ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 101
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 257782 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 25033 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 23254 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-02-29
    Description: Dinoflagellate cysts have been determined in sediments of core DP30PC on a resolution of 1 sample per 2.5 mm core depth (representing approximately 3 year) and 119.65 - 180.4 cm core depth. These data form the basis of high temporal resolution temperature and precipitation reconstructions for Roman times between about 200 BCE and 600 CE (ca. 205 BCE - 605 CE).
    Keywords: 64PE297; Age; Ataxiodinium choane; Bitectatodinium tepikiense; Center for Marine Environmental Sciences; Counting, dinoflagellate cysts; DEPTH, sediment/rock; Dinoflagellate cyst, other; Dinoflagellate cyst, warm water/cold water, ratio; Dinoflagellate cyst reworked; Discharge index; DP30PC; elements; Impagidinium aculeatum; Impagidinium paradoxum; Impagidinium patulum; Impagidinium plicatum; Impagidinium sphaericum; Impagidinium strialatum; Lingulodinium polyedrum; MARUM; Mediterranean; Nematosphaeropsis labyrinthus; Operculodinium israelianum; PC; Pelagia; Piston corer; Polysphaeridium zoharyi; Pseudoschizea spp.; Pyxidinopsis reticulata; Roman Climate Optimum; Spiniferites elongatus; Spiniferites mirabilis; Spiniferites ramosus; Tectatodinium pellitum; Temperature, water; Tuberculodinium vancampoae; volcanic glass shards
    Type: Dataset
    Format: text/tab-separated-values, 6092 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 27270 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 29012 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 267840 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, MEISEI, RS11G; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 24245 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-02-29
    Description: Surveys of seagrass morphometrics were conducted as part of a large-scale seagrass ecosystem services assessment conducted across five countries: Malaysia, Indonesia, Thailand, Philippines and Timor-Leste under the International Climate Initiative (IKI): Seagrass Ecosystem Services Project (https://www.dugongseagrass.org/projects/seagrass-ecosystem-services-project/), between July 2022 and April 2023. Data points were selected by local NGO's and/or community members. Five random 0.25 m² quadrats were placed around each Baited Remote Underwater Video system (BRUV) point, where data on seagrass cover, seagrass species composition, algae cover, canopy height, epiphyte cover and sediment type were recorded (modified from Jones et al., 2021). Data were collected from a total of 880 quadrats, observing nine seagrass species across Indo-Pacific sample sites.
    Keywords: According to McKenzie et al. (2003); Algae, cover; Area/locality; BRUV; Canopy height; Country; Cymodocea rotundata, cover; DATE/TIME; Enhalus acoroides, cover; Epiphytes, cover; Event label; GPS, Garmin, GPSMAP 79s; Halodule pinifolia, cover; Halodule uninervis, cover; Halophila ovalis, cover; ID_Ba_1; ID_Ba_10; ID_Ba_2; ID_Ba_3; ID_Ba_4; ID_Ba_5; ID_Ba_6; ID_Ba_7; ID_Ba_8; ID_Ba_9; ID_Bu_1; ID_Bu_10; ID_Bu_11; ID_Bu_12; ID_Bu_2; ID_Bu_3; ID_Bu_4; ID_Bu_5; ID_Bu_6; ID_Bu_7; ID_Bu_8; ID_Bu_9; ID_Ta_1; ID_Ta_10; ID_Ta_11; ID_Ta_12; ID_Ta_2; ID_Ta_3; ID_Ta_4; ID_Ta_5; ID_Ta_6; ID_Ta_7; ID_Ta_8; ID_Ta_9; Identification; Indonesia; Indo-Pacific; LATITUDE; LONGITUDE; Malaysia; MULT; Multiple investigations; MY_Set_1; MY_Set_2; MY_Set_3; MY_Set_4; MY_Set_5; MY_Set_6; Oceana serrulata, cover; PH_Ba_1; PH_Ba_2; PH_Bv_1; PH_Bv_2; PH_Che_4; PH_Che_5; PH_Che_6; PH_Dia_3; PH_Dia_4; PH_Dia_5; PH_GIE_1; PH_GIE_2; PH_GIE_3; PH_GIE_4; PH_GIE_5; PH_GIW_1; PH_GIW_2; PH_GIW_3; PH_GIW_4; PH_GIW_5; PH_GIW_6; PH_JI_1; PH_JI_10; PH_JI_11; PH_JI_12; PH_JI_13; PH_JI_14; PH_JI_15; PH_JI_16; PH_JI_17; PH_JI_18; PH_JI_19; PH_JI_2; PH_JI_20; PH_JI_21; PH_JI_22; PH_JI_23; PH_JI_3; PH_JI_4; PH_JI_5; PH_JI_6; PH_JI_7; PH_JI_8; PH_JI_9; PH_Mac_1; PH_Mac_2; PH_Mac_3; PH_Mad_1; PH_Mad_2; PH_Mad_3; PH_Mad_4; PH_Mad_5; PH_Mad_6; PH_Mang_1; PH_Mang_2; PH_Mang_3; PH_Ocam_1; PH_Ocam_10; PH_Ocam_2; PH_Ocam_3; PH_Ocam_4; PH_Ocam_5; PH_Ocam_6; PH_Ocam_7; PH_Ocam_8; PH_Ocam_9; PH_Tag_1; PH_Tag_2; PH_Tag_3; Philippines; Quadrat number; Seagrass; Seagrass, cover; seagrass ecosystem services; seagrass traits; Season; Sediment type; Site; small-scale fishery; Species richness level; Syringodium isoetifolium, cover; TH_Mook_1; TH_Mook_10; TH_Mook_11; TH_Mook_12; TH_Mook_13; TH_Mook_14; TH_Mook_15; TH_Mook_16; TH_Mook_17; TH_Mook_18; TH_Mook_19; TH_Mook_2; TH_Mook_20; TH_Mook_21; TH_Mook_22; TH_Mook_23; TH_Mook_24; TH_Mook_25; TH_Mook_26; TH_Mook_27; TH_Mook_28; TH_Mook_29; TH_Mook_3; TH_Mook_30; TH_Mook_31; TH_Mook_32; TH_Mook_33; TH_Mook_34; TH_Mook_35; TH_Mook_36; TH_Mook_37; TH_Mook_38; TH_Mook_39; TH_Mook_4; TH_Mook_40; TH_Mook_41; TH_Mook_42; TH_Mook_43; TH_Mook_44; TH_Mook_45; TH_Mook_46; TH_Mook_47; TH_Mook_48; TH_Mook_49; TH_Mook_5; TH_Mook_50; TH_Mook_6; TH_Mook_7; TH_Mook_8; TH_Mook_9; TH_Suk_1; Thailand; Thalassia hemprichii, cover; Thalassodendron ciliatum, cover; Timor-Leste; TL_Bel_1; TL_Bel_2; TL_Bel_3; TL_Bel_4; TL_Bel_5; TL_Bel_6; TL_Bel_7; TL_Bel_8; TL_Biq_1; TL_Biq_2; TL_Biq_3; TL_Biq_4; TL_Biq_5; TL_Biq_6; TL_Biq_7; TL_Biq_8
    Type: Dataset
    Format: text/tab-separated-values, 21120 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-02-28
    Keywords: AGE; Age, 14C calibrated; age depth model; Aluminium; Beckman Coulter Laser diffraction particle size analyzer LS 13 320; Calcium; Color, a*; Color, b*; Color, L*, lightness; COR1404; COR1404-003PC; Coriolis II; Depth, reconstructed; DEPTH, sediment/rock; elemental geochemistry; Grain size, mean; Grain size data; Gulf of San Jorge; Gulf of San Jorge, Argentina; Iron; magnetic susceptibility; Magnetic susceptibility; Manganese; MARGES; Multi-Sensor Core Logger (MSCL), GEOTEK; Olympus InnovX Delta portable XRF; Patagonia; PC; Percentile 10; Percentile 50; Percentile 90; Piston corer; Potassium; Rubidium; Silicon; Size fraction 〉 2 mm, gravel; Spectrophotometer Minolta CM-260; Strontium; Titanium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 6167 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-02-28
    Description: The dataset is raw diatom counts (minimum 250 count size) from a sediment core taken from within high saltmarsh at the mouth of Dronning Marie Dal in south east Greenland (63.470N, -41.925W). The data was collected on 19/07/2014 during a research cruise to the area as part of the X_Centuries research project funded by the Danish Council for Independent Research 30 (FNU) (grant no. DFF-0602-02526B). The core was taken using a spade to dig a shallow pit from which a sediment section was extracted, wrapped in plastic and transported to the laboratory. Diatom samples were taken from the sediment core in the laboratory at 0.25 and 0.5 cm intervals using a scalpel. Sediment samples were prepared for diatom analysis using standard methods (Palmer and Abbott 1986). Counts were taken under a light microscope at 400x magnification. Only unbroken valves were counted. The taxonomy follows Van der Werff and Huls (1958-74), Hartley (1996) and Patrick and Reimer (1966, 1975). The core top elevation was surveyed in the field using a Sokkisha level to mean tide level, established via a pressure transducer that logged tidal variations at 15-min intervals at Timmiarmiut, 100 km to the South, during fieldwork. These tidal levels were related to tidal predictions at Tasiilaq, 300 km to the NE. This data was collected to reconstruct recent (last ~300 years) of relative sea-level changes from this area, in conjunction with the modern diatom training set also collected from this location.
    Keywords: Achnanthes exigua; Achnanthes sp.; Achnanthidium minutissimum; Amphora exigua; Amphora ovalis; Caloneis borealis; Cavinula variostriata; Ceratoneis arcus; Cocconeis scutellum; Core; CORE; Cosmioneis pusilla; Counting, diatoms; Delphineis surirella; DEPTH, sediment/rock; Diadesmis contenta; diatoms; Diploneis didyma; Diploneis interrupta; DMD-14-3; Dronning Marie Dal, southeast Greenland; Encyonema minutum; Eunotia exigua; Eunotia praerupta; Eunotia serra; Fallacia forcipata; Fragilaria vaucheriae; Fragilariforma virescens; Frustulia linkei; Frustulia rhomboides; Luticola mutica; Meridion circulare; Navicula brockmanni; Navicula cincta; Navicula digitoradiata; Navicula eta; Navicula flanatica; Navicula peregrina; Navicula rhynchocephala; Navicula salinarum; Nedium sp.; Nitzschia frustulum; Nitzschia fruticosa; Nitzschia linearis; Nitzschia obtusa; Nitzschia palea; Nitzschia palustris; Number; Opephora marina; Paralia sulcata; Pinnularia borealis; Pinnularia intermedia; Pinnularia microstauron; Pinnularia subcapitata; Pinnularia viridis; Placoneis elginensis; Planothidium delicatulum; Rhabdonema minutum; Saltmarsh; Sample code/label; Sellaphora pupula; southeast Greenland; Stauroneis linearis; Stauroneis producta; Staurosirella pinnata; Surirella brightwellii; Synedra rumpens; Synedra ulna; Tabellaria flocculosa; Tabularia fasciculata; Tetracyclus emarginatus; Total counts; Trachyneis aspera; Tryblionella acuminata; Tryblionella littoralis
    Type: Dataset
    Format: text/tab-separated-values, 1386 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-02-28
    Keywords: age depth model; Aluminium; Beckman Coulter Laser diffraction particle size analyzer LS 13 320; Calcium; Color, a*; Color, b*; Color, L*, lightness; COR1404; COR1404-001PC; Coriolis II; DEPTH, sediment/rock; elemental geochemistry; Grain size, mean; Grain size data; Gulf of San Jorge; Gulf of San Jorge, Argentina; Iron; magnetic susceptibility; Magnetic susceptibility; Manganese; MARGES; Multi-Sensor Core Logger (MSCL), GEOTEK; Olympus InnovX Delta portable XRF; Patagonia; PC; Percentile 10; Percentile 50; Percentile 90; Piston corer; Potassium; Rubidium; Silicon; Size fraction 〉 2 mm, gravel; Spectrophotometer Minolta CM-260; Strontium; Titanium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 1440 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-02-28
    Keywords: AGE; Age, 14C calibrated; age depth model; Aluminium; Beckman Coulter Laser diffraction particle size analyzer LS 13 320; Calcium; Color, a*; Color, b*; Color, L*, lightness; COR1404; COR1404-006PC; Coriolis II; Depth, reconstructed; DEPTH, sediment/rock; elemental geochemistry; Grain size, mean; Grain size data; Gulf of San Jorge; Gulf of San Jorge, Argentina; Iron; magnetic susceptibility; Magnetic susceptibility; Manganese; MARGES; Multi-Sensor Core Logger (MSCL), GEOTEK; Olympus InnovX Delta portable XRF; Patagonia; PC; Percentile 10; Percentile 50; Percentile 90; Piston corer; Potassium; Rubidium; Silicon; Size fraction 〉 2 mm, gravel; Spectrophotometer Minolta CM-260; Strontium; Titanium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 5540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-02-28
    Keywords: AGE; Age, 14C calibrated; age depth model; Aluminium; Beckman Coulter Laser diffraction particle size analyzer LS 13 320; Calcium; Color, a*; Color, b*; Color, L*, lightness; COR1404; COR1404-008PC; Coriolis II; Depth, reconstructed; DEPTH, sediment/rock; elemental geochemistry; Grain size, mean; Grain size data; Gulf of San Jorge; Gulf of San Jorge, Argentina; Iron; magnetic susceptibility; Magnetic susceptibility; Manganese; MARGES; Multi-Sensor Core Logger (MSCL), GEOTEK; Olympus InnovX Delta portable XRF; Patagonia; PC; Percentile 10; Percentile 50; Percentile 90; Piston corer; Potassium; Rubidium; Silicon; Size fraction 〉 2 mm, gravel; Spectrophotometer Minolta CM-260; Strontium; Titanium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 4023 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-03-12
    Keywords: Aluminium oxide; Ardmore; Area/locality; Barium oxide; Barr_Creek; Calcium oxide; Cerium; Chromium(III) oxide; Depth, description; DEPTH, sediment/rock; DTREE; Duchess; Dysprosium; Erbium; Europium; Event label; Gadolinium; Georgina Basin; Hole; Holmium; Iron oxide, Fe2O3; Lanthanum; Laser Ablation; LATITUDE; Lily_Creek; LONGITUDE; Loss on ignition; Lutetium; Magnesium oxide; Manganese oxide; Neodymium; Paradise_North; Paradise_South; Phosphate_Hill; Phosphorite; Phosphorus pentoxide; Potassium oxide; Praseodymium; Rare-earth elements; ROCK; Rock sample; Samarium; Sample code/label; Sherrin_Creek; Silicon dioxide; Sodium oxide; Strontium oxide; Terbium; Thorium; Thulium; Titanium dioxide; Total; Uranium; Whole rock geochemistry; Ytterbium; Yttrium; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 1327 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-03-12
    Keywords: Aluminium; Aluminium oxide; Barium; Barium oxide; Calcium; Calcium oxide; Cerium; Cerium oxid; Chlorine; Date of determination; Electron micro probe analyser (EMPA); Fluorine; Gadolinium; Gadolinium oxide; Georgina Basin; Iron; Iron oxide, Fe2O3; Lanthanum; Lanthanum oxide; Laser Ablation; LATITUDE; LONGITUDE; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Mineral name; Neodymium; Neodymium oxid; Oxygen; Phosphorite; Phosphorus; Phosphorus pentoxide; Sample ID; Silicon; Silicon dioxide; Site; Sodium; Sodium oxide; Strontium; Strontium oxide; Sulfur; Sulfur trioxide; Total; Whole rock geochemistry; Yttrium; Yttrium oxide
    Type: Dataset
    Format: text/tab-separated-values, 1764 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-12
    Description: We continuously measured aerosol size distributions in the range between 18 nm and 820 nm in 64 bit per decade resolution by means of a Scanning Mobility Particle Sizer (SMPS, TSI, i.e. a Series 3080 Electrostatic Classifier equipped with a Differential Mobility Analyzer DMA 3081). The measurements were conducted at the Air Chemistry Observatory (SPUSO) at Neumayer III Station (Antarctica) between 4 August 2023 and 31 December 2023. The data are based on an original 10-minute temporal resolution, submitted as 60-minute averages. Aerosol size distribution measurements are part of the air chemistry long-term observations at Neumayer III. Details about the instrument can be found under "resources" of the corresponding metadata link: https://hdl.handle.net/10013/sensor.81ece554-068a-4c6e-8de5-1ef1944c0156
