ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6,553)
  • ENERGY PRODUCTION AND CONVERSION  (6,553)
  • 1
    Publication Date: 2011-08-24
    Description: Low temperature Zn diffusion in GaSb, where the minimum temperature was 450 C, was studied. The pseudo-closed box (PCB) method was used for Zn diffusion into GaAs, AlGaAs, InP, InGaAs and InGaAsP. The PCB method avoids the inconvenience of sealed ampoules and proved to be simple and reproducible. The special design of the boat for Zn diffusion ensured the uniformality of Zn vapor pressure across the wafer surface, and thus the uniformity of the p-GaSb layer depth. The p-GaSb layers were studied using Raman scattering spectroscopy and the x-ray rocking curve method. As for the postdiffusion processing, an anodic oxidation was used for a precise thinning of the diffused GaSb layers. The results show the applicability of the PCB method for the large-scale production of the GaSb structures for solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 641-644
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 469-470
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 483-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 363-366
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: An investigation of solar cells based on AlGaAs/GaAs heterostructures with an internal Bragg reflector as the back-surface reflector is presented. The Bragg reflector is grown by low pressure metalorganic chemical vapor deposition on n-GaAs substrates in a horizontal resistively heated reactor. The Bragg reflector with its maximum reflectance centered at a wavelength of 860 nm consists of 12 pairs of AlAs/GaAs layers. The resulting Bragg reflector has a thickness of 0.072 micrometers for AlAs and 0.059 micrometers for GaAs. The multi-layered quasi-dielectric stack selectively reflects weakly absorbed photons with energies near to the GaAs band gap for a second pass through the photoactive region, thus increasing the photocurrent. The use of the Bragg reflector allows the external quantum efficiency to be increased in the long wavelength of the spectrum. The use of the Bragg reflector and an antireflective coating and prismatic cover allowed an efficiency of 23.4 percent to be obtained.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 367-370
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The high efficiency solar cells based on multilayer AlGaAs/GaAs heterostructures, prepared by low temperature liquid phase epitaxy (LPE), were developed and tested. An investigation of the low temperature LPE process for the crystallization of AlGaAs heterostructures of as high as 24.0 to 24.7 percent under AMO conditions at concentration ratios of 20 to 100x, were reached. Developed solar cells show substantial radiation resistance to the damage induced by 3.75 MeV electrons.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: ESA, Proceedings of 4th European Space Power Conference (ESPC). Volume 2: Photovoltaic Generators, Energy Storage; p 359-362
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: The Thermal Energy Storage-1 (TES-1) is a flight experiment that flew on the Space Shuttle Columbia (STS-62), in March 1994, as part of the OAST-2 mission. TES-1 is the first experiment in a four experiment suite designed to provide data for understanding the long duration microgravity behavior of thermal energy storage fluoride salts that undergo repeated melting and freezing. Such data have never been obtained before and have direct application for the development of space-based solar dynamic (SD) power systems. These power systems will store solar energy in a thermal energy salt such as lithium fluoride or calcium fluoride. The stored energy is extracted during the shade portion of the orbit. This enables the solar dynamic power system to provide constant electrical power over the entire orbit. Analytical computer codes have been developed for predicting performance of a spaced-based solar dynamic power system. Experimental verification of the analytical predictions is needed prior to using the analytical results for future space power design applications. The four TES flight experiments will be used to obtain the needed experimental data. This paper will focus on the flight results from the first experiment, TES-1, in comparison to the predicted results from the Thermal Energy Storage Simulation (TESSIM) analytical computer code. The TES-1 conceptual development, hardware design, final development, and system verification testing were accomplished at the NASA lewis Research Center (LeRC). TES-1 was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 31-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 295-302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 59-72
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-29
    Description: AstroPower is developing InGaAsSb thermophotovoltaic (TPV) devices. This photovoltaic cell is a two-layer epitaxial InGaAsSb structure formed by liquid-phase epitaxy on a GaSb substrate. The (direct) bandgap of the In(1 - x)Ga(x)As(1 -y)Sb(y) alloy is 0.50 to 0.55 eV, depending on its exact alloy composition (x, y); and is closely lattice-matched to the GaSb substrate The use of the quaternary alloy, as opposed to a ternary alloy - such as, for example, InGaAs/InP - permits low bandgap devices optimized for 1000 to 1500 C thermal sources with, with at the time, near-exact lattice matching to the GaSb substrate. Lattice-matching is important since even a small degree of lattice mismatch degrades device performance and reliability and increases processing complexity. For bandgaps of 0.52 eV,Fo internal quantum efficiencies as high as 95% have been measured at a wavelength of 2 microns. At 1 micron wavelengths, internal quantum efficiencies of 55% have been observed. The open-circuit voltage at currents of 0.3 A/sq cm is 0.220 volts and 0.260 V for current densities of 2 A/sq cm. Fill factors of 56% have also been measured. These preliminary results lead to the conclusion that the GaSb-based quaternary compounds provide a viable and high performance energy conversion solution for thermophotovoltaic systems operating with 1000 to 1500 C source temperatures.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-29
    Description: InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-01-25
    Description: High voltage power systems in space will interact with the space plasma in a variety of ways. One of these, snapover, is characterized by sudden enlargement of the current collection area across normally insulating surfaces generating enhanced electron current collection. Power drain on solar array power systems results from this enhanced current collection. Optical observations of the snapover phenomena in the laboratory indicates a functional relation between glow area and bia potential as a consequence of the fold/cusp bifurcation in chaos theory. Successful characterizations of snapover as a chaotic phenomena may provide a means of snapover prevention and control through chaotic synchronization.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-01-25
    Description: The PASP-Plus (Photovoltaic Array Space Power Plus Diagnostics) program is a photovoltaic experiment which is flying on the Air Force satellite APEX (Advanced Photovoltaic and Electronics Experiments). The satellite was launched on August 3, 1994 with a Pegasus low-cost launch vehicle. There are two other small experiments on APEX, however PASP-Plus is the largest, uses the most power, and accounts for the largest portion of the data requirements. The satellite is in an elliptical orbit with an apogee of 2552 km and a perigee of 363 km. The inclination is 70 degrees. The PASP-Plus experiment consists of twelve photovoltaic panels containing a total of sixteen separate cell modules. Two of the modules are concentrator modules, while the rest are planar. There are several different solar cell types flying on PASP-Plus including silicon, GaAs on germanium substrates, InP, amorphous silicon, and three multi-bandgap cells. The purpose of this paper is to present some of the data from the first year of the PASP-Plus flight. Cell performance and module thermal performance will be discussed as well as other relevant data.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The Astro Edge solar array is a new and innovative reflective low concentrator power generating system which has been selected for the CTA Incorporate/Lockheed Martin Clark spacecraft under the NASA Small Spacecraft Technology Initiative (SSTI) program. In support of this program, Astro Aerospace Corporation has produced one qualification and two flight solar array wings to support a July 1996 launch. The Astro Edge solar array was selected as a new technology to benefit future NASA, military and commercial missions by providing high specific power, high deployed stiffness, low stowed volume, low risk, and cost reduction features which meet the agency's 'better, faster, cheaper' goals. This novel array accounts for five of the thirty-six advanced technologies which the Clark spacecraft will demonstrate. A brief SSTI Astro Edge solar array program overview is presented. Completed qualification and acceptance testing is discussed. Finally, the major discriminators which make the Astro Edge solar array 'better, faster, cheaper' technology are provided.