satellite platform. In thin clouds, the dominant effect of water vapor is seen at 174, 340, and 400 GHz. In thick cloudy areas, the scattering effect is dominant at 90 and 220 GHz, while the overlaying water vapor can attenuate at 174, 340, and 400 GHz. All frequencies (90-400 GHz) show strong signatures in the core.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 153-174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-28
    Description: In a cloud formed during adiabatic expansion, the droplet size distribution will be systematically related to the critical supersaturation of the cloud condensation nuclei (CNN), but this relationship can be complicated in entraining clouds. Useful information about cloud processes, such as mixing, can be obtained from direct measurements of the CNN involved in droplet nucleation. This was accomplished by interfacing two instruments for a series of flights in maritime cumulus clouds. One instrument, the counterflow virtual impactor, collected cloud droplets, and the nonvolatile residual nuclei of the droplets was then passed to a CCN spectrometer, which measured the critical supersaturation (S(sub c)) spectrum of the droplet nuclei. The measured S(sub c) spectra of the droplet nuclei were compared with the S(sub c) spectra of ambient aerosol particles in order to identify which CCN were actually incorporated into droplets and to determine when mixing processes were active at different cloud levels. The droplet nuclei nearly always exhibited lower median S(sub c)'s than the ambient aerosol, as expected since droplets nucleate perferentially on particles with lower critical supersaturations. Critical supersaturation spectra from nuclei of droplets near cloud base were similar to those predicted for cloud regions formed adiabatically, but spectra of droplet nuclei from middle cloud levels showed some evidence that mixing had occurred. Near cloud top, the greatest variation in the spectra of the droplet nuclei was observed, and nuclei with high S(sub c)'s were sometimes present even within relatively large droplets. This suggests that the extent of mixing increases with height in cumulus clouds and that inhomogeneous mixing may be important near cloud top. These promising initial results suggest improvements to the experimental technique that will permit more quantitative results in future experiments.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 4; p. 815-833
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-28
    Description: Satellite imagery datasets and regional climate model results are intercompared for evaluation of model accuracy in the simulation of cloud cover. Both monthly average individual simulation times are analyzed. To provide a consistent comparison, satellite data are first mapped into the model's geographic projection, grid domain, and resolution. It is found that September 1988 monthly average cloud fraction results from the modeled simulations correspond to observations, in both spatial pattern and magnitude, with bias less than +/- 20% cloud fraction over the entire inland West. Agreement in the pattern of cloud fraction also is evident for monthly average cloud fraction in July, but there is no negative bias of 10%-30% cloud fraction in the model diagnosis of cloud cover. Correlations between the spatial distributions of model-derived and observed cloud fractions are found to exceed 0.80 for certain geographic regions of the West, and these correlations are largest over mountainous areas during summer. Case studies of a series of daily cloud cover demonstrate the ability of the model to simulate the effects of frontal passage on cloud distribution. The ability of the RegCM1 to simulate daily cloud fraction and diurnal cloud evolution is somewhat weak for the summer convective season. It is anticipated that a more recent version of the regional climate model may improve the simulation of summer season cloud cover, through changes in cloud parameterization and improvements in model resolution.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 2; p. 296-314
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-28
    Description: A mesoscale atmospheric model was used to evaluate the impact of subgrid-scale landscape discontinuities on the vertical profiles of resolved temperature, moisture, and moist static energy in the planetary boundary layer (PBL) of general circulation models (GCMs). These profiles were produced with a 3D version of the model (using a horizontal grid resolution of 7.5 km and 13 vertical layers in the PBL) by averaging horizontally the various atmospheric variables over a 180 x 180 sq km domain-about the size of the horizontal domain represented by a single grid element in a GCM. They were compared to corresponding vertical profiles produced with a 1D version of the model, which simulates the PBL, as in a GCM, over a single horizontal grid element. Differences obtained between the horizontally averaged atmospheric variables produced with the 3D simulations and the 1D simulations emphasize the impact of subgrid-scale landscape discontinuities on GCM-resolved variables. Various types of landscape discontinuities, characterized by horizontal contrasts of surface wetness and size of land patches, were simulated under various background-wind conditions. Differences of temperature, specific humidity, and moist static energy as large as 4 K, 6 g/kg, and 10 kJ/kg were obtained in some cases. These differences were not affected significantly by moderate winds but were sensitive to the spatial distribution of surface wetness. These results emphasize the need to parameterize mesoscale processes induced by landscape discontinuities in GCMss.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 2; p. 191-205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-28
    Description: A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D2; p. 2801-2816
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-28