    Keywords: aerosol; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; AWI_Glac; DATE/TIME; Date/time end; Dronning Maud Land, Antarctica; Glaciology @ AWI; HEIGHT above ground; Log-normal particle size distribution, normalized concentration at particle diameter 101.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 105.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 109.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 113.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 117.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 121.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 126.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 131 nm; Log-normal particle size distribution, normalized concentration at particle diameter 135.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 140.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 145.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 151.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 156.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 162.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 168.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 174.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 18.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 18.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 181.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 187.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 19.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 194.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 20.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 20.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 201.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 209.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 21.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 216.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 22.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 224.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 23.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 232.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 24.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 241.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 25.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 250.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 259.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 25 nm; Log-normal particle size distribution, normalized concentration at particle diameter 26.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 269 nm; Log-normal particle size distribution, normalized concentration at particle diameter 27.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 278.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 28.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 289 nm; Log-normal particle size distribution, normalized concentration at particle diameter 299.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 30 nm; Log-normal particle size distribution, normalized concentration at particle diameter 31.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 310.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 32.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 322 nm; Log-normal particle size distribution, normalized concentration at particle diameter 33.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 333.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 34.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 346 nm; Log-normal particle size distribution, normalized concentration at particle diameter 35.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 358.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 37.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 371.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 38.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 385.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 399.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 40 nm; Log-normal particle size distribution, normalized concentration at particle diameter 41.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 414.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 42.9 nm; Log-normal particle size distribution, normalized concentration at particle diameter 429.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 44.5 nm; Log-normal particle size distribution, normalized concentration at particle diameter 445.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 46.1 nm; Log-normal particle size distribution, normalized concentration at particle diameter 461.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 47.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 478.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 49.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 495.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 51.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 514 nm; Log-normal particle size distribution, normalized concentration at particle diameter 53.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 532.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 55.2 nm; Log-normal particle size distribution, normalized concentration at particle diameter 552.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 57.3 nm; Log-normal particle size distribution, normalized concentration at particle diameter 572.5 nm; Log-normal particle size distribution, normalized
    Type: Dataset
    Format: text/tab-separated-values, 385097 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-03-12
    Keywords: Aluminium; Aluminium oxide; Antimony; Ardmore; Area/locality; Arsenic; Barium; Barr_Creek; Beryllium; Bismuth; Boron; Cadmium; Caesium; Calcium; Calcium oxide; Cerium; Chromium; Cobalt; Copper; DTREE; Duchess; Dysprosium; Erbium; Europium; Gadolinium; Georgina Basin; Hafnium; Holmium; Inductively coupled plasma - mass spectrometry (ICP-MS); Iron; Iron oxide, Fe2O3; Lanthanum; Laser Ablation; LATITUDE; Lead-208; Lily_Creek; Lithium; Lithium borate fusion; acid digestion; LONGITUDE; Lutetium; Magnesium; Magnesium oxide; Manganese; Manganese oxide; Molybdenum; Neodymium; Nickel; Niobium; Paradise_North; Paradise_South; Phosphate_Hill; Phosphorite; Phosphorus; Phosphorus pentoxide; Potassium; Potassium oxide; Praseodymium; Rhenium; ROCK; Rock sample; Rock type; Rubidium; Samarium; Sample ID; Scandium; Sherrin_Creek; Silicon; Silicon dioxide; Sodium; Sodium oxide; Strontium; Tantalum; Tellurium; Terbium; Thallium; Thorium; Thulium; Tin; Titanium; Titanium dioxide; Total; Uranium; Vanadium; Whole rock geochemistry; Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 837 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-03-09
    Description: This dataset presents hourly raw data on gaseous atmospheric pollutants as sulphur dioxide (SO2), nitrogen oxides (NO/NO2/NOx), carbon monoxide (CO), ozone (O3), methane (CH4) and non-methane hydrocarbons (NMHC); and atmospheric particulate matter (PM10) at different locations in the Sierra Nevada National Park (southeastern Iberian Peninsula, Granada, Spain) during the period October 2022 - September 2023. The dataset is derived from two different measurements platforms, one fixed and one mobile. The fixed platform is sited at the Mojón del Trigo Observatory, a high-altitude remote station located in the north side of Sierra Nevada mountain range (SNS, 37.09° N, 3.38° W, 2605 m asl). This station is one of the main facilities of AGORA (Andalusian Global ObseRvatory of the Atmosphere). The mobile measurement platform is a mobile atmospheric observation unit (UMOVIL), that was moving through rural locations with different characteristics, on the south side of Sierra Nevada (ORG, 36.90° N, 3.42° W, 453 m asl; PAM, 36.94° N, 3.36° W, 1134 m asl; CAP, 36.96° N - 3.36° W, 1451 m asl). The dataset was recorded by gaseous and particulate matter analysers. The NO/NO2/NOx analyser (Thermo Scientific, model 42i in UMOVIL and 42i-TL in SNS) is based on the principle of chemiluminescence; the SO2 analyser (Thermo Scientific, model 43i in UMOVIL and 43i-TLE in SNS) is based on the principle of pulsed fluorescence; the CO analyser (Thermo Scientific, model 48i at both measurement platforms) is based on the measurement principle of non-dispersive infrared spectrometry (NDIR); the O3 analyser (Thermo Scientific, model 49i at both measurement platforms) is based on the principle of ultraviolet photometry; the PM10 analyser (Thermo Scientific, model TEOM 1405 at both measurement sites) is based on the gravimetric method for a direct determination of mass particles; and the hydrocarbons analyser (Synspec, model GC955-114 at both measurement platforms) is based on the principle of gas chromatography. The dataset presents hourly mean concentration of each species in micrograms per cubic meter.
    Keywords: Aethalometer, Magee Scientific, AE31; air pollution; ATMOBS; Atmospheric Observatory; Black carbon, equivalent; CAP2022; Capileira; Carbon monoxide; Chemiluminescence NO-NO2-NOx analyzer, Thermo Fisher Scientific, model 42i; Continuous ambient particulate monitor, Thermo Fisher Scientific, TEOM 1405; DATE/TIME; Event label; Gas chromatograph, Synspec, GC955-114; Gas Filter correlation carbon monoxide analyzer, Thermo Fisher Scientific, model 48i; Humidity, relative; Mediterranean Mountains; Methane; Mobile Platform; Nitric oxide; Nitrogen dioxide; Non-methane hydrocarbons; ORG2022; ORG2023; Órgiva; Ozone; PAM2023; Pampaneira; Particulate matter, 〈 10 µm; Pressure, atmospheric; Pulsed fluorescence SO2 analyzer, model 43i (Thermo Fisher Scientific); Sample code/label; Sierra Nevada; SNS2023; Sulfur dioxide; Temperature, air; UMOVIL; UV photometric ozone analyzer (Thermo Scientific, Model 49i); Weather Transmitter, R.M. Young, 92000 ResponseONE; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 82165 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-03-09
    Description: Meteorological data were collected across three visits to site P3 during COMICS cruise DY086 aboard the RRS Discovery in November and December, 2017. Measurements included: air pressure, temperature and humidity; solar and photosynthetically active radiation at both Port and Starboard sides. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council. BODC advised that the ship's anemometer shows inconsistencies and so data from the instrument were not included.
    Keywords: 74EQ20171115; 74EQ20171115-track; ALTITUDE; Barometer, Vaisala, PTB 210; biological carbon pump; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; CT; DATE/TIME; Discovery (2013); DY086; fluxes; Humidity, relative; LATITUDE; LONGITUDE; marine biogeochemistry; PAR sensor, Two Skye Instruments, SKE510; Potential incoming solar radiation; Pressure, atmospheric; Pyranometer, Kipp & Zonen, CM6B; Radiation, photosynthetically active; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, air; Temperature and humidity sensor, Vaisala, HMP; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 155589 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-03-09
    Description: Acoustic backscatter data were collected at five frequencies (18, 38, 70, 120 and 200 kHz) across two visits to site P3 (P3A, P3B), South Georgia, aboard the RRS Discovery during DY086. Acoustic backscatter was measured with a Simrad EK60. The data consistently shows no evidence of synchronised diel vertical migration (Cook et al. 2023).
    Keywords: 74EQ20171115; biological carbon pump; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; Date/Time of event 2; DEPTH, water; Discovery (2013); DY086; DY086_EK60_P3A; DY086_EK60_P3B; Echo backscatter; Echosounder, Simrad, EK60; Event label; fluxes; Frequency; Latitude of event; Longitude of event; marine biogeochemistry; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Time of day
    Type: Dataset
    Format: text/tab-separated-values, 5760 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-03-09
    Description: Discrete measurements of particulate organic carbon (POC) concentration and flux were made on the RRS Discovery during COMICS cruise DY086 at site P3 in the South Atlantic from November to December, 2017 (Giering et al. 2023). Data is from a variety of equipment including marine snow catchers, neutrally-buoyant sediment traps (PELAGRA) and a stand-alone pump system. Marine snow catchers settled on-deck for 2 hours. Slow sinking particles were collected from the base and fast sinking particles were collected from the tray. These data were used along with bottle POC data to calibrate glider backscatter data from the GOCART project.
    Keywords: 74EQ20171115; biological carbon pump; Carbon, organic, particulate; Carbon, organic, particulate, flux; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; DEPTH, water; Discovery (2013); DY086; DY086_MSC006; DY086_MSC007; DY086_MSC010; DY086_MSC015; DY086_MSC016; DY086_MSC019; DY086_MSC020; DY086_MSC022; DY086_MSC027; DY086_MSC028; DY086_MSC029; DY086_MSC034; DY086_MSC035; DY086_MSC036; DY086_MSC037; DY086_MSC038; DY086_MSC039; DY086_MSC040; DY086_MSC061; DY086_MSC062; DY086_MSC063; DY086_MSC067; DY086_MSC068; DY086_MSC069; DY086_MSC071; DY086_MSC072; DY086_MSC076; DY086_MSC077; DY086_MSC078; DY086_MSC079; DY086_MSC081; DY086_MSC082; DY086_MSC083; DY086_MSC084; DY086_MSC093; DY086_MSC094; DY086_MSC099; DY086_MSC100; DY086_MSC101; DY086_MSC103; DY086_MSC104; DY086_MSC105; DY086_MSC106; DY086_MSC111; DY086_MSC112; DY086_MSC113; DY086_MSC114; DY086_MSC125; DY086_MSC126; DY086_MSC127; DY086_MSC128; DY086_Pelagra006; DY086_Pelagra007; DY086_Pelagra008; DY086_Pelagra009; DY086_Pelagra010; DY086_Pelagra011; DY086_Pelagra012; DY086_Pelagra013; DY086_Pelagra014; DY086_Pelagra015; DY086_Pelagra016; DY086_Pelagra017; DY086_Pelagra018; DY086_Pelagra019; DY086_Pelagra020; DY086_Pelagra021; DY086_Pelagra022; DY086_Pelagra023; DY086_Pelagra024; DY086_Pelagra025; DY086_Pelagra026; DY086_Pelagra027; DY086_Pelagra028; DY086_Pelagra029; DY086_Pelagra030; DY086_Pelagra031; DY086_Pelagra032; DY086_Pelagra033; DY086_Pelagra034; DY086_Pelagra035; DY086_Pelagra036; DY086_Pelagra037; DY086_Pelagra038; DY086_SAPS001; DY086_SAPS002; DY086_SAPS003; DY086_SAPS004; DY086_SAPS005; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Marine snow catcher; MSC; PELAGRA; SAPS; Site; Stand-alone pumps; SUMMER; Sustainable Management of Mesopelagic Resources; Trap, sediment, drifting
    Type: Dataset
    Format: text/tab-separated-values, 366 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-09
    Description: We operate a multi angle absorption photometer MAAP (Model 5012, Thermo Electron Corp.). which is in operation since March 2006 ongoing. This instrument measures atmospheric light absorption by aerosol (mainly caused by black carbon, BC). To this end, ambient aerosol was sampled on a glass filter tape. The measured absorption coefficients abs(637) refer to a wavelength of 637 nm. Raw data were originally sampled in one-minute resolution. Finally, hourly averaged MAAP data are presented here. We also provide BC concentrations (ng/m³) derived from the absorption coefficients using the specific BC attenuation cross section (QBC) of 6.6 m²/g.
    Keywords: aerosol; Aerosol absorption at 637 nm; AIRCHEM; Air chemistry observatory; Atmospheric chemistry; Atmospheric Chemistry @ AWI; AWI_AC; Black carbon, aerosol; DATE/TIME; Dronning Maud Land, Antarctica; Duration; HEIGHT above ground; Multi angle absorption spectrometer MAAP5012; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; Spuso; SPUSO
    Type: Dataset
    Format: text/tab-separated-values, 26274 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-09
    Description: We continuously measured aerosol size distributions in the range between 90 nm and 5000 nm in 64 bit resolution with an optical particle sizer (TSI LAS3340). The measurements were conducted at the Air Chemistry Observatory (SPUSO) at Neumayer III Station (Antarctica) between 1 January 2023 and 10 July 2023. The data rely on an original 10-minute temporal resolution and are finally submitted as 60-minute averages. Aerosol size distribution measurements are part of the air chemistry long-term observations at Neumayer III. Details about the instrument can be found under "resources" of the corresponding metadata link: https://hdl.handle.net/10013/sensor.5d9a9253-e118-4744-be3a-05f31551314a.