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Literature on solar array angle of incidence corrections was found to be sparse and contained no tabular data for support. This lack along with recent data on 27 GaAs/Ge 4 cm by 4 cm cells initiated the analysis presented in this paper. The literature cites seven possible contributors to angle of incidence effects: cosine, optical front surface, edge, shadowing, UV degradation, particulate soiling, and background color. Only the first three are covered in this paper due to lack of sufficient data. The cosine correction is commonly used but is not sufficient when the incident angle is large. Fresnel reflection calculations require knowledge of the index of refraction of the coverglass front surface. The absolute index of refraction for the coverglass front surface was not known nor was it measured due to lack of funds. However, a value for the index of refraction was obtained by examining how the prediction errors varied with different assumed indices and selecting the best fit to the set of measured values. Corrections using front surface Fresnel reflection along with the cosine correction give very good predictive results when compared to measured data, except there is a definite trend away from predicted values at the larger incident angles. This trend could be related to edge effects and is illustrated by a use of a box plot of the errors and by plotting the deviation of the mean against incidence angle. The trend is for larger deviations at larger incidence angles and there may be a fourth order effect involved in the trend. A chi-squared test was used to determine if the measurement errors were normally distributed. At 10 degrees the chi-squared test failed, probably due to the very small numbers involved or a bias from the measurement procedure. All other angles showed a good fit to the normal distribution with increasing goodness-of-fit as the angles increased which reinforces the very small numbers hypothesis. The contributed data only went to 65 degrees from normal which prevented any firm conclusions about extreme angle effects although a trend in the right direction was seen. Measurement errors were estimated and found to be consistent with the conclusions that were drawn. A controlled experiment using coverglasses and cells from the same lots and extending to larger incidence angles would probably lead to further insight into the subject area.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-01-25
    Description: Past NASA missions to Mars, Jupiter, and the outer planets were powered by radioisotope thermal generators (RTG's). Although these devices proved to be reliable, their high cost and highly toxic radioactive heat source has made them far less desirable for future planetary missions. This has resulted in a renewed search for alternate energy sources, some of them being photovoltaic (PV) and thermophotovoltaic (TPV). Both of these alternate energy sources convert light/thermal energy directly into electricity. In order to create a viable PV and TPV data base for planetary mission planners and cell designers, we have compiled low temperature low intensity (LILT) I-V data on single junction and multi-junction high efficiency solar cells. The cells tested here represent the latest photovoltaic technology. Using this LILT data to calculate dI(sub SC)/dT, dV(sub OC)/dT, dFF/dT, and also as a function of intensity, an accurate prediction of cell performance under the AMO spectrum can be determined. When combined with QUantum efficiency at Low Temperature (QULT) data, one can further enhance the data by adding spectral variations to the measurements. This paper presents an overview of LILT measurements and is only intended to be used as a guideline for material selection and performance predictions. As single junction and multi-junction cell technologies emerge, new test data must be collected. Cell materials included are Si, GaAs/Ge, GainP/GaAs/Ge, InP, InGaAs/InP, InP/InGaAs/InP, and GainP. Temperatures range as low as -175 C and intensities range from 1 sun to .02 suns.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-01-25
    Description: When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-01-25
    Description: Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-01-25
    Description: The experimental performance of a multijunction monolithic In(0.53)Ga(0. 47)As power converter under blackbody irradiation is reported. Eight InGaAs PN junctions grown epitaxially on a semi-insulating wafer were monolithically integrated in series to boost the approximately 0.4 V photovoltage per typical InGaAs junction to over 3 volts for the 1 sq cm chip. This chip was originally designed and characterized for free-space 1.3 micron laser power beaming. This is the first report of such a multijunction TPV. This is not a traditional tandem cell in which the junctions are stacked vertically. The junctions are each about 1mm long by 1 cm wide and are laterally connected across the 1 sq cm device area. This multijunction design has the potential for lower I(sup 2)R power loss since the smaller PN junction area limits the current to one-eighth that of the equivalent surface area. In essence, the current is traded for voltage to avoid the I(sup 2)R loss, analogous to the way power utilities avoid I(sup 2)P loss in high-tension power lines, by transforming the high current, low voltage generated at a power plant into a high voltage at a low current before transmitting the power over great distances.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-01-25
    Description: Progress is reported with respect to the development of ultra-lightweight, high performance, thin, light trapped GaAs solar cells for advanced space power systems. Conversion efficiencies of over 17.7% have been demonstrated for a 3 micron thick, 1 sq cm silicone bonded solar cell. This results in a specific power of over 1020 W/kg. Device parameters were 1.011 V open circuit voltage, 80% fill factor, and a short-circuit current density of 29.5 mA/sq cm . In addition to silicone bonding, the use of electrostatic bonding to attach the coverglass support to the front surface enables an ultra-thin, all back contact design that survives processing temperatures greater than 750 C. This also results in a 10% reduction of the cell weight for a potential specific power of 1270 W/kg. All back contact, ultra-thin, electrostatically bonded GaAs solar cell prototypes have been completed demonstrating an open circuit voltage of 1 volt for a cell base thickness of 1 micron with a 0.5 micron emitter. This technology will result in a revolutionary improvement in survivability, performance, and manufacturability of lightweight GaAs solar cell products for future Earth-orbiting science and space exploration missions. The thin, electrostatically bonded, all back contact GaAs device technology has multiple uses for specialty high performance solar cells and other optoelectronic devices.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-01-25
    Description: Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-01-25
    Description: It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-01-25
    Description: High-efficiency, heteroepitaxial (HE) InP solar cells, grown on GaAs, Si or Ge substrates, are desirable for their mechanically strong, light-weight and radiation-hard properties. However, dislocations, caused by lattice mismatch, currently limit the performance of the HE cells. This occurs through shunting paths across the active photovoltaic junction and by the formation of deep levels. In previous work we have demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of dislocations in specially designed HE InP test structures. In this work, we present the first report of successful hydrogen passivation in actual InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in HE n+n InP cell structures from as-grown values of approximately 10(exp 15)/cm(exp -3), down to 1-2 x 10(exp 13)/cm(exp -3). The deep levels in the p-type base region of the cell structure match those of our earlier p-type test structures, which were attributed to dislocations or related point defect complexes. All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. I-V analysis indicated a subsequent approximately 10 fold decrease in reverse leakage current at -1 volt reverse bias, and no change in the forward biased series resistance of the cell structure which indicates complete reactivation of the n+ emitter. Furthermore, electrochemical C-V profiling indicates greatly enhanced passivation depth, and hence hydrogen diffusion, for heteroepitaxial structures when compared with identically processed homoepitaxial n+p InP structures. An analysis of hydrogen diffusion in dislocated InP will be discussed, along with comparisons of passivation effectiveness for n+p versus p+n heteroepitaxial cell configurations. Preliminary hydrogen-passivated HE InP cell results will also be presented.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has produced some unexpected and important results. Two results, independent of the coverslide coatings, are of particular importance in terms of the predictability of GaAs solar-array lifetime in space: ( 1) The GaAs/Ge solar cells used for this series of tests displayed a much higher radiation degradation than that predicted based on JPL Solar Cell Radiation Handbook data. Covered cells degraded more in Isc than did bare cells. Short-term illumination at 60 C did not produce significant recovery (-1%) of the radiation damage. (2) However, electron radiation damage to these GaAs solar celIs anneals at 40 C when exposed to approximately 1 sun AM0 UV light sources for extended periods. The effect appears to be roughly linear with time (-1% of lsc per 1000 UVSH), is large (greater than or equal to 3%), and has not yet saturated (at 3000 hours). This photo-recovery of radiation damage to GaAs solar cells is a new effect and potentially important to the spacecraft community. The figure compares the effects of extended UV on irradiated and unirradiated GaAs solar cells with INTELSAT-6 Si cells. The effect and its generality, the extent of and conditions for photo-recovery, and the implications of such recovery for missions in radiation environments have not yet been determined.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-01-25