    Description: A methodology is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island. Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data -- the normalized difference vegetation index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data -- to represent the urban and rural landscape. Local NDVI and DMSP values were calculated for each station using the mean NDVI and DMSP values from a 3 km x 3 km area centered over the given station. Regional NDVI and DMSP values were calculated to represent a typical rural value for each station using the mean NDVI and DMSP values from a 1 deg x 1 deg latitude-longitude area in which the given station was located. Models for the United States were then developed for monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the U.S. Cooperative (COOP) Network and for monthly mean temperatures with data from over 1150 stations in the Global Historical Climate Network (GHCN). Local biases, or the differences between the model predictions using the observed NDVI and DMSP values, and the predictions using the background regional values were calculated and compared with the results of other research. The local or urban bias of U.S. temperatures, as derived from all U.S. stations (urban and rural) used in the models, averaged near 0.40 C for monthly minimum temperatures, near 0.25 C for monthly mean temperatures, and near 0.10 C for monthly maximum temperatures. The biases of monthly minimum temperatures for individual stations ranged from near -1.1 C for rural stations to 2.4 C for stations from the largest urban areas. The results of this study indicate minimal problems for global application once global NDVI and DMSP data become available.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 2; p. 358-370
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-28
    Description: As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 3; p. 449-463
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-28
    Description: Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1295-1315
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-28
    Description: Wind, driving oceans, and the links between them to the atmosphere compose a critical parameter for the world circulation model as well as for the evaluation of climate changes. Traditionally, wind velocities have been reported by ships of oppurtunity and recorded on a network of buoys; they have also recently been generated by numerical weather prediction models and mapped with spaceborne remote sensors. Wind speeds from buoy measurements, ship observations, and model computations are compared, using the globally available altimeter returns that they have in common. Large, systematic deviations are found among the results obtained with these techniques, cautioning against use of these wind speeds.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 1; p. 13-19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-28
    Description: Because passive microwave instruments are confined to polar-orbiting satellites, rainfall estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 1; p. 33-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-28
    Description: The second intercomparison project of the Global Precipitation Climatology Project (GPCP) examined the estimation of midlatitude, cool-season precipitation. As part of that effort, the authors report here on the results of two microwave techniques, the Goddard scattering algorithm and the physical retrieval algorithm of Kummerow. Results from the estimation of instantaneous rain rate for five overpasses of the Special Sensor Microwave/Imager (SSM/I) are presented in a case study mode to illustrate both the strong and weak points of each technique. These five cases represent a sampling of the various types of precipitating systems observed. Results for the complete set of 20 swaths chosen by the United Kingdom Meteorological Office (UKMO) are then categorized by scatterplots and statistics of instantaneous radar versus microwave-estimated rain rate, rain no-rain contingency tables, and scatterplots of areal coverage of rainfall. Neither algorithm produced a good statistical correlation with the radar data, yet in general, both did well at determining rainy areas. Two reasons are suggested for the low correlation coefficients between both algorithms and the radar data. Time differences between the SSM/I overpass and the radar observations can occasionally account for some of the differences. The primary reason for the low correlations, however, appears to be the predominance of very light rain in the area of interest during the winter. Both algorithms are in good spatial agreement with the radar when the radar data are restricted to rates above 1 mm/h. When all radar rain rates are included, the radar areal coverage increases by as much as a factor of 10 in some cases. Because the Kummerow algorithm does not handle such low rain rates over land very well, and because the Goddard scattering algorithm uses 1 mm/h as the minimum reliably detectable rain rate, regimes that contain large areas of very light rain present inherent difficulties for these retrieval methods. Therefore, the proliferation of low rain rates observed during the experiment is the main contributor to low correlation coefficients and high root-mean-square differences. Mididentification of cold surface (e.g., snow cover) as precipitation was also a problem in several instances.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 1; p. 20-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-28