    Keywords: aerosol; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; AWI_Glac; DATE/TIME; Date/time end; Dronning Maud Land, Antarctica; Glaciology @ AWI; HEIGHT above ground; las3340; Laser Aerosol Spectrometer TSI LAS3340; Log-normal particle size distribution, normalized concentration at particle diameter 1008.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 105.29 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1074.15 nm; Log-normal particle size distribution, normalized concentration at particle diameter 112.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1143.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 119.38 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1217.84 nm; Log-normal particle size distribution, normalized concentration at particle diameter 127.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1296.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 135.34 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1380.74 nm; Log-normal particle size distribution, normalized concentration at particle diameter 144.11 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1470.19 nm; Log-normal particle size distribution, normalized concentration at particle diameter 153.45 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1565.43 nm; Log-normal particle size distribution, normalized concentration at particle diameter 163.39 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1666.85 nm; Log-normal particle size distribution, normalized concentration at particle diameter 173.97 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1774.83 nm; Log-normal particle size distribution, normalized concentration at particle diameter 185.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 1889.81 nm; Log-normal particle size distribution, normalized concentration at particle diameter 197.25 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2012.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 210.03 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2142.6 nm; Log-normal particle size distribution, normalized concentration at particle diameter 223.63 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2281.41 nm; Log-normal particle size distribution, normalized concentration at particle diameter 238.12 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2429.21 nm; Log-normal particle size distribution, normalized concentration at particle diameter 253.55 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2586.58 nm; Log-normal particle size distribution, normalized concentration at particle diameter 269.97 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2754.15 nm; Log-normal particle size distribution, normalized concentration at particle diameter 287.46 nm; Log-normal particle size distribution, normalized concentration at particle diameter 2932.57 nm; Log-normal particle size distribution, normalized concentration at particle diameter 306.08 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3122.55 nm; Log-normal particle size distribution, normalized concentration at particle diameter 325.91 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3324.84 nm; Log-normal particle size distribution, normalized concentration at particle diameter 347.02 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3540.24 nm; Log-normal particle size distribution, normalized concentration at particle diameter 369.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 3769.59 nm; Log-normal particle size distribution, normalized concentration at particle diameter 393.45 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4013.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 418.93 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4273.82 nm; Log-normal particle size distribution, normalized concentration at particle diameter 446.08 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4550.7 nm; Log-normal particle size distribution, normalized concentration at particle diameter 474.98 nm; Log-normal particle size distribution, normalized concentration at particle diameter 4845.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 505.75 nm; Log-normal particle size distribution, normalized concentration at particle diameter 538.51 nm; Log-normal particle size distribution, normalized concentration at particle diameter 573.4 nm; Log-normal particle size distribution, normalized concentration at particle diameter 610.54 nm; Log-normal particle size distribution, normalized concentration at particle diameter 650.09 nm; Log-normal particle size distribution, normalized concentration at particle diameter 692.21 nm; Log-normal particle size distribution, normalized concentration at particle diameter 737.05 nm; Log-normal particle size distribution, normalized concentration at particle diameter 784.8 nm; Log-normal particle size distribution, normalized concentration at particle diameter 835.64 nm; Log-normal particle size distribution, normalized concentration at particle diameter 889.78 nm; Log-normal particle size distribution, normalized concentration at particle diameter 92.87 nm; Log-normal particle size distribution, normalized concentration at particle diameter 947.42 nm; Log-normal particle size distribution, normalized concentration at particle diameter 98.89 nm; Neumayer; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; size distribution; Spuso; SPUSO; Time in minutes
    Type: Dataset
    Format: text/tab-separated-values, 300234 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-03-09
    Keywords: Angiosperm/Gymnosperm index; Calculated according to Nakamura et al., (2010); Climate change; DEPTH, sediment/rock; large igneous province; mid-Cretaceous; Northwestern Pacific; Nutrient supply; OAE2_OMZ; ROCK; Rock sample; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 180 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-03-09
    Keywords: Abundance; Amphizygus brooksei; Assipetra sp.; Axopodorhabdus albianus; Biostratigraphic datum; Biscutum constans; Broinsonia enormis; Broinsonia signata; Calculites sp.; Chiastozygus sp.; Climate change; Corollithion kennedyi; Corollithion signum; Cribrosphaerella ehrenbergii; Cyclagelosphaera sp.; DEPTH, sediment/rock; Discorhabdus ignotus; Eiffellithus turriseiffelii; Eprolithus floralis; Eprolithus moratus; Eprolithus octopetalus; Eprolithus rarus; Gartnerago sp.; Grantarhabdus sp.; Haquis circumradiatus; Helicolithus anceps; Helicolithus sp.; large igneous province; mid-Cretaceous; Nannoconus sp.; Northwestern Pacific; Nutrient supply; OAE2_OMZ; Prediscosphaera columnata; Preservation; Quadrum gartneri; Quadrum intermedium; Quadrum sp.; Radiolithus planus; Repagulum parvidentatum; Retecapsa sp.; Rhagodiscus achlyostaurion; Rhagodiscus angustus; Rhagodiscus asper; Rhagodiscus sp.; ROCK; Rock sample; Rotelapillus crenulatus; Sample ID; Seribiscutum sp.; Staurolithites sp.; Tegumentum sp.; Tranolithus orionatus; Watznaueria barnesiae; Watznaueria sp.; Zeugrhabdotus bicrescenticus; Zeugrhabdotus diplogrammus; Zeugrhabdotus embergeri; Zeugrhabdotus erectus; Zeugrhabdotus noeliae
    Type: Dataset
    Format: text/tab-separated-values, 2654 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-12
    Description: We operate a 7-wavelength aethalometer (Model AE33, Magee Scientific) which is in operation since 23 January 2019 ongoing. The Aethalometer model AE33 collects aerosol particles continuously by drawing the aerosol-laden air stream through a spot on the filter tape. It analyzes the aerosol by measuring the transmission of light through one portion of the filter tape containing the sample, versus the transmission through an unloaded portion of the filter tape acting as a reference area. This analysis is done at seven optical wavelengths spanning the range from the near-infrared to the near-ultraviolet. The Aethalometer calculates the instantaneous concentration of optically-absorbing aerosols from the rate of change of the attenuation of light transmitted through the particle-laden filter.
    Keywords: aerosol; Aerosol absorption at 370 nm; Aerosol absorption at 470 nm; Aerosol absorption at 520 nm; Aerosol absorption at 590 nm; Aerosol absorption at 660 nm; Aerosol absorption at 880 nm; Aerosol absorption at 950 nm; aerosol absorption coefficient; Aethalometer, AE33, Magee Scientific; Air chemistry observatory; Air Chemistry Observatory; Atmospheric Chemistry @ AWI; AWI_AC; DATE/TIME; Dronning Maud Land, Antarctica; Duration; HEIGHT above ground; Neumayer_based; Neumayer_SPUSO; NEUMAYER III; Neumayer Station; Spuso; SPUSO
    Type: Dataset
    Format: text/tab-separated-values, 131400 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-03-12
    Description: The study's focus is on Early Holocene syngenetic ice wedges that are exposed in a polygonal peatland's outcrop in the topmost part of the third marine terrace, close to the Lorino village on Chukotka's eastern coast. The peatland accumulation near Lorino village started around 14-13 cal ka BP, at the end of the Younger Dryas, according to the radiocarbon dates that were collected. The active stage of peat accumulation ended around 10 cal ka BP. It is not unusual for peat accumulation to have started near the end of the Younger Dryas, before the Holocene's officially recognized lower limit (11.7 cal ka BP), and to have ended in the midst of the Holocene's Greenlandian stage. The reworking of ancient organic material during the erosion of the marine terrace sediments and separation of the allochthonous peat is most likely the cause of the age inversions in the peat observed along vertical profiles. In the peatland exposure, six fragments with ice wedges were studied between 2015 and 2021. The oxygen isotope data of the ice wedges under study indicate that the values of δ18O range from -15,5 to -18 ‰. The values found are consistent with data for Early Holocene ice wedges analyzed in other regions of Chukotka's eastern coast (Anadyr town, Uelen settlement), where the authors obtained δ18O values for ice wedges ranging from -16 to -19,4 ‰. This implies that the most active processes during the early Holocene were peat accumulation and ice wedge growth. For contemporary ice veinlets, the greatest δ18O values (-13,1 to -16,8 ‰) were found. All things considered, the δ2H-δ18O ratio for ice wedges shows a resemblance to the isotopic signature of winter precipitation. The Early Greenlandian stage of the Holocene had an average January air temperature that ranged from -23 to -27 °C, which is on average 3 °C colder than the current one. For radiocarbon dating 11 organic samples were extracted directly from ice wedges. Dating of the samples was carried out at the Institute of the History of Material Culture of the Russian Academy of Sciences ("Le" index) and at the "Laboratory of Radiocarbon Dating and Electron Microscopy" of the Institute of Geography of the Russian Academy of Sciences ("IGAN" index). Сalibration was carried out using the Oxcal 4.4 program based on the IntCal20 database (Bronk Ramsey (2009, doi:10.1017/S0033822200033865); Reimer et al. (2020, doi:10.1017/RDC.2020.41).
    Keywords: AGE; Age, 14C calibrated, OxCal 4.4; Age, error; Age, median; Chukotka, Russia; DEPTH, sediment/rock; Eastern Chukotka; Event label; Holocene; Hydrogen isotopes; Ice wedges; Identification; Laboratory code/label; Latitude of event; Location; Longitude of event; Lorino_Site_3; oxygen isotopes; paleotemperature reconstructions; peatlands; radiocarbon age; Year of sampling
    Type: Dataset
    Format: text/tab-separated-values, 77 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-03-11
    Description: This dataset consists of sodium (Na) data for the top 418 m (back to 10 kyr before present) from the ice core drilled in 2018-19 at Skytrain Ice Rise (79.7417°S 78.545°W), Antarctica. The data were from water sampled continuously from the melt stream of a continuous flow analysis system and are presented at 10 cm resolution where data exist. The analysis method was inductively coupled mass spectrometry using an Agilent 7700x ICP-MS attached to the melt stream.
    Keywords: AGE; Antarctica; Antarctic ice core chronology (ST22); DEPTH, ice/snow; IC; Ice core; Ice corer; Inductively Coupled Plasma Mass Spectrometer, Agilent 7700X; Skytrain_Ice_Rise; sodium; Sodium
    Type: Dataset
    Format: text/tab-separated-values, 4089 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-03-12
    Keywords: Age, 14C calibrated; Age, AMS 14C conventional; Age, dated; Age, dated standard deviation; Calendar age; DEPTH, sediment/rock; Eolian dust; Event label; Geochemistry; Intertropical Convergence Zone; KODOS05-01; KODOS05-01_MC5107; KODOS05-01_MC5108; KODOS05-01_MC5109; KODOS05-01_MC5110; KODOS05-01_MC5111; KODOS05-01_MC5118; KODOS05-01_PC5104; MC5107; MC5108; MC5109; MC5110; MC5111; MC5118; MUC; MultiCorer; Neodymium isotope; North Pacific Ocean; Onnuri; PC; PC5104; Piston corer
    Type: Dataset
    Format: text/tab-separated-values, 54 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-03-12
    Keywords: DEPTH, sediment/rock; Eolian dust; Geochemistry; Inductively coupled plasma - mass spectrometry (ICP-MS); Intertropical Convergence Zone; KODOS05-01; KODOS05-01_MC5111; MC5111; MUC; MultiCorer; Neodymium isotope; North Pacific Ocean; Onnuri; Pulleniatina obliquiloculata, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 47 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-03-12
    Keywords: DEPTH, sediment/rock; Eolian dust; Event label; Geochemistry; Intertropical Convergence Zone; KODOS05-01; KODOS05-01_MC5107; KODOS05-01_MC5108; KODOS05-01_MC5109; KODOS05-01_MC5110; KODOS05-01_MC5111; KODOS05-01_MC5118; KODOS05-01_PC5104; Lanthanum; MC5107; MC5108; MC5109; MC5110; MC5111; MC5118; MUC; MultiCorer; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, standard deviation; Neodymium isotope; North Pacific Ocean; Onnuri; PC; PC5104; Piston corer; Scandium; Thorium; Ytterbium; ε-Neodymium
    Type: Dataset
    Format: text/tab-separated-values, 84 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-03-05
    Description: Multiproxy analysis (including magnetic susceptibility, diffuse spectral reflectance, elemental geochemistry and grain size) of five sediment piston cores (COR1404-001PC, COR1404-003PC, COR1404-006PC, COR1404-008PC and COR1404-011PC) in order to characterize the evolution of sedimentary environments and depositional history of the Gulf of San Jorge (Patagonia, Argentina) since the Last Glacial Maximum. The data were collected on board the R/V Coriolis II during the MARGES (Marine Geology of the Gulf of San Jorge) expedition (January 29 to March 4, 2014) as part of the PROMESSe (PROgrama Multidisciplinario para el Estudio del ecosistema y la geología marina del golfo San Jorge y las costas de las provincias de Chubut y Santa Cruz) project. Color reflectance, pXRF and magnetic susceptibility were performed at 1-cm intervals on freshly split core sections using a GEOTEK Multi-Sensor Core Logger. Prior to grain size analysis, the five piston cores were evenly sampled every 8 cm with a refined sampling at 4-cm intervals for basal sections of cores COR1404-003PC, COR1404-006PC and COR1404-008PC. Grain size analysis of sediment samples was carried out on the detrital fraction using a Beckman Coulter LS 13 320 particle size analyser. The age-depth models were generated with radiocarbon ages calibrated using the software CALIB version 7.1, the Marine13 calibration curve and a marine regional reservoir correction (ΔR) of 0. The “best fit” linearly interpolated age-depth models were constructed with the Bayesian statistical approach of the BACON v2.2 package of the R software.
    Keywords: age depth model; elemental geochemistry; Grain size data; Gulf of San Jorge; magnetic susceptibility; Patagonia
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; drift; FDOM; Ice mass balance; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Sea Ice Physics @ AWI; snow depth; solar radiation
    Type: Dataset
    Format: application/zip, 19 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2024-03-05
    Description: Vegetated coastal ecosystems have been increasingly recognized for their capacity to sequester organic carbon in their soils and sediments under the term blue carbon. The vegetation of these habitats shows specific adaptations to severe abiotic soil conditions, particularly, waterlogging and salinity, and supports therefore ecosystem functioning and services. Wadden Sea salt marshes in Schleswig-Holstein (Germany) have been utilized for high density sheep grazing over centuries. At the beginning of the 1990s, in many parts of salt marshes livestock densities were reduced and the maintenance of the anthropogenic drainage system was ceased. In 2012, 17 years after the change of land utilization, the contents, densities, and accumulation rates of surface soil carbon were investigated at 50 sampling positions with different elevations along eight transects in Wadden Sea mainland salt marshes at Hamburger Hallig, Schleswig-Holstein, Germany, under different livestock grazing regimes (ungrazed, moderately grazed, intensively grazed). Surface soil was collected in 150 permanent plots (2 m * 2 m) at 50 sampling positions, covering a salt marsh area of 1050 ha. The carbon contents, pH, and bulk density were determined from dried soil. The elevations of the 150 permanent plots were measured and annual vertical accretion rates were calculated from 17 years sedimentation monitoring. This study was supported by the BASSIA project (Biodiversity, management, and ecosystem functions of salt marshes in the Wadden Sea National Park of Schleswig-Holstein), funded by the Bauer-Hollmann Foundation and Universität Hamburg.