    Description: This proprietary technology is based on AstroPower's electrostatic bonding and innovative silicon solar cell processing techniques. Electrostatic bonding allows silicon wafers to be permanently attached to a thermally matched glass superstrate and then thinned to final thicknesses less than 25 micron. These devices are based on the features of a thin, light-trapping silicon solar cell: high voltage, high current, light weight (high specific power) and high radiation resistance. Monolithic interconnection allows the fabrication costs on a per watt basis to be roughly independent of the array size, power or voltage, therefore, the cost effectiveness to manufacture solar cell arrays with output powers ranging from milliwatts up to four watts and output voltages ranging from 5 to 500 volts will be similar. This compares favorably to conventionally manufactured, commercial solar cell arrays, where handling of small parts is very labor intensive and costly. In this way, a wide variety of product specifications can be met using the same fabrication techniques. Prototype solar cells have demonstrated efficiencies greater than 11%. An open-circuit voltage of 5.4 volts, fill factor of 65%, and short-circuit current density of 28 mA/sq cm at AM1.5 illumination are typical. Future efforts are being directed to optimization of the solar cell operating characteristics as well as production processing. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. These features make this proprietary technology an excellent candidate for a large number of consumer products.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-01-25
    Description: As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-01-25
    Description: Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-01-25
    Description: Indium phosphide (InP) solar cells are being made on silicon (Si) wafers (InP/Si) to take advantage of both the radiation-hardness properties of the InP solar cell and the light weight and low cost of Si wafers compared to InP or germanium (Ge) wafers. The InP/Si cell application is for long duration and/or high radiation orbit space missions. InP/Si cells have higher absolute efficiency after a high radiation dose than gallium arsenide (GaAs) or silicon (Si) solar cells. In this work, base electron diffusion lengths in the N/P cell are extracted from measured AM0 short-circuit photocurrent at various irradiation levels out to an equivalent 1 MeV fluence of 1017 1 MeV electrons/sq cm for a 1 sq cm 12% BOL InP/Si cell. These values are then checked for consistency by comparing measured Voc data with a theoretical Voc model that includes a dark current term that depends on the extracted diffusion lengths.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-01-25
    Description: An analysis embodied in a PC computer program is presented which quantitatively demonstrates how the availability of radiation hard solar cells can minimize the cost of a global satellite communication system. The chief distinction between the currently proposed systems, such as Iridium Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation within the earth's radiation belts can reduce the total system cost by as much as a factor of two, so long as radiation hard components including solar cells, can be used. A detailed evaluation of several types of planar solar cells is given, including commercially available Si and GaAs/Ge cells, and InP/Si cells which are under development. The computer program calculates the end of life (EOL) power density of solar arrays taking into account the cell geometry, coverglass thickness, support frame, electrical interconnects, etc. The EOL power density can be determined for any altitude from low earth orbit (LEO) to geosynchronous (GEO) and for equatorial to polar planes of inclination. The mission duration can be varied over the entire range planned for the proposed satellite systems. An algorithm is included in the program for determining the degradation of cell efficiency for different cell technologies due to proton and electron irradiation. The program can be used to determine the optimum configuration for any cell technology for a particular orbit and for a specified mission life. Several examples of applying the program are presented, in which it is shown that the EOL power density of different technologies can vary by an order of magnitude for certain missions. Therefore, although a relatively radiation soft technology can be made to provide the required EOL power by simply increasing the size of the array, the impact on the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global coverage systems range from $1 Billion to $9 Billion, the availability of radiation hard solar cells could make a decisive difference in the selection of a particular constellation architecture.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-01-25
    Description: Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater than the uncertainties in the analysis.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-01-25
    Description: In this paper we report the successful fabrication of large area, monolithic triple junction, n on p, GaInP2/GaAs/Ge cells. The highest open circuit voltage and cell efficiency (cell area: 4.078 sq cm) were measured at 2.573 V and 23.3%, respectively, under 1 sun, AMO illumination. To our knowledge, this is the highest single crystal, monolithic, two terminal triple junction cell efficiency demonstrated. In addition, excellent uniformity across a 3 inch diameter Ge substrates has also been achieved. An average cell efficiency of 22.8% across the 3 inch diameter wafer has been measured. We have also successfully fabricated welded cell-interconnect-cover (CIC) assemblies using these triple junction devices. The highest CIC efficiency was 23.2% (bare cell efficiency was 23.3%). The average efficiency for 25 CICs was 21.8%, which is very comparable to the 22.0% average bare cell efficiency before they were fabricated into the CICs. Finally, we have measured temperature coefficient and 1 MeV electron irradiation data. These will be presented in the paper.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-01-25
    Description: A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting minimal doping cross diffusion in the narrow space-charge region (approximately 1-5 nm) of the device. The fabrication of tandem devices using InP tunnel diodes as interconnect is in progress and will be reported at the conference.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-01-25
    Description: Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such as MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the 'array level' and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-01-25
    Description: Improvements to GaAs solar array performance, from the use on solar cell coverslides of several reflecting coatings that reject unusable portions of the solar spectrum, are quantified. Blue-red-rejection (BRR) coverslides provide both infrared reflection (IRR) and ultraviolet rejection (UVR). BRR coverslides were compared to conventional antireflection (AR) and ultraviolet (UV) coated coverslides. A 2% improvement in peak-power output, relative to that from Ar-coated coverslides, is seen for cells utilizing BRR coverslides with the widest bandpass. Coverslide BRR-filter bandpass width and covered-solar-cell short-circuit current is a function of incident light angle and the observed narrower-bandpass filters are more sensitive to change in angle from the normal than are wide-bandpass filters. The first long-term (3000 hours) UV testing of unirradiated and 1 MeV electron-irradiated GaAs solar cells, with multilayer-coated coverslides to reduce solar array operating temperature, has indicated that all multilayer coatings on coverslides and solar cells will experience degradation from the space environment (UV and/or electrons). Five types of coverslide coatings, designed for GaAs solar cells, were tested as part of a NASA-sponsored space-flight qualification for BRR, multi-layer-coated, coverslides. The reponse to the different radiations varied with the coatings. The extent of degradation and its consequences on the solar cell electrical characteristics depend upon the coatings and the radiation. In some cases, an improved optical coupling was observed during long-term UV exposure to the optical stack. The benefits of multi-layered solar cell optics may depend upon both the duration and the radiation environment of a mission.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-01-25