    Description: Advanced Very High Resolution Radiometer and Geostationary Operational Environmental Satellite imagery, received by antennas located at the University of Colorado, are made available to the Internet users through an on-line data access system. Created as a 'test bed' system for the National Aeronautics and Space Administration's future Earth Observing System Data and Information System, this test bed provides an opportunity to test both the technical requirements of an on-line data system and the different ways in which the general user community would employ such a system. Initiated in December 1991, the basic data system experiment four major evolutionary changes in response to user requests and requirements. Features added with these changes were the addition of on-line browse, user subsetting, and dynamic image processing/navigation. Over its lifetime the system has grown to a maximum of over 2500 registered users, and after losing many of these users due to hardware changes, the system is once again growing with its own independent mass storage system.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 923-932
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-28
    Description: Successful prediction of possible climate change depends on realistic parameterization of land surface processes in climate models. Such parameterizations must take appropriate account of the heterogeneities that are found in most earth surfaces. In this study, different averaging strategies for aggregating patch-scale heterogeneities to scales that are appropriate for mesoscale and climate model grids have been explored. A simple model for estimating area-average 'effective' surface flux parameters is evaluated. The model satisfies the energy balance equation and leads to a set of relationships between local and effective parameters in the governing equations for the surface energy balance. One outcome is that the resulting effective surface temperature is not a simple area-weighted average of component temperatures, but is a function of a specific combination of different resistances of the individual surface elements. A set of heterogeneous surfaces has been simulated to study the effective fluxes obtained using the described model. A comparison with results obtained by other investigators using different averaging methods is also performed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 5 pt; p. 1386-1393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-28
    Description: The meteorology of high southern latitudes during winter is simulated using a cloud-free version of The Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model version 4 (MM4) with a 100-km horizontal resolution. Comparisons between idealized simulations of Antarctic with MM4 and with the mesoscale model of Parish and Waight reveal that both models produce similarly realistic velocity fields in the boundary layer. The latter model tends to produce slightly faster drainage winds over East Antarctica. The intensity of the katabatic winds produced by MM4 is sensitive to parameterizations of boundary layer fluxes. Two simulations performed with MM4 using analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) for June 1988 as initial and boundary conditions. A simulation of the period from 000 UTC 2 June to 0000 UTC 8 June produces realistic synoptic phenomena including ridge development over East Antarctica, frontogenesis over the Amundsen Sea, and a katabatic surge over the Ross Ice Shelf. The simulated time-averaged fields for June 1988, particularly that of a 500-hPa height, are in good agreement with time-averaged fields analyzed by the ECMWF. The results of the simulations provide detailed features of the Antarctic winter boundary layer along the steeply sloping terrain. Highest boundary layer wind speeds averaged over the month-long simulation are approximately 20 m/s. The lack of latent heating in the simulations apparently results in some bias in the results. In particular, the cloud-free version of MM4 underpredicts the intensity of lows in the sea level pressure field.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 123; 4; p. 1146-1165
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-28
    Description: Global total ozone measurements from the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) are analyzed using potential vorticity (PV) as an approximate vortex-following coordinate. We analyze the time period November 1978-May 1991, prior to the volcanic eruption of Mt. Pinatubo. The TOMS data are remapped into PV coordinates and trends are calculated, thereby characterizing ozone losses inside and outside the winter polar vortices. These analyses show large regions of ozone loss outside of the vortex in both hemispheres. Furthermore, these data suggest that midlatitude losses in the NH during winter-spring do not result solely from the transport of ozone depleted air from inside to outside the vortex.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 6; p. 683-686
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-28
    Description: Satellite data summary images and analysis plots from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), which were initially prepared in the field at the Honiara Operations Center, are now available on the Internet via World Wide Web browsers such as Mosaic. These satellite data summaries consist of products derived from the Japanese Geosynchronous Meteorological Satellite IR data: a time-size series of the distribution of contiguous cold cloudiness areas, weekly percent high cloudiness (PHC) maps, and a five-month time-longitudinal diagram illustrating the zonal motion of large areas of cold cloudiness. The weekly PHC maps are overlaid with weekly mean 850-hPa wind calculated from the European Centre for Medium-Range Weather Forecasts (ECMWF) global analysis field and can be viewed as an animation loop. These satellite summaries provide an overview of spatial and temporal variabilities of the cloud population and a large-scale context for studies concerning specific processes of various components of TOGA COARE.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 3; p. 329-333
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-28