    Keywords: Agrostis stolonifera, cover; Armeria maritima, cover; Artemisia maritima, cover; Aster tripolium, cover; Atriplex littoralis, cover; Atriplex portulacoides, cover; Atriplex prostrata, cover; blue carbon; Calculated; Climate change; DATE/TIME; Density, dry bulk; Depth, soil, maximum; Distance; ELEVATION; Elymus athericus, cover; Elymus repens, cover; Festuca rubra, cover; Glaux maritima, cover; inorganic and organic carbon stock; Inorganic carbon, soil; Juncus gerardii, cover; Limonium vulgare, cover; Livestock density; Multi parameter analyser, Eijkelkamp, 18.28; Optical levelling instrument; Organic carbon, soil; pH; Plantago coronopus, cover; Plantago maritima, cover; Plot of land; Potentilla anserina, cover; Puccinellia maritima, cover; Salicornia europaea, cover; Sample position; Sea level rise; Soil corer; Sonchus asper, cover; Sonchus sp., cover; Spartina anglica, cover; Spergularia maritima, cover; SSC_2012_HH-SH-G; Suaeda maritima, cover; tidal wetland; TMAP Wadden Sea Vegetation Database (Stock 2012); Total organic carbon (TOC) analyzer, Elementar, Liqui-TOC; coupled with extension module, Elementar, soliTIC; Triglochin maritima, cover; Vegetation, cover; Vegetation type; Vertical accretion rate, annual mean; Wadden Sea, Germany
    Type: Dataset
    Format: text/tab-separated-values, 5300 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, upward, reflected at sea ice surface; Irradiance, upward, reflected at sea ice surface, photosythetically active; Irradiance, upward, reflected at sea ice surface, photosythetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, upward, reflected at sea ice surface at 320 nm; Spectral irradiance, upward, reflected at sea ice surface at 321 nm; Spectral irradiance, upward, reflected at sea ice surface at 322 nm; Spectral irradiance, upward, reflected at sea ice surface at 323 nm; Spectral irradiance, upward, reflected at sea ice surface at 324 nm; Spectral irradiance, upward, reflected at sea ice surface at 325 nm; Spectral irradiance, upward, reflected at sea ice surface at 326 nm; Spectral irradiance, upward, reflected at sea ice surface at 327 nm; Spectral irradiance, upward, reflected at sea ice surface at 328 nm; Spectral irradiance, upward, reflected at sea ice surface at 329 nm; Spectral irradiance, upward, reflected at sea ice surface at 330 nm; Spectral irradiance, upward, reflected at sea ice surface at 331 nm; Spectral irradiance, upward, reflected at sea ice surface at 332 nm; Spectral irradiance, upward, reflected at sea ice surface at 333 nm; Spectral irradiance, upward, reflected at sea ice surface at 334 nm; Spectral irradiance, upward, reflected at sea ice surface at 335 nm; Spectral irradiance, upward, reflected at sea ice surface at 336 nm; Spectral irradiance, upward, reflected at sea ice surface at 337 nm; Spectral irradiance, upward, reflected at sea ice surface at 338 nm; Spectral irradiance, upward, reflected at sea ice surface at 339 nm; Spectral irradiance, upward, reflected at sea ice surface at 340 nm; Spectral irradiance, upward, reflected at sea ice surface at 341 nm; Spectral irradiance, upward, reflected at sea ice surface at 342 nm; Spectral irradiance, upward, reflected at sea ice surface at 343 nm; Spectral irradiance, upward, reflected at sea ice surface at 344 nm; Spectral irradiance, upward, reflected at sea ice surface at 345 nm; Spectral irradiance, upward, reflected at sea ice surface at 346 nm; Spectral irradiance, upward, reflected at sea ice surface at 347 nm; Spectral irradiance, upward, reflected at sea ice surface at 348 nm; Spectral irradiance, upward, reflected at sea ice surface at 349 nm; Spectral irradiance, upward, reflected at sea ice surface at 350 nm; Spectral irradiance, upward, reflected at sea ice surface at 351 nm; Spectral irradiance, upward, reflected at sea ice surface at 352 nm; Spectral irradiance, upward, reflected at sea ice surface at 353 nm; Spectral irradiance, upward, reflected at sea ice surface at 354 nm; Spectral irradiance, upward, reflected at sea ice surface at 355 nm; Spectral irradiance, upward, reflected at sea ice surface at 356 nm; Spectral irradiance, upward, reflected at sea ice surface at 357 nm; Spectral irradiance, upward, reflected at sea ice surface at 358 nm; Spectral irradiance, upward, reflected at sea ice surface at 359 nm; Spectral irradiance, upward, reflected at sea ice surface at 360 nm; Spectral irradiance, upward, reflected at sea ice surface at 361 nm; Spectral irradiance, upward, reflected at sea ice surface at 362 nm; Spectral irradiance, upward, reflected at sea ice surface at 363 nm; Spectral irradiance, upward, reflected at sea ice surface at 364 nm; Spectral irradiance, upward, reflected at sea ice surface at 365 nm; Spectral irradiance, upward, reflected at sea ice surface at 366 nm; Spectral irradiance, upward, reflected at sea ice surface at 367 nm; Spectral irradiance, upward, reflected at sea ice surface at 368 nm; Spectral irradiance, upward, reflected at sea ice surface at 369 nm; Spectral irradiance, upward, reflected at sea ice surface at 370 nm; Spectral irradiance, upward, reflected at sea ice surface at 371 nm; Spectral irradiance, upward, reflected at sea ice surface at 372 nm; Spectral irradiance, upward, reflected at sea ice surface at 373 nm; Spectral irradiance, upward, reflected at sea ice surface at 374 nm; Spectral irradiance, upward, reflected at sea ice surface at 375 nm; Spectral irradiance, upward, reflected at sea ice surface at 376 nm; Spectral irradiance, upward, reflected at sea ice surface at 377 nm; Spectral irradiance, upward, reflected at sea ice surface at 378 nm; Spectral irradiance, upward, reflected at sea ice surface at 379 nm; Spectral irradiance, upward, reflected at sea ice surface at 380 nm; Spectral irradiance, upward, reflected at sea ice surface at 381 nm; Spectral irradiance, upward, reflected at sea ice surface at 382 nm; Spectral irradiance, upward, reflected at sea ice surface at 383 nm; Spectral irradiance, upward, reflected at sea ice surface at 384 nm; Spectral irradiance, upward, reflected at sea ice surface at 385 nm; Spectral irradiance, upward, reflected at sea ice surface at 386 nm; Spectral irradiance, upward, reflected at sea ice surface at 387 nm; Spectral irradiance, upward, reflected at sea ice surface at 388 nm; Spectral irradiance, upward, reflected at sea ice surface at 389 nm; Spectral irradiance, upward, reflected at sea ice surface at 390 nm; Spectral irradiance, upward, reflected at sea ice surface at 391 nm; Spectral irradiance, upward, reflected at sea ice surface at 392 nm; Spectral irradiance, upward, reflected at sea ice surface at 393 nm; Spectral irradiance, upward, reflected at sea ice surface at 394 nm; Spectral irradiance, upward, reflected at sea ice surface at 395 nm; Spectral irradiance, upward, reflected at sea ice surface at 396 nm; Spectral irradiance, upward, reflected at sea ice surface at 397 nm; Spectral irradiance, upward, reflected at sea ice surface at 398 nm; Spectral irradiance, upward, reflected at sea ice surface at 399 nm; Spectral irradiance, upward, reflected at sea ice surface at 400 nm; Spectral irradiance, upward, reflected at sea ice surface at 401 nm; Spectral irradiance, upward, reflected at sea ice surface at 402 nm; Spectral irradiance, upward, reflected at sea ice surface at 403 nm; Spectral irradiance, upward, reflected at sea ice surface at 404 nm; Spectral irradiance, upward, reflected at sea ice surface at 405 nm; Spectral irradiance, upward, reflected at sea ice surface at 406 nm; Spectral irradiance, upward, reflected at sea ice surface at 407 nm; Spectral irradiance, upward, reflected at sea ice surface at 408 nm; Spectral irradiance, upward, reflected at sea ice surface at 409 nm; Spectral irradiance, upward, reflected at sea ice surface at 410 nm; Spectral irradiance, upward, reflected at sea ice surface at 411 nm; Spectral irradiance, upward, reflected at sea ice surface at 412 nm; Spectral irradiance, upward, reflected at sea ice surface at 413 nm; Spectral irradiance, upward, reflected at sea ice surface at 414 nm; Spectral irradiance, upward, reflected at sea ice surface at 415 nm; Spectral irradiance, upward, reflected at sea ice surface at 416 nm; Spectral irradiance, upward, reflected at sea ice surface at 417 nm; Spectral irradiance, upward, reflected at sea ice surface at 418 nm; Spectral irradiance, upward, reflected at sea ice surface at 419 nm; Spectral irradiance, upward, reflected at sea ice surface at 420 nm; Spectral irradiance, upward, reflected at sea ice surface at 421 nm; Spectral irradiance, upward, reflected at sea ice surface at 422 nm; Spectral irradiance, upward, reflected at sea ice surface at 423 nm; Spectral irradiance, upward, reflected at sea ice surface at 424 nm; Spectral
    Type: Dataset
    Format: text/tab-separated-values, 955680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Code; DATE/TIME; Dew/frost point; Germany; HYGRO; Hygrometer; LIN; Lindenberg; Monitoring station; MONS; Past weather1; Past weather2; Present weather; Pressure, atmospheric; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 6265 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: Baseline Surface Radiation Network; BSRN; Cloud base height; DATE/TIME; Germany; LIN; Lindenberg; Monitoring station; MONS
    Type: Dataset
    Format: text/tab-separated-values, 3422 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorologisches Observatorium Potsdam
    Publication Date: 2024-03-02
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; Germany; LIN; Lindenberg; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Vaisala, RS41; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 782989 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Albedo, fraction; Albedo, photosynthetically active; Albedo at 320 nm; Albedo at 321 nm; Albedo at 322 nm; Albedo at 323 nm; Albedo at 324 nm; Albedo at 325 nm; Albedo at 326 nm; Albedo at 327 nm; Albedo at 328 nm; Albedo at 329 nm; Albedo at 330 nm; Albedo at 331 nm; Albedo at 332 nm; Albedo at 333 nm; Albedo at 334 nm; Albedo at 335 nm; Albedo at 336 nm; Albedo at 337 nm; Albedo at 338 nm; Albedo at 339 nm; Albedo at 340 nm; Albedo at 341 nm; Albedo at 342 nm; Albedo at 343 nm; Albedo at 344 nm; Albedo at 345 nm; Albedo at 346 nm; Albedo at 347 nm; Albedo at 348 nm; Albedo at 349 nm; Albedo at 350 nm; Albedo at 351 nm; Albedo at 352 nm; Albedo at 353 nm; Albedo at 354 nm; Albedo at 355 nm; Albedo at 356 nm; Albedo at 357 nm; Albedo at 358 nm; Albedo at 359 nm; Albedo at 360 nm; Albedo at 361 nm; Albedo at 362 nm; Albedo at 363 nm; Albedo at 364 nm; Albedo at 365 nm; Albedo at 366 nm; Albedo at 367 nm; Albedo at 368 nm; Albedo at 369 nm; Albedo at 370 nm; Albedo at 371 nm; Albedo at 372 nm; Albedo at 373 nm; Albedo at 374 nm; Albedo at 375 nm; Albedo at 376 nm; Albedo at 377 nm; Albedo at 378 nm; Albedo at 379 nm; Albedo at 380 nm; Albedo at 381 nm; Albedo at 382 nm; Albedo at 383 nm; Albedo at 384 nm; Albedo at 385 nm; Albedo at 386 nm; Albedo at 387 nm; Albedo at 388 nm; Albedo at 389 nm; Albedo at 390 nm; Albedo at 391 nm; Albedo at 392 nm; Albedo at 393 nm; Albedo at 394 nm; Albedo at 395 nm; Albedo at 396 nm; Albedo at 397 nm; Albedo at 398 nm; Albedo at 399 nm; Albedo at 400 nm; Albedo at 401 nm; Albedo at 402 nm; Albedo at 403 nm; Albedo at 404 nm; Albedo at 405 nm; Albedo at 406 nm; Albedo at 407 nm; Albedo at 408 nm; Albedo at 409 nm; Albedo at 410 nm; Albedo at 411 nm; Albedo at 412 nm; Albedo at 413 nm; Albedo at 414 nm; Albedo at 415 nm; Albedo at 416 nm; Albedo at 417 nm; Albedo at 418 nm; Albedo at 419 nm; Albedo at 420 nm; Albedo at 421 nm; Albedo at 422 nm; Albedo at 423 nm; Albedo at 424 nm; Albedo at 425 nm; Albedo at 426 nm; Albedo at 427 nm; Albedo at 428 nm; Albedo at 429 nm; Albedo at 430 nm; Albedo at 431 nm; Albedo at 432 nm; Albedo at 433 nm; Albedo at 434 nm; Albedo at 435 nm; Albedo at 436 nm; Albedo at 437 nm; Albedo at 438 nm; Albedo at 439 nm; Albedo at 440 nm; Albedo at 441 nm; Albedo at 442 nm; Albedo at 443 nm; Albedo at 444 nm; Albedo at 445 nm; Albedo at 446 nm; Albedo at 447 nm; Albedo at 448 nm; Albedo at 449 nm; Albedo at 450 nm; Albedo at 451 nm; Albedo at 452 nm; Albedo at 453 nm; Albedo at 454 nm; Albedo at 455 nm; Albedo at 456 nm; Albedo at 457 nm; Albedo at 458 nm; Albedo at 459 nm; Albedo at 460 nm; Albedo at 461 nm; Albedo at 462 nm; Albedo at 463 nm; Albedo at 464 nm; Albedo at 465 nm; Albedo at 466 nm; Albedo at 467 nm; Albedo at 468 nm; Albedo at 469 nm; Albedo at 470 nm; Albedo at 471 nm; Albedo at 472 nm; Albedo at 473 nm; Albedo at 474 nm; Albedo at 475 nm; Albedo at 476 nm; Albedo at 477 nm; Albedo at 478 nm; Albedo at 479 nm; Albedo at 480 nm; Albedo at 481 nm; Albedo at 482 nm; Albedo at 483 nm; Albedo at 484 nm; Albedo at 485 nm; Albedo at 486 nm; Albedo at 487 nm; Albedo at 488 nm; Albedo at 489 nm; Albedo at 490 nm; Albedo at 491 nm; Albedo at 492 nm; Albedo at 493 nm; Albedo at 494 nm; Albedo at 495 nm; Albedo at 496 nm; Albedo at 497 nm; Albedo at 498 nm; Albedo at 499 nm; Albedo at 500 nm; Albedo at 501 nm; Albedo at 502 nm; Albedo at 503 nm; Albedo at 504 nm; Albedo at 505 nm; Albedo at 506 nm; Albedo at 507 nm; Albedo at 508 nm; Albedo at 509 nm; Albedo at 510 nm; Albedo at 511 nm; Albedo at 512 nm; Albedo at 513 nm; Albedo at 514 nm; Albedo at 515 nm; Albedo at 516 nm; Albedo at 517 nm; Albedo at 518 nm; Albedo at 519 nm; Albedo at 520 nm; Albedo at 521 nm; Albedo at 522 nm; Albedo at 523 nm; Albedo at 524 nm; Albedo at 525 nm; Albedo at 526 nm; Albedo at 527 nm; Albedo at 528 nm; Albedo at 529 nm; Albedo at 530 nm; Albedo at 531 nm; Albedo at 532 nm; Albedo at 533 nm; Albedo at 534 nm; Albedo at 535 nm; Albedo at 536 nm; Albedo at 537 nm; Albedo at 538 nm; Albedo at 539 nm; Albedo at 540 nm; Albedo at 541 nm; Albedo at 542 nm; Albedo at 543 nm; Albedo at 544 nm; Albedo at 545 nm; Albedo at 546 nm; Albedo at 547 nm; Albedo at 548 nm; Albedo at 549 nm; Albedo at 550 nm; Albedo at 551 nm; Albedo at 552 nm; Albedo at 553 nm; Albedo at 554 nm; Albedo at 555 nm; Albedo at 556 nm; Albedo at 557 nm; Albedo at 558 nm; Albedo at 