    Description: The first commercial communications satellite with gallium-arsenide on germanium (GaAs/Ge) solar arrays is scheduled for launch in December 1995. The spacecraft, named MEASAT, was built by hughes Space and Telecommunications company for Binariang Satellite Systems of Malaysia. The solar cell assemblies consisted of large area GaAs/Ge cells supplied by Spectrolab Inc. with infrared reflecting (IRR) coverglass supplied by Pilkington Space Technology. A comprehensive characterization program was performed on the GaAs/Ge solar cell assemblies used on the MEASAT array. This program served two functions; first to establish the database needed to accurately predict on-orbit performance under a variety of conditions; and second, to demonstrate the ability of the solar cell assemblies to withstand all mission environments while still providing the required power at end-of-life. characterization testing included measurement of electrical performance parameters as a function of radiation exposure, temperature, and angle of incident light; reverse bias stability; optical and thermal properties; mechanical strength tests, panel fabrication, humidity and thermal cycling environmental tests. The results provided a complete database enabling the design of the MEASAT solar array, and demonstrated that the GaAs/Ge cells meet the spacecraft requirements at end-of-life.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-01-25
    Description: The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 41
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-01-25
    Description: Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-power arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus (Photovoltaic Array Space Power Plus Diagnostics) experiment is an improved understanding fo parasitic current collection. We have done computer modeling of parasitic current collection and have examined current collection flight data from the first year of operations. Prior to the flight we did computer modeling to improve our understanding of the physical processes that control parasitic current collection. At high potentials, the current rapidly rises due to a phenomenon called snapover. Under snapover conditions, the equilibrium potential distribution across the dielectric surface is such that part of the area is at potentials greater than the first crossover of the secondary yield curve. Therefore, each incident electron generates more than one secondary electron. The net effect is that the high potential area and the collecting area increase. We did two-dimensional calculations for the various geometries to be flown. The calculations span the space of anticipated plasma conditions, applied potential, and material parameters. We used the calculations and early flight data to develop an analytic formula for the dependence of the current on the primary problem variables. The analytic formula was incorporated into the EPSAT computer code. EPSAT allows us to easily extend the results to other conditions. PASP Plus is the principal experiment integrated onto the Advanced Photovoltaic and Electronics Experiments (APEX) satellite bus. The experiment is testing twelve different solar array designs. Parasitic current collection is being measured for eight of the designs under various operational and environment conditions. We examined the current collected as a function of the various parameters for the six non-concentrator designs. The results are similar to those obtained in previous experiments and predicted by the calculations. We are using the flight data to validate the analytic formula developed. The formula can be used to quantify the parasitic current collected. Anticipating the parasitic current value allows the spacecraft designer to include this interaction when developing the design.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-01-25
    Description: A radioisotope thermophotovoltaic generator space power system (RTPV) is lightweight, low-cost alternative to the present radioisotope thermoelectric generator system (RTG). The fabrication of such an RTPV generator has recently become feasible as the result of the invention of the GaSb infrared sensitive photovoltaic cell. Herein, we present the results of a parametric study of emitters and optical filters in conjuction with existing data on gallium antimonide cells. We compare a polished tungsten emitter with an Erbia selective emitter for use in combination with a simple dielectric filter and a gallium antimonide cell array. We find that the polished tungsten emitter is by itself a very selective emitter with low emissivity beyond 4 microns. Given a gallium antimonide cell and a tungsten emitter, a simple dielectric filter can be designed to transmit radiant energy below 1.7 microns and to reflect radiant energy between 1.7 and 4 microns back to the emitter. Because of the low long wavelength emissivity associated with the polished tungsten emitter, this simple dielectric filter then yields very respectable system performance. Also as a result of the longer wavelength fall-off in the tungsten emissivity curve, the radiation energy peak for a polished tungsten emitter operating at 1300 K shifts to shorter wavelengths relative to the blackbody spectrum so that the radiated energy peak falls right at the gallium antimonide cell bandedge. The result is that the response of the gallium antimonide cell is well matched to a polished tungsten emitter. We propose, therefore, to fabricate an operating prototype of a near term radioisotope thermophotovoltaic generator design consisting of a polished tungsten emitter, standard gallium antimonide cells, and a near-term dielectric filter. The Jet Propulsion Laboratory will design and build the thermal cavity, and JX Crystals will fabricate the gallium antimonide cells, dielectric filters, and resultant receiver panels. With 250 Watts of heat input, we expect this prototype to produce over 300 Watts of electrical energy output for a system energy conversion efficiency of over 12%. This low risk, near term design provides advances relative to present radioisotope thermophotovoltaic generators and has the additional advantage of allowing component and system development and testing to begin immediately. Improved cells and filters can easily be incorporated in this baseline system if they should become available in the future.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-01-25
    Description: The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at Spire have been developing a single junction InP on Si cell, in an ONR-sponsored SBIR program. Both cell polarities were investigated and the best efficiencies to date (approximately 13% on a 2 x 4 sq cm cell) were achieved with n/p cells. Earlier this year NRL began a program with ASEC to develop a two terminal InP-InGaAs tandem cell on a Ge substrate. RTI and NREL are subcontractors on this program. The results of an ONR-sponsored study of the potential market for InP/Si cells will be discussed. Also the technical status of both the InP/Si and the InP-InGaAs/Ge programs will be given. The technical challenges still remaining will be briefly described.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-01-25
    Description: In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: The objective of this study was to examine the overall feasibility of deploying electromechanical flywheel systems in space used for excess energy storage. Results of previous Rocketdyne studies have shown that the flywheel concept has a number of advantages over the NiH2 battery, including higher specific energy, longer life and high roundtrip efficiency. Based on this prior work, this current study was broken into four subtasks. The first subtask investigated the feasibility of replacing the NiH2 battery orbital replacement unit (ORU) on the international space station (ISSA) with a flywheel ORU. In addition, a conceptual design of a generic flywheel demonstrator experiment implemented on the ISSA was completed. An assessment of the life cycle cost benefits of replacing the station battery energy storage ORU's with flywheel ORU's was performed. A fourth task generated a top-level development plan for critical flywheel technologies, the flywheel demonstrator experiments and its evolution into the production unit flywheel replacement ORU.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195422 , E-9367 , NAS 1.26:195422
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1167-1177