    Description: The authors propose a new procedure, designated the adjoint-based genesis diagnostic (AGD) procedure, for studying triggering mechanisms and the subsequent genesis of the synoptic phenomena of interest. This procedure makes use of a numerical model sensitivity to initial conditions and the nonlinear evolution of the initial perturbations that are designed using this sensitivity. The model sensitivity is evaluated using the associated adjoint model. This study uses the dry version of the National Center for Atmospheric Research Mesoscale Adjoint Modeling System (MAMS) for the numerical experiments. The authors apply the AGD procedure to two cases of Alpine lee cyclogenesis that were observed during the Alpine Experiment special observations period. The results show that the sensitivity fields that are produced by the adjoint model and the associated initial perturbations are readily related to the probable triggering mechanisms for these cyclones. Additionally, the nonlinear evolution of these initial perturbations points toward the physical processes involved in the lee cyclone formation. The AGD experiments for a weak cyclone case indicate that the MAMS forecast model has an underrepresented topographic forcing due to the sigma vertical coordinate and that this model error can be compensated by adjustments in the initial conditions that are related to the triggering mechanisms, which is not associated with the topographic blocking mechanism.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 123; 3; p. 800-816
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: Leads provide a significant source of heat and moisture to the Arctic winter atmosphere, and plumes from wide leads have been observed to penetrate the Arctic inversion. We have developed a two-dimensional, high-resolution, deep anelastic numerical model to investigate the atmospheric convection from leads with widths ranging from 100 m to 10 km. A second-order turbulence closure scheme is used to parameterize the atmospheric turbulence in the horizontally inhomogeneous system. This study describes how the lead-induced circulations can enhance the vertical transport of heat into the atmospheric boundary layer. This model is compared with large-eddy simulation results and with lidar observations of a lead-induced ice crystal plume. The model is used to study the effect of varying lead widths and ambient atmospheric conditions on the resultant convection from leads, and some preliminary results are described.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; C3; p. 4643-4651
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-28
    Description: Monthly mean wind fields from the European Remote Sensing Satellite (ERS1) scatterometer are presented. A banded structure which resembles the satellite subtrack is clearly and consistently apparent in the isotachs as well as the u and v components of the routinely produced fields. The structure also appears in the means of data from other polar-orbiting satellites and instruments. An experiment is designed to trace the cause of the banded structure. The European Centre for Medium-Range Weather Forecast (ECMWF) gridded surface wind analyses are used as a control set. These analyses are also sampled with the ERS1 temporal-spatial samplig pattern to form a simulated scatterometer wind set. Both sets are used to create monthly averages. The banded structures appear in the monthly mean simulated data but do not appear in the control set. It is concluded that the source of the banded structure lies in the spatial and temporal sampling of the polar-orbiting satellite which results in undersampling. The problem involves multiple timescales and space scales, oversampling and under-sampling in space, aliasing in the time and space domains, and preferentially sampled variability. It is shown that commonly used spatial smoothers (or filters), while producing visually pleasing results, also significantly bias the true mean. A three-dimensional spatial-temporal interpolator is designed and used to determine the mean field. It is found to produce satisfactory monthly means from both simulated and real ERS1 data. The implications to climate studies involving polar-orbiting satellite data are discussed.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D3; p. 5133-5142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-28
    Description: Observations of surface pressure and middle atmosphere temperatures and winds indicate that a substantial nonmigrating component is present in the diurnal tide. The nonmigrating tides, which propagate with a zonal phase speed that is different from the earth's rotation, are attributed to the diurnal heating of geographically fixed sources. In this study we utilize a classical tidal model to examine the propagation characteristics of diurnal tides. The global fields of tropospheric sensible, radiative, and latent heating used to drive the model are supplied from summer and winter diurnal climatologies of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). A novel aspect of this study is the focus on the relative importance of the nonmigrating components. The classical model successfully reproduces many observed features of the low-latitude diurnal surface pressure tides. In the middle atmosphere, the simulated migrating (or sun-synchronous) tide shows qualitative agreement with November-March Limb Infrared Monitor of the Stratosphere (LIMS) observations. Tropospheric solar heating is clearly the dominant driving force for the migrating tide, with secondary contributions from boundary-layer sensible heating and tropospheric latent heat release. The leading modes of the zonal mean tide are also driven chiefly by tropospheric solar heating. The higher-order modes of the zonal mean and eastward propagating tides may be attributed to the joint effects of tropospheric solar heating, sensible heating, and latent heat release. The LIMS and other data reveal features that cannot be explained or examined within the context of the classical model used in the present study. These include upward phase propagation, vertical attenuation, and temporal variations in the migrating diurnal tide.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 52; 4; p. 389-409
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...