559 nm; Albedo at 560 nm; Albedo at 561 nm; Albedo at 562 nm; Albedo at 563 nm; Albedo at 564 nm; Albedo at 565 nm; Albedo at 566 nm; Albedo at 567 nm; Albedo at 568 nm; Albedo at 569 nm; Albedo at 570 nm; Albedo at 571 nm; Albedo at 572 nm; Albedo at 573 nm; Albedo at 574 nm; Albedo at 575 nm; Albedo at 576 nm; Albedo at 577 nm; Albedo at 578 nm; Albedo at 579 nm; Albedo at 580 nm; Albedo at 581 nm; Albedo at 582 nm; Albedo at 583 nm; Albedo at 584 nm; Albedo at 585 nm; Albedo at 586 nm; Albedo at 587 nm; Albedo at 588 nm; Albedo at 589 nm; Albedo at 590 nm; Albedo at 591 nm; Albedo at 592 nm; Albedo at 593 nm; Albedo at 594 nm; Albedo at 595 nm; Albedo at 596 nm; Albedo at 597 nm; Albedo at 598 nm; Albedo at 599 nm; Albedo at 600 nm; Albedo at 601 nm; Albedo at 602 nm; Albedo at 603 nm; Albedo at 604 nm; Albedo at 605 nm; Albedo at 606 nm; Albedo at 607 nm; Albedo at 608 nm; Albedo at 609 nm; Albedo at 610 nm; Albedo at 611 nm; Albedo at 612 nm; Albedo at 613 nm; Albedo at 614 nm; Albedo at 615 nm; Albedo at 616 nm; Albedo at 617 nm; Albedo at 618 nm; Albedo at 619 nm; Albedo at 620 nm; Albedo at 621 nm; Albedo at 622 nm; Albedo at 623 nm; Albedo at 624 nm; Albedo at 625 nm; Albedo at 626 nm; Albedo at 627 nm; Albedo at 628 nm; Albedo at 629 nm; Albedo at 630 nm; Albedo at 631 nm; Albedo at 632 nm; Albedo at 633 nm; Albedo at 634 nm; Albedo at 635 nm; Albedo at 636 nm; Albedo at 637 nm; Albedo at 638 nm; Albedo at 639 nm; Albedo at 640 nm; Albedo at 641 nm; Albedo at 642 nm; Albedo at 643 nm; Albedo at 644 nm; Albedo at 645 nm; Albedo at 646 nm; Albedo at 647 nm; Albedo at 648 nm; Albedo at 649 nm; Albedo at 650 nm; Albedo at 651 nm; Albedo at 652 nm; Albedo at 653 nm; Albedo at 654 nm; Albedo at 655 nm; Albedo at 656 nm; Albedo at 657 nm; Albedo at 658 nm; Albedo at 659 nm; Albedo at 660 nm; Albedo at 661 nm; Albedo at 662 nm; Albedo at 663 nm; Albedo at 664 nm; Albedo at 665 nm; Albedo at 666 nm; Albedo at 667 nm; Albedo at 668 nm; Albedo at 669 nm; Albedo at 670 nm; Albedo at 671 nm; Albedo at 672 nm; Albedo at 673 nm; Albedo at 674 nm; Albedo at 675 nm; Albedo at 676 nm; Albedo at 677 nm; Albedo at 678 nm; Albedo at 679 nm; Albedo at 680 nm; Albedo at 681 nm; Albedo at 682 nm; Albedo at 683 nm; Albedo at 684 nm; Albedo at 685 nm; Albedo at 686 nm; Albedo at 687 nm; Albedo at 688 nm; Albedo at 689 nm; Albedo at 690 nm; Albedo at 691 nm; Albedo at 692 nm; Albedo at 693 nm; Albedo at 694 nm; Albedo at 695 nm; Albedo at 696 nm; Albedo at 697 nm; Albedo at 698 nm; Albedo at 699 nm; Albedo at 700 nm; Albedo at 701 nm; Albedo at 702 nm; Albedo at 703 nm; Albedo at 704 nm; Albedo at 705 nm; Albedo at 706 nm; Albedo at 707 nm; Albedo at 708 nm; Albedo at 709 nm; Albedo at 710 nm; Albedo at 711 nm; Albedo at 712 nm; Albedo at 713 nm; Albedo at 714 nm; Albedo at 715 nm; Albedo at 716 nm; Albedo at 717 nm; Albedo at 718 nm; Albedo at 719 nm; Albedo at 720 nm; Albedo at 721 nm; Albedo at 722 nm; Albedo at 723 nm; Albedo at 724 nm; Albedo at 725 nm; Albedo at 726 nm; Albedo at 727 nm; Albedo at 728 nm; Albedo at 729 nm; Albedo at 730 nm; Albedo at 731 nm; Albedo at 732 nm; Albedo at 733 nm; Albedo at 734 nm; Albedo at 735 nm; Albedo at 736 nm; Albedo at 737 nm; Albedo at 738 nm; Albedo at 739 nm; Albedo at 740 nm; Albedo at 741 nm; Albedo at 742 nm; Albedo at 743 nm; Albedo at 744 nm; Albedo at 745 nm; Albedo at 746 nm; Albedo at 747 nm; Albedo at 748 nm; Albedo at 749 nm; Albedo at 750 nm; Albedo at 751 nm; Albedo at 752 nm; Albedo at 753 nm; Albedo at 754 nm; Albedo at 755 nm; Albedo at 756 nm; Albedo at 757 nm; Albedo at 758
    Type: Dataset
    Format: text/tab-separated-values, 727332 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, incident; Irradiance, incident, photosynthetically active; Irradiance, incident, photosynthetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, incident at 320 nm; Spectral irradiance, incident at 321 nm; Spectral irradiance, incident at 322 nm; Spectral irradiance, incident at 323 nm; Spectral irradiance, incident at 324 nm; Spectral irradiance, incident at 325 nm; Spectral irradiance, incident at 326 nm; Spectral irradiance, incident at 327 nm; Spectral irradiance, incident at 328 nm; Spectral irradiance, incident at 329 nm; Spectral irradiance, incident at 330 nm; Spectral irradiance, incident at 331 nm; Spectral irradiance, incident at 332 nm; Spectral irradiance, incident at 333 nm; Spectral irradiance, incident at 334 nm; Spectral irradiance, incident at 335 nm; Spectral irradiance, incident at 336 nm; Spectral irradiance, incident at 337 nm; Spectral irradiance, incident at 338 nm; Spectral irradiance, incident at 339 nm; Spectral irradiance, incident at 340 nm; Spectral irradiance, incident at 341 nm; Spectral irradiance, incident at 342 nm; Spectral irradiance, incident at 343 nm; Spectral irradiance, incident at 344 nm; Spectral irradiance, incident at 345 nm; Spectral irradiance, incident at 346 nm; Spectral irradiance, incident at 347 nm; Spectral irradiance, incident at 348 nm; Spectral irradiance, incident at 349 nm; Spectral irradiance, incident at 350 nm; Spectral irradiance, incident at 351 nm; Spectral irradiance, incident at 352 nm; Spectral irradiance, incident at 353 nm; Spectral irradiance, incident at 354 nm; Spectral irradiance, incident at 355 nm; Spectral irradiance, incident at 356 nm; Spectral irradiance, incident at 357 nm; Spectral irradiance, incident at 358 nm; Spectral irradiance, incident at 359 nm; Spectral irradiance, incident at 360 nm; Spectral irradiance, incident at 361 nm; Spectral irradiance, incident at 362 nm; Spectral irradiance, incident at 363 nm; Spectral irradiance, incident at 364 nm; Spectral irradiance, incident at 365 nm; Spectral irradiance, incident at 366 nm; Spectral irradiance, incident at 367 nm; Spectral irradiance, incident at 368 nm; Spectral irradiance, incident at 369 nm; Spectral irradiance, incident at 370 nm; Spectral irradiance, incident at 371 nm; Spectral irradiance, incident at 372 nm; Spectral irradiance, incident at 373 nm; Spectral irradiance, incident at 374 nm; Spectral irradiance, incident at 375 nm; Spectral irradiance, incident at 376 nm; Spectral irradiance, incident at 377 nm; Spectral irradiance, incident at 378 nm; Spectral irradiance, incident at 379 nm; Spectral irradiance, incident at 380 nm; Spectral irradiance, incident at 381 nm; Spectral irradiance, incident at 382 nm; Spectral irradiance, incident at 383 nm; Spectral irradiance, incident at 384 nm; Spectral irradiance, incident at 385 nm; Spectral irradiance, incident at 386 nm; Spectral irradiance, incident at 387 nm; Spectral irradiance, incident at 388 nm; Spectral irradiance, incident at 389 nm; Spectral irradiance, incident at 390 nm; Spectral irradiance, incident at 391 nm; Spectral irradiance, incident at 392 nm; Spectral irradiance, incident at 393 nm; Spectral irradiance, incident at 394 nm; Spectral irradiance, incident at 395 nm; Spectral irradiance, incident at 396 nm; Spectral irradiance, incident at 397 nm; Spectral irradiance, incident at 398 nm; Spectral irradiance, incident at 399 nm; Spectral irradiance, incident at 400 nm; Spectral irradiance, incident at 401 nm; Spectral irradiance, incident at 402 nm; Spectral irradiance, incident at 403 nm; Spectral irradiance, incident at 404 nm; Spectral irradiance, incident at 405 nm; Spectral irradiance, incident at 406 nm; Spectral irradiance, incident at 407 nm; Spectral irradiance, incident at 408 nm; Spectral irradiance, incident at 409 nm; Spectral irradiance, incident at 410 nm; Spectral irradiance, incident at 411 nm; Spectral irradiance, incident at 412 nm; Spectral irradiance, incident at 413 nm; Spectral irradiance, incident at 414 nm; Spectral irradiance, incident at 415 nm; Spectral irradiance, incident at 416 nm; Spectral irradiance, incident at 417 nm; Spectral irradiance, incident at 418 nm; Spectral irradiance, incident at 419 nm; Spectral irradiance, incident at 420 nm; Spectral irradiance, incident at 421 nm; Spectral irradiance, incident at 422 nm; Spectral irradiance, incident at 423 nm; Spectral irradiance, incident at 424 nm; Spectral irradiance, incident at 425 nm; Spectral irradiance, incident at 426 nm; Spectral irradiance, incident at 427 nm; Spectral irradiance, incident at 428 nm; Spectral irradiance, incident at 429 nm; Spectral irradiance, incident at 430 nm; Spectral irradiance, incident at 431 nm; Spectral irradiance, incident at 432 nm; Spectral irradiance, incident at 433 nm; Spectral irradiance, incident at 434 nm; Spectral irradiance, incident at 435 nm; Spectral irradiance, incident at 436 nm; Spectral irradiance, incident at 437 nm; Spectral irradiance, incident at 438 nm; Spectral irradiance, incident at 439 nm; Spectral irradiance, incident at 440 nm; Spectral irradiance, incident at 441 nm; Spectral irradiance, incident at 442 nm; Spectral irradiance, incident at 443 nm; Spectral irradiance, incident at 444 nm; Spectral irradiance, incident at 445 nm; Spectral irradiance, incident at 446 nm; Spectral irradiance, incident at 447 nm; Spectral irradiance, incident at 448 nm; Spectral irradiance, incident at 449 nm; Spectral irradiance, incident at 450 nm; Spectral irradiance, incident at 451 nm; Spectral irradiance, incident at 452 nm; Spectral irradiance, incident at 453 nm; Spectral irradiance, incident at 454 nm; Spectral irradiance, incident at 455 nm; Spectral irradiance, incident at 456 nm; Spectral irradiance, incident at 457 nm; Spectral irradiance, incident at 458 nm; Spectral irradiance, incident at 459 nm; Spectral irradiance, incident at 460 nm; Spectral irradiance, incident at 461 nm; Spectral irradiance, incident at 462 nm; Spectral irradiance, incident at 463 nm; Spectral irradiance, incident at 464 nm; Spectral irradiance, incident at 465 nm; Spectral irradiance, incident at 466 nm; Spectral irradiance, incident at 467 nm; Spectral irradiance, incident at 468 nm; Spectral irradiance, incident at 469 nm; Spectral irradiance, incident at 470 nm; Spectral irradiance, incident at 471 nm; Spectral irradiance, incident at 472 nm; Spectral irradiance, incident at 473 nm; Spectral irradiance, incident at 474 nm; Spectral irradiance, incident at 475 nm; Spectral irradiance, incident at 476 nm; Spectral irradiance, incident at 477 nm; Spectral irradiance, incident at 478 nm; Spectral irradiance, incident at 479 nm; Spectral irradiance, incident at 480 nm; Spectral irradiance, incident at 481 nm; Spectral irradiance, incident at 482 nm; Spectral irradiance, incident at 483 nm; Spectral irradiance, incident at 484 nm; Spectral irradiance, incident at 485 nm; Spectral irradiance, incident at 486 nm; Spectral irradiance, incident at 487 nm; Spectral irradiance, incident at 488 nm; Spectral irradiance, incident at 489 nm; Spectral irradiance, incident at 490 nm; Spectral irradiance, incident at 491 nm; Spectral irradiance, incident at 492 nm; Spectral irradiance, incident at 493 nm; Spectral irradiance, incident at 494 nm; Spectral irradiance, incident at 495 nm; Spectral irradiance, incident at 496 nm; Spectral irradiance, incident at 497 nm; Spectral irradiance, incident at 498 nm;
    Type: Dataset
    Format: text/tab-separated-values, 955680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; Battery, voltage; BRS; buoy; Buoy, radiation station; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Humidity, relative, technical; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Pressure, atmospheric; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, technical
    Type: Dataset
    Format: text/tab-separated-values, 34050 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; Backscatter strength; BRS; buoy; Buoy, radiation station; chlorophyll; Chlorophyll a; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Fluorescence, dissolved organic matter; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, position; Sea Ice Physics @ AWI; snow depth; solar radiation
    Type: Dataset
    Format: text/tab-separated-values, 116176 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Amplitude, measured with blue excitation light; Amplitude, measured with red excitation light; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calibrated phase; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; Phase, measurement with blue excitation light; Phase, measurement with red excitation light; PS122/1_1-167, 2019R8; Quality flag, position; Saturation, air, relative; Sea Ice Physics @ AWI; snow depth; solar radiation; Temperature, water; Temperature compensated phase; Voltage, thermistor bridge
    Type: Dataset
    Format: text/tab-separated-values, 79871 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven
    Publication Date: 2024-03-05
    Description: Solar radiation over and under sea ice was measured by radiation station 2019R8, an autonomous platform, installed on drifting First-Year-Ice (FYI) in the Arctic Ocean during MOSAiC (Leg 1) 2019/20. The resulting time series describes radiation measurements as a function of place and time between 05 October 2019 and 31 July 2020 in sample intervals of 3 hours. The radiation measurements have been performed with spectral radiometers. All data are given in full spectral resolution interpolated to 1.0 nm, and integrated over the entire wavelength range (broadband, total: 320 to 950 nm). Two sensors, solar irradiance and upward reflected solar irradiance, were mounted on a on a platform about 1 m above the sea ice surface. The third sensor was mounted 0.5 m underneath the sea ice measuring the downward transmitted irradiance. Along with the radiation measurements, this autonomous platform consisted of a 5 m long thermistor chain with sensor spacing of 0.02 m and several other sensor packages, which measured water temperature, pressure and conductivity at hourly intervals. Ecology sensors measured backscatter strength, chlorophyll a and fluorescence of dissolved organic matter at hourly intervals. Oxygen sensors measured relative oxygen air saturation, and water temperature at hourly intervals. In addition, relative snow height was measured at hourly intervals. All times are given in UTC.