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: Most emerging unmanned undersea vehicle (UUV) missions require significantly longer range and endurance than is achievable with existing battery technology. The Aluminum-Oxygen (Al-O2) semi-cell is a candidate technology capable of providing a significant improvement in endurance compared to the silver-zinc battery technology currently used in UUVs and compares favorably to other proposed UUV power systems not only in performance, but also in safety and logistics. An Al-O2 semi-cell system is under development by Loral Defense Systems-Akron (Loral) for the ARPA/Navy 44 in. diameter UUV test vehicle. The power plant consists of a cell stack, gas management, oxygen storage, electrolyte management, coolant and controller subsystems, designed to replace the existing silver-zinc battery and meet existing weight, volume, electrical and thermal requirements, therefore minimizing modifications to the UUV. A detailed system design is complete. A component and material endurance test to evaluate compatibility and reliability of various material arid components is complete. Sub scale (Short stack) system testing is completed. A full-scale demonstration unit is now under construction in the second half of 1995. The full scale demonstration test will simulate environmental conditions of the operational system. This paper summarizes the results of the extensive short stack and endurance test programs, describes the plan for full-scale testing, and concludes with a brief discussions of future directions for this technology. This program is sponsored by ARPA Maritime Systems Technology Office under NASA contract NAS3-26715.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: The office of Space, DOE, appointed a Lunar Surface Power Working Group to review candidate systems for the First Lunar Outpost habitat. The working group met for a total of five days in the fall of 1992 and concluded that the candidate involving a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases was the most attractive for this application. Most of the volume (97 percent) and weight (63 percent) are taken up by the reactants and their storage tanks. Therefore, in my work for the Group, and in this report, I have concentrated on finding ways to reduce these volumes and weights. Three options were considered: (1) the baseline case considered in the preliminary system design, that of separate high pressure (200 bar) storage tanks; (2) the use of two of the descent storage propellant tanks wrapped with graphite fibers to increase the pressure capability; and (3) the use of cryogenic storage of reactants in the propellant tanks. The first option results in high storage tank mass and volume. The second option saves 90 percent of the volume by making use of the propellant tanks, but it has little if any weight advantages; the weight saved by not providing extra tanks for reactant storage is nearly entirely added back by the weight of the additional material (graphite fibers) to strengthen the propellant tanks. Use of the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids requires a gas liquefaction system. The weight of this system is expected to be less than that of the storage tanks but it would require development and testing to prove its reliability. The solar array would have to be 40 percent larger and the heat projection range would be 170 percent larger than for storage of reactants as high pressure gases. For a high power system (greater than 20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Space Electrochemical Research and Technology. Abstracts; p 23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: R and D projects on electricity generating wind turbines were conducted at the NASA Lewis Research Center from 1973 to 1988. Most projects were sponsored by the U.S. Department of Energy (DOE), a major element of its Federal Wind Energy Program. Another large wind turbine project was by the Bureau of Reclamation of the U.S. Department of Interior (DOI). From 1988 to 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. As part of these technology transfer activities, previously unpublished manuscripts have been assembled and presented here to share the wind turbine research results with the wind energy community. A variety of wind turbine technology topics are discussed: Wind and wake models; Airfoil properties; Structural analysis and testing; Control systems; Variable speed generators; and acoustic noise. Experimental and theoretical results are discussed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195432 , E-9439 , NAS 1.26:195432 , DOE/NASA/5776-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: A major program of research and development projects on wind turbines for generating electricity was conducted at the NASA Lewis Research Center from 1973 to 1988. Most of these projects were sponsored by the U.S. Department of Energy (DOE), as a major element of its Federal Wind Energy Program. One other large-scale wind turbine project was sponsored by the Bureau of Reclamation of the Department of Interior (DOI). The peak years for wind energy work at Lewis were 1979-80, when almost 100 engineers, technicians, and administrative personnel were involved. From 1988 their conclusion in 1995, NASA wind energy activities have been directed toward the transfer of technology to commercial and academic organizations. Wind energy activities at NASA can be divided into two broad categories which are closely related and often overlapping: (1) Designing, building, and testing a series of 12 large-scale, experimental, horizontal-axis wind turbines (HAWT's); and (2) conducting supporting research and technology (SR&T) projects. The purpose of this bibliography is to assist those active in the field of wind energy in locating the technical information they need on wind power planning, wind loads, turbine design and analysis, fabrication and installation, laboratory and field testing, and operations and maintenance. This bibliography contains approximately 620 citations of publications by over 520 authors and co-authors. Sources are: (1) NASA reports authored by government grantee, and contractor personnel, (2) papers presented by attendees at NASA-sponsored workshops and conferences, (3) papers presented by NASA personnel at outside workshops and conferences, and (4) outside publications related to research performed at NASA/ DOE wind turbine sites.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-195462 , E-9597 , NAS 1.26:195462 , DOE/NASA/5776-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-198945 , NAS 1.26:198945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This document contains abstracts of the proceedings of NASA's fifth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on May 1-3, 1995. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: (1) the electrochemical interface, (2) the next generation in aerospace batteries and fuel cells, and (3) electrochemistry for non-energy storage applications. This document contains the abstracts of the papers presented.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CP-10172 , E-9609 , NAS 1.55:10172 , May 01, 1995 - May 03, 1995; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The proceedings of the 27th Annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on November 15-17, 1994 are presented. The workshop was attended by representatives from various government agencies, as well as contractors and manufacturers, both U.S. and abroad. The subjects covered included: (1) nickel-cadium; (2) nickel-hydrogen, (3) nickel-metal hydride, and (4) lithium based technologies, as well as flight and ground test data.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CP-3292 , M-772 , NAS 1.55:3292 , Nov 15, 1994 - Nov 17, 1994; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TM-106879 , E-9515 , NAS 1.15:106879 , First World Conference on Photovoltaic Energy Conversion; Dec 05, 1994 - Dec 09, 1994; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: During a 22-month period from February 1991 to December 1993, a dedicated group of students, faculty, and staff at California State University, Los Angeles completed a project to design, build, and race their second world class solar-powered electric vehicle, the Solar Eagle 2. This is the final report of that project. As a continuation of the momentum created by the success of the GM-sponsored Sunrayce USA in 1990, the U.S. Department of Energy (DOE) picked up the banner from General Motors as sponsors of Sunrayce 93. In February 1991, the DOE sent a request for proposals to all universities in North America inviting them to submit a proposal outlining how they would design, build, and test a solar-powered electric vehicle for a seven-day race from Arlington, Texas to Minneapolis, Minnesota, to be held in June 1993. Some 70 universities responded. At the end of a proposal evaluation process, 36 universities including CSLA were chosen to compete. This report documents the Solar Eagle 2 project--the approaches take, what was learned, and how our experience from the first Solar Eagle was incorporated into Solar Eagle 2. The intent is to provide a document that would assist those who may wish to take up the challenge to build Solar Eagle 3.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-198043 , NAS 1.26:198043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TM-106870 , E-9489 , NAS 1.15:106870 , World Conference on Photovoltaic Energy Conversion; Dec 05, 1994 - Dec 09, 1994; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TM-106830 , E-9380 , NAS 1.15:106830 , World Conference on Photovoltaic Energy Conversion; Dec 05, 1994 - Dec 09, 1994; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-TM-106820 , E-9362 , NAS 1.15:106820 , World Conference on Photovoltaic Energy Conversion; Dec 05, 1994 - Dec 09, 1994; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-199698 , NAS 1.26:199698 , NIPS-95-05961