    Keywords: AF-MOSAiC-1; AF-MOSAiC-1_88; Akademik Fedorov; Arctic Ocean; autonomous platform; AWI_SeaIce; Backscatter; BRS; buoy; Buoy, radiation station; Calculated; chlorophyll; Conductivity; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; FDOM; Ice mass balance; Irradiance, downward; Irradiance, downward, photosynthetically active; Irradiance, downward, photosynthetically active, absolute; LATITUDE; LONGITUDE; meereisportal.de; MOSAiC; MOSAiC20192020, AF122/1; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oxygen; PS122/1_1-167, 2019R8; Quality flag, sun elevation; Sea Ice Physics @ AWI; snow depth; solar radiation; Spectral irradiance, downward at 320 nm; Spectral irradiance, downward at 321 nm; Spectral irradiance, downward at 322 nm; Spectral irradiance, downward at 323 nm; Spectral irradiance, downward at 324 nm; Spectral irradiance, downward at 325 nm; Spectral irradiance, downward at 326 nm; Spectral irradiance, downward at 327 nm; Spectral irradiance, downward at 328 nm; Spectral irradiance, downward at 329 nm; Spectral irradiance, downward at 330 nm; Spectral irradiance, downward at 331 nm; Spectral irradiance, downward at 332 nm; Spectral irradiance, downward at 333 nm; Spectral irradiance, downward at 334 nm; Spectral irradiance, downward at 335 nm; Spectral irradiance, downward at 336 nm; Spectral irradiance, downward at 337 nm; Spectral irradiance, downward at 338 nm; Spectral irradiance, downward at 339 nm; Spectral irradiance, downward at 340 nm; Spectral irradiance, downward at 341 nm; Spectral irradiance, downward at 342 nm; Spectral irradiance, downward at 343 nm; Spectral irradiance, downward at 344 nm; Spectral irradiance, downward at 345 nm; Spectral irradiance, downward at 346 nm; Spectral irradiance, downward at 347 nm; Spectral irradiance, downward at 348 nm; Spectral irradiance, downward at 349 nm; Spectral irradiance, downward at 350 nm; Spectral irradiance, downward at 351 nm; Spectral irradiance, downward at 352 nm; Spectral irradiance, downward at 353 nm; Spectral irradiance, downward at 354 nm; Spectral irradiance, downward at 355 nm; Spectral irradiance, downward at 356 nm; Spectral irradiance, downward at 357 nm; Spectral irradiance, downward at 358 nm; Spectral irradiance, downward at 359 nm; Spectral irradiance, downward at 360 nm; Spectral irradiance, downward at 361 nm; Spectral irradiance, downward at 362 nm; Spectral irradiance, downward at 363 nm; Spectral irradiance, downward at 364 nm; Spectral irradiance, downward at 365 nm; Spectral irradiance, downward at 366 nm; Spectral irradiance, downward at 367 nm; Spectral irradiance, downward at 368 nm; Spectral irradiance, downward at 369 nm; Spectral irradiance, downward at 370 nm; Spectral irradiance, downward at 371 nm; Spectral irradiance, downward at 372 nm; Spectral irradiance, downward at 373 nm; Spectral irradiance, downward at 374 nm; Spectral irradiance, downward at 375 nm; Spectral irradiance, downward at 376 nm; Spectral irradiance, downward at 377 nm; Spectral irradiance, downward at 378 nm; Spectral irradiance, downward at 379 nm; Spectral irradiance, downward at 380 nm; Spectral irradiance, downward at 381 nm; Spectral irradiance, downward at 382 nm; Spectral irradiance, downward at 383 nm; Spectral irradiance, downward at 384 nm; Spectral irradiance, downward at 385 nm; Spectral irradiance, downward at 386 nm; Spectral irradiance, downward at 387 nm; Spectral irradiance, downward at 388 nm; Spectral irradiance, downward at 389 nm; Spectral irradiance, downward at 390 nm; Spectral irradiance, downward at 391 nm; Spectral irradiance, downward at 392 nm; Spectral irradiance, downward at 393 nm; Spectral irradiance, downward at 394 nm; Spectral irradiance, downward at 395 nm; Spectral irradiance, downward at 396 nm; Spectral irradiance, downward at 397 nm; Spectral irradiance, downward at 398 nm; Spectral irradiance, downward at 399 nm; Spectral irradiance, downward at 400 nm; Spectral irradiance, downward at 401 nm; Spectral irradiance, downward at 402 nm; Spectral irradiance, downward at 403 nm; Spectral irradiance, downward at 404 nm; Spectral irradiance, downward at 405 nm; Spectral irradiance, downward at 406 nm; Spectral irradiance, downward at 407 nm; Spectral irradiance, downward at 408 nm; Spectral irradiance, downward at 409 nm; Spectral irradiance, downward at 410 nm; Spectral irradiance, downward at 411 nm; Spectral irradiance, downward at 412 nm; Spectral irradiance, downward at 413 nm; Spectral irradiance, downward at 414 nm; Spectral irradiance, downward at 415 nm; Spectral irradiance, downward at 416 nm; Spectral irradiance, downward at 417 nm; Spectral irradiance, downward at 418 nm; Spectral irradiance, downward at 419 nm; Spectral irradiance, downward at 420 nm; Spectral irradiance, downward at 421 nm; Spectral irradiance, downward at 422 nm; Spectral irradiance, downward at 423 nm; Spectral irradiance, downward at 424 nm; Spectral irradiance, downward at 425 nm; Spectral irradiance, downward at 426 nm; Spectral irradiance, downward at 427 nm; Spectral irradiance, downward at 428 nm; Spectral irradiance, downward at 429 nm; Spectral irradiance, downward at 430 nm; Spectral irradiance, downward at 431 nm; Spectral irradiance, downward at 432 nm; Spectral irradiance, downward at 433 nm; Spectral irradiance, downward at 434 nm; Spectral irradiance, downward at 435 nm; Spectral irradiance, downward at 436 nm; Spectral irradiance, downward at 437 nm; Spectral irradiance, downward at 438 nm; Spectral irradiance, downward at 439 nm; Spectral irradiance, downward at 440 nm; Spectral irradiance, downward at 441 nm; Spectral irradiance, downward at 442 nm; Spectral irradiance, downward at 443 nm; Spectral irradiance, downward at 444 nm; Spectral irradiance, downward at 445 nm; Spectral irradiance, downward at 446 nm; Spectral irradiance, downward at 447 nm; Spectral irradiance, downward at 448 nm; Spectral irradiance, downward at 449 nm; Spectral irradiance, downward at 450 nm; Spectral irradiance, downward at 451 nm; Spectral irradiance, downward at 452 nm; Spectral irradiance, downward at 453 nm; Spectral irradiance, downward at 454 nm; Spectral irradiance, downward at 455 nm; Spectral irradiance, downward at 456 nm; Spectral irradiance, downward at 457 nm; Spectral irradiance, downward at 458 nm; Spectral irradiance, downward at 459 nm; Spectral irradiance, downward at 460 nm; Spectral irradiance, downward at 461 nm; Spectral irradiance, downward at 462 nm; Spectral irradiance, downward at 463 nm; Spectral irradiance, downward at 464 nm; Spectral irradiance, downward at 465 nm; Spectral irradiance, downward at 466 nm; Spectral irradiance, downward at 467 nm; Spectral irradiance, downward at 468 nm; Spectral irradiance, downward at 469 nm; Spectral irradiance, downward at 470 nm; Spectral irradiance, downward at 471 nm; Spectral irradiance, downward at 472 nm; Spectral irradiance, downward at 473 nm; Spectral irradiance, downward at 474 nm; Spectral irradiance, downward at 475 nm; Spectral irradiance, downward at 476 nm; Spectral irradiance, downward at 477 nm; Spectral irradiance, downward at 478 nm; Spectral irradiance, downward at 479 nm; Spectral irradiance, downward at 480 nm; Spectral irradiance, downward at 481 nm; Spectral irradiance, downward at 482 nm; Spectral irradiance, downward at 483 nm; Spectral irradiance, downward at 484 nm; Spectral irradiance, downward at 485 nm; Spectral irradiance, downward at 486 nm; Spectral irradiance, downward at 487 nm; Spectral irradiance, downward at 488 nm; Spectral irradiance, downward at 489 nm; Spectral irradiance, downward at 490 nm; Spectral irradiance, downward at 491 nm; Spectral irradiance, downward at 492 nm; Spectral irradiance, downward at 493 nm; Spectral irradiance, downward at 494 nm; Spectral irradiance, downward at 495 nm; Spectral irradiance, downward at 496 nm; Spectral irradiance, downward at 497 nm; Spectral irradiance, downward at 498 nm;
    Type: Dataset
    Format: text/tab-separated-values, 958850 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-03-05
    Description: This dataset includes stable hydrogen isotope compositions of palmitic acid (n-fatty acid C16) of Core MSM12/2-05-01 from the eastern Labrador Sea, indicating sea surface salinity.
    Keywords: AGE; Biomarkers; Coarse fraction; DEPTH, sediment/rock; Foraminifera; Gas chromatography - isotope ratio mass spectrometry (GC-IRMS); GC; Gravity corer; Ice Sheet; Irminger Current; Labrador Sea; Maria S. Merian; MSM12/2; MSM12/2_647-1; MSM12/2-05-01; n-fatty acid C16, δD; n-fatty acid C16, δD, standard error; Sea surface; XRF
    Type: Dataset
    Format: text/tab-separated-values, 52 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-03-05
    Description: This dataset includes the percentage of fractions above 63 microns of Core MSM12/2-05-01 from the eastern Labrador Sea. Here, we show the record representing the last 50 ka.
    Keywords: AGE; Biomarkers; Coarse fraction; DEPTH, sediment/rock; Foraminifera; GC; Gravity corer; Ice Sheet; Irminger Current; Labrador Sea; Maria S. Merian; MSM12/2; MSM12/2_647-1; MSM12/2-05-01; Sea surface; Size fraction 〉 0.063 mm, sand; Wet sieving; XRF
    Type: Dataset
    Format: text/tab-separated-values, 114 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-03-05
    Description: This dataset includes concentration and accumulation rates of highly branched isoprenoid and sterols of Core MSM12/2-05-01 from the eastern Labrador Sea. Here, we show the records representing the last 50 ka. IP25 indicates sea ice algae production. Dinosterol and brassicasterol indicate open-water phytoplankton productivity.
    Keywords: Accumulation rate, Cibicidoides wuellerstorfi; Accumulation rate, Epistominella exigua; Accumulation rate, Melonis barleeanus; Accumulation rate, number of benthic foraminifera; AGE; Biomarkers; Calculated; Cibicidoides wuellerstorfi; Coarse fraction; Counting 〉125 µm fraction; DEPTH, sediment/rock; Epistominella exigua; Foraminifera; Foraminifera, benthic; GC; Gravity corer; Ice Sheet; Irminger Current; Labrador Sea; Maria S. Merian; Melonis barleeanus; MSM12/2; MSM12/2_647-1; MSM12/2-05-01; Sea surface; XRF
    Type: Dataset
    Format: text/tab-separated-values, 1131 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-03-05
    Description: This dataset includes the number, abundance, and accumulation rates of total planktic foraminifera of Core MSM12/2-05-01 from the eastern Labrador Sea. The number, percentages, and accumulation rates of dominant planktic foraminifera species are also included. Here, we show the records representing the last 50 ka. Changes in foraminifera assemblages indicate changes in water mass characteristics.
    Keywords: Accumulation rate, Globigerina bulloides; Accumulation rate, Neogloboquadrina pachyderma sinistral; Accumulation rate, planktic foraminifera by number; Accumulation rate, Turborotalita quinqueloba; AGE; Biomarkers; Calculated; Coarse fraction; Counting 〉125 µm fraction; DEPTH, sediment/rock; Foraminifera; Foraminifera, planktic; GC; Globigerina bulloides; Gravity corer; Ice Sheet; Irminger Current; Labrador Sea; Maria S. Merian; MSM12/2; MSM12/2_647-1; MSM12/2-05-01; Neogloboquadrina pachyderma sinistral; Sea surface; Turborotalita quinqueloba; XRF
    Type: Dataset
    Format: text/tab-separated-values, 1167 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-03-05
    Description: This dataset includes concentration and accumulation rates of alkenone, the percentage of C37:4, and SST calculation based on the alkenone concentration of Core MSM12/2-05-01 from the eastern Labrador Sea. Here, we show the records representing the last 50 ka. The total alkenone content, %C37:4, and SSTs indicate open-water phytoplankton productivity, meltwater inflow, and sea surface temperatures, respectively.
    Keywords: Accumulation rate, alkenones; AGE; Alkenone, C37:4; Alkenone, per unit mass total organic carbon; Biomarkers; Calculated; Calculated from UK37 (Filippova et al., 2016); Coarse fraction; DEPTH, sediment/rock; Foraminifera; Gas chromatography - Flame Ionization Detection (GC-FID); GC; Gravity corer; Ice Sheet; Irminger Current; Labrador Sea; Maria S. Merian; MSM12/2; MSM12/2_647-1; MSM12/2-05-01; Sea surface; Sea surface temperature, summer; XRF
    Type: Dataset
    Format: text/tab-separated-values, 715 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-03-07
    Description: Between September 2016 and August 2017, we conducted year-long reciprocal transplantation experiments using the cold-water coral Desmophyllum dianthus along natural oceanographic horizontal and vertical gradients (vertically: 20 m to 300 m depth and horizontally: head to mouth of fjord) in Comau Fjord to study seasonal changes and the acclimatisation potential of its biochemical composition. Seasonal energy reserves (proteins, carbohydrates and lipids) and the C:N ratio of native and novel (cross-transplanted) corals were measured at six shallow (A-F, 20 m) and one deep station (Ed, 300 m) during autral summer (January), autumn (May) and winter (August).