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NPO-14787
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at the ten nodal points on each facet; and 5) color contour plots of receiver incident flux distribution generated by PATRAN processing of FORTRAN computer code output. OFFSET output includes a file of input data for confirmation, a PATRAN results file containing the values necessary to plot the flux distribution at the receiver surface, a PATRAN results file containing the intensity distribution on a 40 x 40 cm area of the receiver aperture plane, a data file containing calculated information on the system configuration, a file including the X-Y coordinates of the target points of each collector facet on the aperture opening, and twelve P/PLOT input data files to allow X-Y plotting of various results data. OFFSET is written in FORTRAN (70%) for the IBM VM operating system. The code contains PATRAN statements (12%) and P/PLOT statements (18%) for generating plots. Once the program has been run on VM (or an equivalent system), the PATRAN and P/PLOT files may be transferred to a DEC VAX (or equivalent system) with access to PATRAN for PATRAN post processing. OFFSET was written in 1988 and last updated in 1989. PATRAN is a registered trademark of PDA Engineering. IBM is a registered trademark of International Business Machines Corporation. DEC VAX is a registered trademark of Digital Equipment Corporation.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: LEW-14778
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 31; 3; p. 530-532
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: The Simplified Calculation of Solar Flux Distribution on the Side Wall of Cylindrical Cavity Solar Receivers program employs a simple solar flux calculation algorithm for a cylindrical cavity type solar receiver. Applications of this program include the study of solar energy, heat transfer, and space power-solar dynamics engineering. The aperture plate of the receiver is assumed to be located in the focal plane of a paraboloidal concentrator, and the geometry is assumed to be axisymmetric. The concentrator slope error is assumed to be the only surface error; it is assumed that there are no pointing or misalignment errors. Using cone optics, the contour error method is utilized to handle the slope error of the concentrator. The flux distribution on the side wall is calculated by integration of the energy incident from cones emanating from all the differential elements on the concentrator. The calculations are done for any set of dimensions and properties of the receiver and the concentrator, and account for any spillover on the aperture plate. The results of this algorithm compared excellently with those predicted by more complicated programs. Because of the utilization of axial symmetry and overall simplification, it is extremely fast. It can be easily extended to other axi-symmetric receiver geometries. The program was written in Fortran 77, compiled using a Ryan McFarland compiler, and run on an IBM PC-AT with a math coprocessor. It requires 60K of memory and has been implemented under MS-DOS 3.2.1. The program was developed in 1988.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NPO-17732
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, The 28th Aerospace Mechanisms Symposium; p 17-34; NASA-CP-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The Second Annual International Space University Alumni Conference; p 8-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-31
    Description: Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 643-651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: Tests to establish current-voltage characteristics at selected temperatures for 9 a-h Super Nickel-Cadmium cells were conducted at Hughes Industrial Electronics Company's Electron Dynamics Division (HIEC/EDD) under sponsorship of NASA/GSFC through their prime spacecraft contractors Fairchild Space (SMEX/SAMPEX) and TRW (TOMSEP). Curves were constructed using techniques established by Webster, Ford, et al, at NASA/GSFC in the late 1960's - early 1970's time period for conventional nickel cadmium cells used on OAO and OSO aircraft. The NASA/GSFC techniques were slightly modified by HIEC/EDD to fit the Super Ni-Cd situation.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 599-606
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The question of the best approach for battery charge control is addressed from two points of view: from the battery point-of-view; and from the spacecraft/mission point-of-view. In terms of performance, more aggressive charging can result in higher discharge voltage and capacity; however, aggressive charging usually implies more overcharge at higher rates and a concomitant higher end of charge temperature (higher stress, shorter life). In terms of life, benign charging can result in lower discharge voltage and capacity (poorer performance). Additionally, benign, or low stress charging, usually implies less overcharge at lower rates with lower end of charge temperature (lower stress, longer life). A discussion of these topics is presented in viewgraph form.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 585-588
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 63-79
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-31
    Description: SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 247-256
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 197-201
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-31
    Description: Radiation damage results from two-terminal monolithic InP/Ga(0.47)In(0.53)As tandem solar cells subject to 1 MeV electron irradiation are presented. Efficiencies greater than 22 percent have been measured by the National Renewable Energy Laboratory from 2x2 sq cm cells at 1 sun, AMO (25 C). The short circuit current density, open circuit voltage and fill factor are found to tolerate the same amount of radiation at low fluences. At high fluence levels, slight differences are observed. Decreasing the base amount of radiation at the Ga(0.47)In(0.53)As bottomcell improved the radiation resistance of J(sub sc) dramatically. This is turn, extended the series current flow through the subcell substantially up to a fluence of 3x10(exp 15) cm(exp -2) compared to 3x10(exp 14) cm(exp -2), as observed previously. The degradation of the maximum power output form tandem device is comparable to that from shallow homojunction (SHJ) InP solar cells, and the mechanism responsible for such degradation is explained in terms of the radiation response of the component cells. Annealing studies revealed that the recovery of the tandem cell response is dictated by the annealing characteristics exhibited by SHJ InP solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 159-166
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 141-146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 125-134
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-31
    Description: This paper describes ultra-lightweight, high performance, thin, light trapping GaAs solar cells for advanced space power systems. The device designs can achieve 24.5 percent efficiency at AMO and 1X conditions, corresponding to a power density of 330 W/m2. A significant breakthrough lies in the potential for a specific power of 2906 W/kg because the entire device is less than 1.5 microns thick. This represents a 440 percent improvement over conventional 4-mil silicon solar cells. In addition to being lightweight, this thin device design can result in increased radiation tolerance. The attachment of the cover glass support to the front surface has been demonstrated by both silicone and electrostatic bonding techniques. Device parameters of 1.002 volts open-circuit voltage, 80 percent fill factor, and a short-circuit current of 24.3 mA/sq cm have been obtained. This demonstrates a conversion efficiency of 14.4 percent resulting in a specific power of 2240 W/kg. Additionally, this new technology offers an alternative approach for enabling multi-bandgap solar cells and high output space solar power devices. The thin device structure can be applied to any 3-5 based solar cell application, yielding both an increase in specific power and radiation tolerance.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 107-114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-31
    Description: Indium phosphide (InP) P-on-N one-sun solar cells were epitaxially grown using a metalorganic chemical vapor deposition process on germanium (Ge) wafers. The motivation for this work is to replace expensive InP wafers, which are fragile and must be thick and therefore heavy, with less expensive Ge wafers, which are stronger, allowing use of thinner, lighter weight wafers. An intermediate InxGs1-xP grading layer starting as In(0.49)Ga(0.51) at the GaAs-coated Ge wafer surface and ending as InP at the top of the grading layer (backside of the InP cell) was used to attempt to bend some of the threading dislocations generated by lattice-mismatch between the Ge wafer and InP cell so they would be harmlessly confined in this grading layer. The best InP/Ge cell was independently measured by NASA-Lewis with a one-sun 25 C AMO efficiently measured by NASA-Lewis with a one-circuit photocurrent 22.6 mA/sq cm. We believe this is the first published report of an InP cell grown on a Ge wafer. Why get excited over a 9 percent InP/Ge cell? If we look at the cell weight and efficiency, a 9 percent InP cell on an 8 mil Ge wafer has about the same cell power density, 118 W/kg (BOL), as the best InP cell ever made, a 19 percent InP cell on an 18 mil InP wafer, because of the lighter Ge wafer weight. As cell panel materials become lighter, the cell weight becomes more important, and the advantage of lightweight cells to the panel power density becomes more important. In addition, although InP/Ge cells have a low beginning-of-life (BOL) efficiency due to dislocation defects, the InP/Ge cells are very radiation hard (end-of-life power similar to beginning-of-life). We have irradiated an InP/Ge cell with alpha particles to an equivalent fluence of 1.6 x 10(exp 16) 1 MeV electrons/sq cm and the efficiency is still 83 percent of its BOL value. At this fluence level, the power output of these InP/Ge cells matches the GaAs/Ge cell data tabulated in the JPL handbook. Data are presented indicating InP/Ge has more power output than GaAs/Ge cells at fluences in excess of this value.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 91-98
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-31
    Description: InP on Si solar cells combine the low-cost and high-strength of Si with the high efficiency and radiation tolerance of InP. The main obstacle in the growth of single crystal InP-on-Si is the high residual strain and high dislocation density of the heteroepitaxial InP films. The dislocations result from the large differences in lattice constant and thermal expansion mismatch of InP and Si. Adjusting the size and geometry of the growth area is one possible method of addressing this problem. In this work, we conducted a material quality study of liquid phase epitaxy overgrowth layers on selective area InP grown by a proprietary vapor phase epitaxy technique on Si. The relationship between growth area and dislocation density was quantified using etch pit density measurements. Material quality of the InP on Si improved both with reduced growth area and increased aspect ratio (length/width) of the selective area. Areas with etch pit density as low as 1.6 x 10(exp 4) sq cm were obtained. Assuming dislocation density is an order of magnitude greater than etch pit density, solar cells made with this material could achieve the maximum theoretical efficiency of 23% at AMO. Etch pit density dependence on the orientation of the selective areas on the substrate was also studied.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 81-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The current space PV (photovoltaic) technology development program of ESA is described. The program is closely coupled to the European space mission scenario for the next 10 year period and has as its main objective to make the most effective use of the limited resources available for technology in the present economical climate. This requires a well-balanced approach between concentration on very few options and keeping the competition alive if more than one promising technology exists. The paper describes ESA's main activities in the areas of solar array technology, solar cell technology, solar cell assembly technology, and special test and verification activities including the in-orbit demonstration of new technologies.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 35-39
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-31
    Description: Funding for the terrestrial photovoltaic's program is $78 million in 1994. This is more than double the minimum level reached in 1989 and runs counter to the general trend of decreasing budgets for Department of Energy (DOE) programs. During the past five years, the program has expanded its mission from research and development to also address manufacturing technology and commercialization assistance. These new activities are directed toward revitalizing the market to reinstate the rapid rate of sales growth needed to attract investment. The program is approaching balance among efforts in each of the three areas. This translates to a reduction in some of the R & D activities of most relevance to the space power community. On the other hand, some of the advancements in manufacturing may finally bring thin-film technologies to reality for space arrays. This talk will describe the status and direction of DOE program with an eye toward highlighting its impact on technology of interest for space.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 31-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-31
    Description: We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 43-51
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-31
    Description: Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 135-140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-31
    Description: InP-based multijunction tandem solar cells show great promise for the conversion efficiency (eta) and high radiation resistance. InP and its related ternary and quanternary compound semiconductors such as InGaAs and InGaAsP offer desirable combinations for energy bandgap values which are very suitable for multijunction tandem solar cell applications. The monolithically integrated InP/In(0.53)Ga(0.47)As tandem solar cells are expected to reach efficiencies above 30 percent. Wanlass, et.al., have reported AMO efficiencies as high as 20.1% for two terminal cells fabricated using atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). The main limitations in their technique are first related to the degradation of the intercell ohmic contact (IOC), in this case the In(0.53)Ga(0.47)As tunnel junction during the growth of the top InP subcell structure, and second to the current matching, often limited by the In(0.53)Ga(0.47)As bottom subcell. Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450 C - 530 C). In a recent report it was shown that cost-wise CBE is a breakthrough technology for photovoltaic (PV) solar energy progress in the energy conversion efficiency of InP-based solar cells fabricated using chemical beam epitaxy. This communication summarizes our recent results on PV devices and demonstrates the strength of this new technology.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 53-61
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 13-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-31
    Description: The Goddard Space Flight Center (GSFC) develops and operates a wide variety of spacecraft for conducting NASA's communications, space science, and earth science missions. Some are 'in house' spacecraft for which the GSFC builds the spacecraft and performs all solar array design, analysis, integration, and test. Others are 'out of house' spacecraft for which an aerospace contractor builds the spacecraft and develops the solar array under direction from GSFC. The experience of developing flight solar arrays for numerous GSFC 'in house' and 'out of house' spacecraft has resulted in an understanding of solar array requirements for many different applications. This presentation will review those solar array requirements that are common to most GSFC spacecraft. Solar array technologies will be discussed that are currently under development and that could be useful to future GSFC spacecraft.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 1-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: Energy conversion efficiency is an important parameter for solar cells, and well reported in the literature. However, solar cells heat up in sunlight, and the efficiency decreases. The temperature coefficient of the conversion efficiency is thus also extremely important, especially in mission modeling, but is much less well reported. It is of value to have a table which compiles into a single document values of temperature coefficients reported in the literature. In addition to modeling performance of solar cells in Earth orbit, where operating temperatures may range from about 20 C to as high as 85 C, it is of interest to model solar cells for several other recently proposed missions. These include use for the surface of Mars, for solar electric propulsion missions that may range from Venus to the Asteroid belt, and for laser-photovoltaic power that may involve laser intensities equivalent several suns. For all of these applications, variations in operating temperature away from the nominal test conditions result in significant changes in operating performance. In general the efficiency change with temperature is non-linear, however, in the range from negative 100 C through room temperature to a few hundred degrees C, efficiency is usually quite well modeled as a linear function of temperature (except for a few unusual cell types, such as amorphous silicon, and for extremely low bandgap cells, such as InGaAs).