    Keywords: A, As; B; C; C:N; Carbohydrate; Carbohydrates, energy reserve per individuum; Carbohydrates, energy reserve per surface area; Carbohydrates per individuum; Carbohydrates per surface area; Carbon/Nitrogen ratio; Caryophyllia huinayensis, area; Comau Fjord, Patagonia, Chile; D; Depth, description; Ed; energy reserves; Es; Event label; F, Fs, Lillihuapy, Lilliguapi; Identification; Liliguapi; Lipid; Lipids, energy reserve per individuum; Lipids, energy reserve per surface area; Lipids per individuum; Lipids per surface area; Method comment; Monitoring station; MONS; Near_SWALL; PACOC; Pared_de_la_cruz; Pirate_Cove; Plankton- And cold-water COral ecology in Comau Fjord, Chile; protein; Proteins, energy reserve per individuum; Proteins, energy reserve per surface area; Proteins per individuum; Proteins per surface area; Reciprocal Transplant; Rio_Tambor; Season; seasonality; Species, unique identification; Species, unique identification (URI); Station label; surface area; Total energy reserve per individuum; Total energy reserve per surface area; X-Telele; X-Telele_deep
    Type: Dataset
    Format: text/tab-separated-values, 5081 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-03-08
    Description: Ocean Alkalinity Enhancement (OAE) could augment long-term carbon storage and mitigate ocean acidification by increasing the bicarbonate ion concentration in ocean water. However, the side effects and/or potential co-benefits of OAE on natural planktonic communities remain poorly understood. To address this knowledge gap, 9 mesocosms were deployed in the oligotrophic waters of Gran Canaria, from September 14th to October 16th, 2021. A CO2-equilibrated Total Alkalinity (TA) gradient was employed in increments of 300 µmol·L-1, ranging from ~2400 to ~4800 µmol·L-1. The carbonate chemistry conditions in terms of TA and Dissolved Inorganic Carbon (DIC), which were then used to calculate pCO2 and pH, and the nitrate+nitrite, phosphate and silicate concentrations were measured every two days over the course of the 33-day experiment alongside the following biotic parameters. Net Community Production (NCP), Gross Production (GP), Community Respiration (CR) rates, as well as the metabolic balance (GP:CR), were monitored every two days through oxygen production and consumption using the winkler method. Fractionated 14C uptake and chlorophyll a were also determined every four days although, initially, the total PO14C and DO14C production were also measured every 4 days, in between, up to day 13. Finally, flow cytometry was also carried out every two days and synecococcus, picoeukaryote and nanophytoplankton abundances were obtained. No damaging effect of CO2-equilibrated OAE in the range applied here, on phytoplankton primary production, community metabolism and composition could be inferred from our results. In fact, a potential co-benefit to OAE was observed in the form of the positive curvilinear response to the DIC gradient up to the ∆TA1800 treatment. Further experimental research at this scale is key to gain a better understanding of the short and long-term effects of OAE on planktonic communities.
    Keywords: 14C-DOC; 14C-POC; 14C uptake; AQUACOSM; Canarias Sea; Chlorophyll a, total; chlorophyll-a concentration; Chlorophyll a microplankton; Chlorophyll a nanoplankton; Chlorophyll a picoplankton; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; Event label; Extracellular release; Field experiment; flow cytometry; Flow cytometry; Gross community production/respiration rate, oxygen, ratio; Gross community production of oxygen; Identification; KOSMOS_2021; KOSMOS_2021_Mesocosm-M1; KOSMOS_2021_Mesocosm-M2; KOSMOS_2021_Mesocosm-M3; KOSMOS_2021_Mesocosm-M4; KOSMOS_2021_Mesocosm-M5; KOSMOS_2021_Mesocosm-M6; KOSMOS_2021_Mesocosm-M7; KOSMOS_2021_Mesocosm-M8; KOSMOS_2021_Mesocosm-M9; KOSMOS Gran Canaria; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Nanoeukaryotes; Net community production of oxygen; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Ocean-based Negative Emission Technologies; OceanNETs; Picoeukaryotes; primary production; Primary production of carbon, organic, dissolved; Primary production of carbon, organic, particulate; Primary production of carbon, organic, total; Respiration rate, oxygen, community; Synechococcus; Treatment: alkalinity, total; Type of study; Winkler oxygen
    Type: Dataset
    Format: text/tab-separated-values, 3828 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Baseline Surface Radiation Network; BSRN; DATE/TIME; IZA; Izaña; Monitoring station; MONS; Ozone total; Tenerife, Spain
    Type: Dataset
    Format: text/tab-separated-values, 1663 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Baseline Surface Radiation Network; BSRN; DATE/TIME; HEIGHT above ground; IZA; Izaña; Monitoring station; MONS; Tenerife, Spain; Ultraviolet-a global; Ultraviolet-a global, maximum; Ultraviolet-a global, minimum; Ultraviolet-a global, standard deviation; Ultraviolet-b global; Ultraviolet-b global, maximum; Ultraviolet-b global, minimum; Ultraviolet-b global, standard deviation; UV-Radiometer, Kipp & Zonen, UVB1, SN 970839, WRMC No. 61007; UV-Radiometer, Kipp & Zonen, UV-S-A-T, SN 080005, WRMC No. 61006
    Type: Dataset
    Format: text/tab-separated-values, 356432 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; IZA; Izaña; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Vaisala, RS92; Temperature, air; Tenerife, Spain; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 1318328 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-03-08
    Description: Dissolved stable silicon isotopes were determined in seawater samples collected during the 73rd expedition onboard RV Akademik Mstislav Keldysh (AMK73) in the Laptev Sea in October 2018 under ice free conditions. Seawater samples were filtered inline from Niskin bottles or the ship's underway system, acidified to 0.1% v/v with HCl and kept at 4°C until analysis on land. Samples were measured for δ29Si(OH)4 with reference to international reference material NBS28 on a Nu Plasma II MC-ICP-MS (The University of Edinburgh, School of Geosciences) using the MAGIC co-precipitation method and purified through column chemistry. International standards BigBatch, ALOHA300 and ALOHA1000 were run alongside seawater samples for inter-comparability. Final values were converted to δ30Si(OH)4 using the conversion factor of 1.96 for comparability. Reproducibility is 0.05 and 0.1‰ for δ29Si(OH)4 and δ30Si(OH)4 respectively. This dataset includes salinity, silicic acid concentrations and stable silicon isotope signatures of seawater, which provides useful information on the silicon biogeochemical cycle of the Laptev Sea, as influenced by the Lena river.
    Keywords: Akademik Mstislav Keldysh; AMK73; AMK73_6005; AMK73_6006; AMK73_6007; AMK73_6008; AMK73_6009; AMK73_6013; AMK73_6014; AMK73_6015; AMK73_6016; AMK73_6022; AMK73_6027; AMK73_6045; AMK73_6065; AMK73_6068; AMK73_UW10; AMK73_UW11; AMK73_UW13; AMK73_UW14; AMK73_UW15; AMK73_UW3; AMK73_UW4; AMK73_UW5; AMK73_UW6; AMK73_UW7; AMK73_UW8; AMK73_UW9; Arctic Ocean; Arctic Ocean nutrients; Bottle, Niskin; Computed/Converted; DEPTH, water; Event label; Laptev Sea; Latitude of event; Lena River Delta; Longitude of event; Multi-collector ICP-MS (MC-ICP-MS), Nu Plasma II; NIS; Salinity; silicate; Silicate; stable Si isotopes; Underway water sampling; UWS; δ29Si, silicic acid; δ29Si, silicic acid, standard deviation; δ30Si, silicic acid; δ30Si, silicic acid, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 394 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-03-08
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Code; DATE/TIME; Dew/frost point; Geopotential of a standard isobaric surface; High cloud; HYGRO; Hygrometer; IZA; Izaña; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; Station pressure; Temperature, air; Tenerife, Spain; Thermometer; Total cloud amount; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 996 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-03-09
    Description: Physical, chemical and biogeochemical measurements derived from CTD-rosette deployments during three visits to site P3 (November to December, 2017) in the South Atlantic. Measurements were made during COMICS cruise DY086 on the RRS Discovery using a trace metal free Titanium Rosette (events 4, 7, 15, 19, 24, 26, 29) and a Stainless Steel Rosette (all other events). Physical parameters include temperature, salinity, density, photosynthetically active radiation and turbulence; chemical parameters include dissolved oxygen, dissolved oxygen saturation, nitrate, phosphate and silicate; biogeochemical parameters include turbidity, beam transmittance, beam attenuation, fluorescence, particulate organic carbon (POC), dissolved organic carbon (DOC), chlorophyll-a, net primary productivity (NPP), ambient leucine assimilation and bacterial cell count. To determine turbulence, a downward facing lowered acoustic doppler current profiler (LADCP, Teledyne Workhorse Monitor 300 kHz ADCP) was attached to the CTD frame. Shear and strain, which are obtained from velocity and density measurements, were used to estimate the dissipation rate of turbulent kinetic energy and the diapycnal eddy diffusivity from a fine-scale parameterisation. Estimates are calculated by parameterising internal wave-wave interactions and assuming that wave breaking modulates turbulent mixing. A detailed description of the method for calculating diffusivity from LADCP and CTD can be found in Kunze et al. (2006). Two datasets with different vertical resolutions were produced: one in which the shear is integrated from 150 to 300 m and the strain over 20-150 m, and one in which the shear is integrated from 70 to 200 m and the strain over 30-200 m. Nutrients (nitrate, phosphate, silicate) were determined via colourimetric analysis (see cruise report, Giering and Sanders, 2019), POC was determined as described in Giering et al. (2023), DOC and DOC flux were determined as described in Lovecchio et al. (2023), NPP was determined as described in Poulton et al. (2019), and ambient leucine assimilation and bacterial cell count were determined as described in Rayne et al. (2024). Bacterial abundance and leucine assimilation were made from bottle samples of six CTD casts of the stainless-steel rosette. Water was collected at six depths (6 m, deep-chlorophyll maximum, mixed layer depth + 10, 100, 250 and 500 m). Acid-cleaned HDPE carboys and tubing were used for sampling. Samples were then stored in the dark and at in-situ temperature prior to on-board laboratory sample preparation or analysis. Flow cytometry was used to measure bacterial abundance. Room temperature paraformaldehyde was used to fix 1.6 ml samples for 30 minutes. Then, using liquid nitrogen, the samples were flash frozen and stored at -80°C. Samples were then defrosted before being stained using SYBR Green I and run through the flow cytometer (BD FACSort™). The method of Hill et al. (2013) was applied to determine prokaryotic leucine assimilation using L-[4,5-³H] leucine which has a specific activity of 89.3 Ci/mmol­. In the mixed and upper layers of the water column, the protocol in Zubkov et al. (2007) was followed. Below the mixed layer, adaptions to the method included reducing the concentration of ³H-Leucine to 0.005, 0.01, 0.025, 0.04 and 0.05 nM; increasing experimental volumes to 30 ml; enhancing incubation times to 30, 60, 90 and 120 min. These adaptions were made to improve accuracy where lower rates of leucine assimilation were expected. Data were provided by the British Oceanographic Data Centre and funded by the National Environment Research Council.
    Keywords: 74EQ20171115; Angular scattering coefficient, 700 nm; Attenuation, optical beam transmission; Bacteria; Barometer, Paroscientific, Digiquartz TC; biological carbon pump; Calculated; Calculated according to UNESCO (1983); Calculation according to Kunze et al. (2006); Carbon, organic, dissolved; Carbon, organic, dissolved, flux; Carbon, organic, particulate; Chlorophyll a; Colorimetric analysis; COMICS; Conductivity sensor, SEA-BIRD SBE 4C; Controls over Ocean Mesopelagic Interior Carbon Storage; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; Discovery (2013); Dissipation rate; Dissolved Oxygen Sensor, Sea-Bird, SBE 43 and SBE 43F; DY086; DY086_CTD002; DY086_CTD003; DY086_CTD004; DY086_CTD005; DY086_CTD006; DY086_CTD007; DY086_CTD008; DY086_CTD009; DY086_CTD010; DY086_CTD015; DY086_CTD016; DY086_CTD017; DY086_CTD018; DY086_CTD019; DY086_CTD020; DY086_CTD021; DY086_CTD022; DY086_CTD023; DY086_CTD024; DY086_CTD026; DY086_CTD027; DY086_CTD028; DY086_CTD029; DY086_CTD030; DY086_CTD031; DY086_CTD032; DY086_CTD033; Eddy diffusivity; Event label; Flow cytometer, Becton Dickinson, FACSort; Fluorometer, Chelsea Instruments, Aquatracka MKIII; fluxes; High Temperature Catalytic Oxidation (Shimadzu TOC-VCPN); LATITUDE; Leucine uptake rate; Liquid scintillation counter, Packard, TRI-CARB 3100TR; LONGITUDE; marine biogeochemistry; Net primary production of carbon; Nitrate; Organic Elemental Analyzer, Thermo Fisher Scientific, Flash 2000; Oxygen; Oxygen saturation; PAR sensor, Biospherical, LI-COR, SN 70510; PAR sensor, Biospherical, LI-COR, SN 70520; Phosphate; Radiation, photosynthetically active; Radioassays, liquid scintillation counting; Salinity; Scattering meter, WET Labs, ECO-BB OBS; Silicate; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Temperature, water; Temperature sensor, SEA-BIRD SBE 3Plus; Transmissometer, WET Labs, C-Star
    Type: Dataset
    Format: text/tab-separated-values, 171794 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-03-09
    Description: Data derived from net catches for zooplankton and micronekton during the COMICS cruise DY086 in November to December, 2017. Raw catch counts and biomass measurements have been used alongside published values to provide biomass, respiration and ingestion data between 0 and 500 metres depth (Belcher et al. 2022, Cook et al. 2023, Stowasser et al. 2020). Data values are from multiple net deployments and the number of deployments for each value are provided in the dataset. Bongo, Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) and Rectangular Midwater Trawl (RMT) nets collected small (100 μm mesh; day only), medium (330 μm mesh; day and night) and large (4000 μm mesh; day and night) samples, respectively.
    Keywords: 74EQ20171115; biological carbon pump; biology; BONGO; Bongo net; Calculated; COMICS; Controls over Ocean Mesopelagic Interior Carbon Storage; Date/Time of event; Date/Time of event 2; DEPTH, water; Depth, water, bottom/maximum; Depth, water, top/minimum; Discovery (2013); DY086; DY086_Bongo_P3A; DY086_Bongo_P3B; DY086_Bongo_P3C; DY086_MOCNESS_P3B; DY086_MOCNESS_P3C; DY086_RMT_P3A; DY086_RMT_P3B; DY086_RMT_P3C; Event label; fluxes; Latitude of event; Longitude of event; marine biogeochemistry; Mean values; MOC; MOCNESS opening/closing plankton net; Rectangular midwater trawl; RMT; Run Number; Runs; Site; SUMMER; Sustainable Management of Mesopelagic Resources; Time of day; Zooplankton and micronekton, biomass as carbon; Zooplankton and micronekton, ingestion rate as carbon; Zooplankton and micronekton, respiration rate as carbon
    Type: Dataset
    Format: text/tab-separated-values, 500 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-03-09
    Keywords: Aluminium; Barium; Calcium; Climate change; DEPTH, sediment/rock; Iron; large igneous province; Magnesium; Manganese; mid-Cretaceous; Northwestern Pacific; Nutrient supply; OAE2_OMZ; Phosphorus; Potassium; Potassium/Rubidium ratio; ROCK; Rock sample; Rubidium; Sample ID; Silicon; Sodium; Strontium; Sulfur; Titanium; X-ray fluorescence (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 3255 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-03-09
    Keywords: Climate change; Degree of pyritization; DEPTH, sediment/rock; Iron, acid-soluble; Iron in pyrite; large igneous province; mid-Cretaceous; Northwestern Pacific; Nutrient supply; OAE2_OMZ; ROCK; Rock sample; Sample ID; Sulfur, total
    Type: Dataset
    Format: text/tab-separated-values, 1185 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-03-09
    Description: Mid-Cretaceous oceanic anoxic event 2 (OAE2) is one of the largest carbon cycle perturbations during the Cretaceous period and is regarded as the analog of the present-day warming of the Earth due to the abrupt increase in pCO2 and global warming. It has been hypothesized that increased pCO2 from an eruption of large igneous provinces (LIPs) during OAE2 produced global warming and increased nutrient delivery from continents to oceans, causing oxygen depletion in the oceans globally. Although the Pacific Ocean and the Asian continent were the largest ocean and landmass during the mid-Cretaceous, only limited studies have been performed on the OAE2 strata in the sections of the Pacific and Asian continental margin. This dataset provides the results of a multiproxy analysis of the OAE2 strata in northwestern Hokkaido, Japan, consisting of calcareous nannofossil biostratigraphy, carbon isotope and osmium isotope stratigraphy, degree of pyritization (DOP), XRF analysis, clay mineral chemistry and biomarker analysis. Our result identified seven volcanic pulses, five of which may have elevated humidity, weathering intensity, and vegetational change in the eastern margin of Asia. Moreover, oxygen depletion occurred simultaneously in the northwest Pacific. Given that these environmental changes in the eastern margin of Asia were penecontemporaneous with the global carbon burial intervals during Oceanic Anoxic Event 2, the elevated nutrient supply from the Asian continental margin to the Pacific Ocean may have, in part, contributed to the worldwide depletion of oxygen of the ocean during Oceanic Anoxic Event 2.