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 385-399
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 353-362
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: Concentrator arrays offer a number of generic benefits for space (i.e. high array efficiency, protection from space radiation effects, minimized plasma interactions, etc.). The line-focus refractive concept, however, also offers two very important advantages: (1) relaxation of precise array tracking requirements to only a single axis and (2) low-cost mass production of the lens material. The linear refractive concentrator can be designed to provide an essentially flat response over a wide range of longitudinal errors for satellites having only single-axis tracking capability. New panel designs emphasize light weight, high stiffness, storability, and ease of manufacturing and assembly. This paper addresses the current status of the concentrator program with special emphasis on the design implications, and flexibility, of using a linear refractive concentrator lens as well as details recent fabrication of prototype hardware.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 313-322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: In 1993 two ESA solar power generators were successfully retrieved from space: EURECA with its 10 panel rigid array in August, after 11 months in a 500 km orbit, and one of the two flexible Hubble Space Telescope (HST) arrays in December, after almost 4 years in a 600 km orbit. Both solar generators are undergoing separate post-flight investigation programs (PFIP). These programs cover investigations of all solar array (SA) components and mechanisms. Since both programs have much in common, most of the component and material investigations are the same. Extremely valuable information on numerous essential subjects, such as atomic oxygen, radiation, meteoroid and space debris environment resulting damage, low cycle fatigue, material degradation, etc. are expected to be obtained for both types of arrays. We will also be able to explain and understand the anomalies experienced on both solar arrays in orbit. The paper will outline both post-flight investigation programs and will concentrate on reporting the first results and findings.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 269-283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: Solar cells at potentials positive with respect to a surrounding plasma collect electrons. Current is collected by the exposed high voltage surfaces: the interconnects and the sides of the solar cells. This current is a drain on the array power that can be significant for high-voltage arrays. In addition, this current influences the current balance that determines the floating potential of the spacecraft. One of the objectives of the Air Force (PL/GPS) PASP Plus experiment is an improved understanding of parasitic current collection. As part of the PASP Plus program, we are using computer modeling to improve our understanding of the physical processes that control parasitic current collection.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 227-235
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A 4000 hour experiment, conducted in late 1992 through mid 1993, confirmed earlier results on the ultraviolet damage effects in covered solar cells of various types being used, or proposed for use, in INTELSAT programs. Two different UV test systems were used to identify systematic errors and to study the effects of UV source-bulb age on degradation rate. After correction for contamination and UV source-bulb aging, the extrapolated degradation rates for irradiated and unirradiated INTELSAT-5, -6 single AR(SAR) coated cells and INTELSAT-7, -7A, -8 double layer AR(DAR) coated cells in both the 1993 tests confirm the following hypotheses resulting from the 1992 experiment. (a) Irradiated cells display significantly more UV degradation than do the unirradiated cells for tests exceeding 2000 hours. The new data indicates that degradation effects from electron irradiation are proportional to t(exp 2) (the square of the UV hours), at least for times less than or equal to 3000 hours. (b) This difference does not depend upon entire reflective coating, cell resistivity, or manufacturer within the sensitivity and reproducibility of the experiment. (c) There is a clear difference in degradation rate between single AR coated cells (TiO(x)) and double layer AR coated cells (SiO(x) and Al2O3?). At 100,000 hours (11.4 years) the DAR coated cells display more degradation than do the SAR coated cells, even though at 1,000 hours the DAR cells display less degradation. (d) UV degradation rates, to modern covered silicon solar cells, at the beginning of bulb life drop from approximately 2 times the average rate to near zero after 2000 hours (average end-of-life for the xenon short-arc lamps used in the tests). The effects of 1 MeV electron irradiation (10(exp 15) e(-)/sq cm) prior to UV exposure are clearly indicated in the plot of percent change in cell open circuit voltage (Voc) versus percent change in short circuit current (Isc) during the UV test and post-test cleanup of the cells. Clearly, extended UV testing produces a permanent photo-induced redegradation of previously irradiated cells. However, this photo-induced redegradation may be caused by the long-wavelength light, not the UV light.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 223-225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: The Astro Edge solar array is a new and innovative low concentrator power generating system which has been developed for applications requiring high specific power, high stiffness, low risk, light modular construction which utilizes conventional materials and technology, and standard photovoltaic solar cells and laydown processes. Mechanisms, restraint/release devices, wiring harnesses, substrates, and support structures are designed to be simple, functional, lightweight, and modular. A brief overview of the Astro Edge solar array is discussed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 323-331
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: The Advanced Photovoltaic Experiment (APEX) was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. In addition to the cells, it was equipped with an absolute cavity radiometer to measure solar intensity, a spectroradiometer to measure the spectral content of this radiation, and a sun angle sensor. Data from the solar cells and various sensors was obtained on a daily basis during the first eleven months of the 69 month flight. We compare pre-flight and post-flight laboratory measurements with on-orbit calibration data. Pre-flight and post-flight calibration data for the cavity radiometers as well as on-orbit data demonstrated the accuracy and durability of the Eppley Labs instrument flown on APEX.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 239-246
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: At the last SPRAT conference, the Naval Research Laboratory (NRL) presented results from two experiments. One studied n+p diffused junction (DJ) InP solar cells, and the other studied n+p shallow homojunction (SHJ) InP mesa diodes grown by metalorganic chemical vapor deposition (MOCVD). The former work showed that a DJ solar cell in which the maximum power P(sub max) had been degraded by nearly 80 percent under irradiation recovered completely under short circuit illumination at 450K. The recovery was accompanied by the removal of all but one of the radiation-induced defect levels. The latter work, on the other hand, showed that the radiation-induced defects in the SHJ diodes did not anneal until the temperature reached 650K. These results suggest that an irradiated DJ solar cell, under illumination, will anneal at a temperature 200K lower than an irradiated SHJ cell. This is an unexpected result considering the similarity of the devices. The goal of the present research is to explain this different behavior. This paper investigates two points which arose from the previous studies. The first point is that the DJ cells were annealed under illumination while the SHJ diodes were annealed without bias. The second point investigated here is that the emitters of the DJ and SHJ devices were significantly different.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 203-212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 187-196
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 167-180
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Proceedings of the 13th Space Photovoltaic Research and Technology Conference (SPRAT 13); p 149-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-31
    Description: This document presents in viewgraph format information on bipolar battery development at Johnson Controls, Incorporated. The organization structure, goals, progress to date, future plans, and battery parameters and electrical properties are given.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: The 1993 NASA Aerospace Battery Workshop; p 753-771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: This paper presents in viewgraph format an overview of NASDA's evaluation of commercial nickel metal-hydride (Ni-MH) cells and the development and testing of Ni-MH cells for use in space. The commercial cells are concluded to be feasible and suitable for use in LEO; for GEO, the durability for overcharge is needed because long-term charge retention is required. For the aerospace Ni-MH cell design, two activation procedures are applied to evaluate the effect of the difference in the amount of overcharge protection and precharge. Specific energy of the Ni-MH cell is nearly accomplished at 50 Wh/kg. Initial characteristics indicate the effect derived from precharge. Thirty-five amp-hour class Ni-MH cells have good performance for LEO cycle of 25 and 40 percent DOD up to 3000 cycles as similar to commercial cells. The effect of the difference in the amount of overcharge protection will appear in life test.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 653-685
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: To perform heat flow measurements on batteries, it is necessary to consider the following requirements: establish thermal neutral potential; identify inefficient charging; understand self discharge mechanisms; and provide accurate voltage/temperature data. A discussion is provided in viewgraph format.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 627-639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity. The pressure is measured with a calibrated strain gage mounted on the outside of the pressurized cell.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Marshall Space Flight Center, The 1993 NASA Aerospace Battery Workshop; p 405-422
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...