    Keywords: Climate change; large igneous province; mid-Cretaceous; Northwestern Pacific; Nutrient supply
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-03-09
    Keywords: Climate change; DEPTH, sediment/rock; large igneous province; mid-Cretaceous; Northwestern Pacific; Nutrient supply; OAE2_OMZ; ROCK; Rock sample; Sample ID; δ13C, wood
    Type: Dataset
    Format: text/tab-separated-values, 1279 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-03-09
    Keywords: calculated, 2 sigma; Climate change; Correlation coefficient, isotope ratio error; DEPTH, sediment/rock; Initial Osmium isotope composition; initial Osmium isotope composition, standard error; large igneous province; mid-Cretaceous; Northwestern Pacific; Nutrient supply; OAE2_OMZ; Osmium; Osmium, standard error; Osmium-187/Osmium-188, standard error; Osmium-187/Osmium-188 ratio; Osmium-192; Osmium-192, standard error; Rhenium; Rhenium, standard error; Rhenium-187/Osmium-188, standard error; Rhenium-187/Osmium-188 ratio; ROCK; Rock sample; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 686 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-03-09
    Keywords: Chlorite, intensity; Climate change; DEPTH, sediment/rock; Illite, intensity; Illite-Smectite, intensity; Kaolinite, intensity; large igneous province; mid-Cretaceous; Modified Lanson Index; Northwestern Pacific; Nutrient supply; OAE2_OMZ; ROCK; Rock sample; Sample ID; Smectite, intensity
    Type: Dataset
    Format: text/tab-separated-values, 1874 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-02-17
    Description: Fieldwork was conducted in July 2022 in the coastal waters around Herschel Island - Qikiqtaruk, Canada. Seven sampling days were carried out in two consecutive weeks. Two transects were sampled repeatedly: one transect was directly affected by the discharge of a retrogressive thaw slump, while the other transect was located in front of a permafrost cliff coast. For both transects, the targeted sampling stations had the following distances from the shore: 10 m, 50 m, 100 m, 500 m, and 1000 m. These targeted stations could not always be sampled precisely due to the weather conditions, which explains the deviations in the coordinates. Salinity, electrical conductivity, water temperature, and water depth were determined with a CTD CastAway. At least two water samples were taken per sampling station per day. For stations with water depth 〉 5 m, an additional sample was taken at the depth of the thermocline (based on previous CTD measurements). Seawater was sampled using a UWITEC water sampler (USB 50050). Turbidity was measured once per sample using a HACH 2100Q turbidity meter. To perform the turbidity analysis, a representative subsample of 10 ml was taken directly from the UWITEC water sampler into a pre-rinsed glass vial. Depending on this turbidity measurement, the amount of water required for processing in the field laboratory was determined for each measuring station and depth. For each sample, 1000 to 3250 ml of seawater was transferred into Nalgene plastic bottles for transport to the field laboratory. The seawater was filtered through precombusted 0.7 µm GF/F filters using Nalgene plastic filter units. From the filtrate, 20 ml were collected for dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) measurements and acidified with 30% HCl (suprapur). All filters and DOC bottles were kept dark and cool during storage and transport to the Alfred Wegener Institute in Potsdam, Germany. DOC and TDN were measured using a Shimadzu TOC-L with TNM-L module in Potsdam. Filters were weighed after air drying at the field site and additional 48 h at 50 °C in the drying oven in Potsdam to derive SPM concentrations. Subsampling of the filters took place at the Vrije Universiteit Amsterdam, The Netherlands. Subsamples were punched out of the filters and placed in precombusted silver capsules. To remove inorganic carbon, the silver capsules were fumigated in a desiccator with 37% HCl at 60 °C for 72 h. They were then dried over NaOH at 60 °C for 48 h to neutralize the HCl. The silver capsules were then sealed in tin and analyzed for particulate organic carbon (POC), total nitrogen (TN), δ13C and δ15N using an elemental analyzer isotope mass spectrometer (EA-IRMS) at the University of California Stable Isotope Facility (Davis, USA).
    Keywords: AWI_PerDyn; AWI_Perma; AWI Arctic Land Expedition; CA-Land_2022_YukonCoast; CA-Land_2022_YukonCoast_P1; CA-Land_2022_YukonCoast_P2; CA-Land_2022_YukonCoast_P3; CA-Land_2022_YukonCoast_P4; CA-Land_2022_YukonCoast_P5; CA-Land_2022_YukonCoast_P6; CA-Land_2022_YukonCoast_SlD1; CA-Land_2022_YukonCoast_SlD2; CA-Land_2022_YukonCoast_SlD3; CA-Land_2022_YukonCoast_SlD4; CA-Land_2022_YukonCoast_SlD5; CA-Land_2022_YukonCoast_SlD6; Calculated; Carbon, organic, dissolved; Carbon, organic, particulate; Conductivity; CTD, SonTek, CastAway; Water sampler, UWITEC, USB 50050; CTD, SonTek, CastAway-CTD; CTD-CAST; CTD profiles; DATE/TIME; DEPTH, water; dissolved organic carbon (DOC); Element analyser isotope ratio mass spectrometer (EA-IRMS); Event label; Herschel Island; Herschel Island, Yukon Territory, Canada; Laboratory code/label; LATITUDE; LONGITUDE; Nearshore zone; Nitrogen, total, particulate; Nitrogen, total dissolved; NUNATARYUK; NUNATARYUK, Permafrost thaw and the changing Arctic coast, science for socioeconomic adaptation; P1; P2; P3; P4; P5; P6; particulate organic carbon (POC); Permafrost Research; Permafrost Research (Periglacial Dynamics) @ AWI; Salinity; Sample ID; SlD1; SlD2; SlD3; SlD4; SlD5; SlD6; Station label; Suspended particulate matter; Temperature, water; Total organic carbon analyzer, Shimadzu, TOC-L; coupled with Nitrogen analyzer, Shimadzu, TNM-L; Turbidity (Formazin nephelometric unit); Turbidity meter, Hach, 2100Q; Yukon Coast 2022; δ13C, particulate organic carbon; δ15N, total particulate nitrogen
    Type: Dataset
    Format: text/tab-separated-values, 2282 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-02-17
    Description: Here, we compile an extensive global surface sediment dataset of OH-isoGDGTs as well as regular isoprenoid GDGTs (isoGDGTs), with both data generated at NIOZ and previously published data from other laboratories. We explore recently developed temperature proxies based on hydroxylated isoprenoid Glycerol Dialkyl Glycerol Tetraethers (OH-isoGDGTs), such as %OH, RI-OH, RI-OH' and OHC for their potential for reconstructing past temperature changes. The data contains contains temperature records based on TEX86, TEX86OH, %OH, RI-OH, RI-OH', OHC from sediment core Co1010 which was retrived from the Prydez Bay. This dataset is related to the study 'Evaluating isoprenoidal hydroxylated GDGT-based temperature proxies in surface sediments from the global ocean'.
    Keywords: %OH; Acyclic glycerol dialkyl glycerol tetraether (peak area); AGE; ANT-XXIII/9; Branched and isoprenoid tetraether index; Calculated according to Fietz et al. (2016); Calculated according to Hopmans et al. (2004); De Jonge et al. (2015); Calculated according to Huguet et al. (2013); Calculated according to Lü et al. (2015); Calculated according to Schouten et al. (2002); Co1010; COMPCORE; Composite Core; Crenarchaeol (peak area); Crenarchaeol regio-isomer (peak area); DEPTH, sediment/rock; Dicyclic glycerol dialkyl glycerol tetraether (peak area); Extended tetraether index of 86 carbon atoms with OH-isoGDGTs; Filla Island, Rauer Group, Antarctica; GDGTs; Hydroxide; Hydroxylated acyclic glycerol dialkyl glycerol tetraether (peak area); Hydroxylated dicyclic glycerol dialkyl glycerol tetraether (peak area); hydroxylated GDGTs; Hydroxylated monocyclic glycerol dialkyl glycerol tetraether (peak area); Monocyclic glycerol dialkyl glycerol tetraether (peak area); NIOZ_UU; NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University; OH-GDGTs; paleotemperature proxy; Polarstern; PS69; Ring index of hydroxylated tetraethers RI-OH; Ring index of hydroxylated tetraethers RI-OH'; RI-OH; Sample code/label; Sea surface temperature, annual mean; SST, from TEX86H (Kim et al., 2010); SST, from TEXH86, BAYSPAR (BAYesian SPAtially-varying Regression) (Tierney and Tingley, 2014, 2015); surface sediments; Tetraether index of 86 carbon atoms; Tetraether index of 86 carbon atoms including OH-isoGDGT-0; TEX86; TEX86OH; Tricyclic glycerol dialkyl glycerol tetraether (peak area); Ultra high performance liquid chromatography mass spectrometer (UHPLC-MS)
    Type: Dataset
    Format: text/tab-separated-values, 1308 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-02-27
    Description: This data set includes biogeochemical proxy data analysed on sediment core TAN1106-28 in 2021 at the University of Tasmania, The Australian Nuclear Science and Technology Organisation, National Taiwan University, and the University of Southampton. This sediment core was collected in 2011 by the RV Tangaroa, in the Solander Trough, south of New Zealand (-48.372°S, 165.659°E). The data spans from 71–0 ka, and is comprised of sea surface temperatures, thorium normalised fluxes of iron, lithogenic material, total organic carbon, chlorins, CaCO3, and excess barium, as well as formanifera-bound nitrogen isotopic compositions, authigenic uranium and excess manganese concentrations, and Benthic-Planktic 14C offsets (yrs).
    Keywords: biogeochemistry; dust; Export Production; iron fertilization; Millennial scale variability; Southern Ocean; SST
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-02-27
    Description: Current velocities of the upper water column along the cruise track of R/V Maria S. Merian cruise MSM112/1 were collected by a vessel-mounted 75 kHz RDI Ocean Surveyor ADCP. The ADCP transducer was located at 6.0 m below the water line. The instrument was operated in narrowband mode (WM10) with a bin size of 8.00 m, a blanking distance of 8.00 m, and a total of 100 bins, covering the depth range between 22.0 m and 814.0 m. Heading, pitch and roll data from the ship's motion reference unit and the navigation data from the Global Positioning systems were used by the data acquisition software VmDAS internally to convert ADCP velocities into earth coordinates. Single-ping data were screened for bottom signals and, where appropriate, a bottom mask was manually processed. The ship's velocity was calculated from position fixes obtained by the Global Positioning System (GPS). Accuracy of the ADCP velocities mainly depends on the quality of the position fixes and the ship's heading data. Further errors stem from a misalignment of the transducer with the ship's centerline. Data post-processing included water track calibration of the misalignment angle (-47.4056° +/- 0.6284°) and scale factor (1.0037 +/- 0.0102) of the Ocean Surveyor signal. The velocity data were averaged in time using an average interval of 60 s. Velocity quality flagging is based on different threshold criteria: Depth cells with ensemble-averaged percent-good values below 25% are marked as 'bad data'. Depth cells with velocities above 2.0 m/s are flagged as 'bad data'. Depth cells with a root-mean-square deviation between the measured ensemble-average velocity and a cell-wise running-mean velocity above 0.5 m/s are flagged as 'probably bad data'.
    Keywords: Current velocity, east-west; Current velocity, north-south; DAM_Underway; DAM Underway Research Data; DATE/TIME; DEPTH, water; Echo intensity, relative; LATITUDE; LONGITUDE; Maria S. Merian; MSM112; MSM112_0_Underway-3; Pings, averaged to a double ensemble value; Quality flag, current velocity; RM ROFI; Seadatanet flag: Data quality control procedures according to SeaDataNet (2010); Vessel mounted Acoustic Doppler Current Profiler [75 kHz]; VMADCP-75
    Type: Dataset
    Format: text/tab-separated-values, 4385480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    PANGAEA
    In:  Instituto de Geofísica, Universidad Nacional Autónoma De México
    Publication Date: 2024-02-27
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Mexico; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP22, SN 160484, WRMC No. 83003; Pyranometer, Kipp & Zonen, CMP22, SN 160486, WRMC No. 83001; Pyrgeometer, Kipp & Zonen, CGR4, SN 140084, WRMC No. 83004; Pyrheliometer, Kipp & Zonen, CHP 1, SN 140189, WRMC No. 83002; SEL; Selegua, Mexico Solarimetric Station; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; Thermometer; UV-Biometer, Solar Light 501A, SN 19489, WRMC No. 83007
    Type: Dataset
    Format: text/tab-separated-values, 1202633 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-02-26
    Description: Small lentic water bodies are important emitters of methane (CH₄), but the processes regulating CH₄ dynamics and their susceptibility to human-induced stressors are not fully understood. Bioturbation by chironomid larvae has been proposed as a potentially important factor controlling CH₄ dynamics in aquatic sediments. Chironomid abundance can be affected by the application of biocides for mosquito control, such as Bti (*Bacillus thuringiensis* var. israelensis). Previous research has attributed increases in CH₄ emissions after Bti application to reduced bioturbation by chironomids. In this study, we tested the effect of chironomid bioturbation and Bti addition on CH₄ production and emission from natural sediments. In a set of 15 microcosms, we compared CH₄ emission and production rates with high and low densities of chironomid larvae at the bioturbating stage, and standard and 5 x standard Bti dose, with sediments that contained neither larvae nor Bti. Regardless of larvae density, the chironomids did not affect CH₄ emission and production of the sediment, although both rates were more variable in the treatments with organisms. 5xBti dosage, however, led to a more than three-fold increase in CH₄ and CO₂ production rates, likely stimulated by bioavailable dissolved carbon in the Bti excipient. Our results suggest weak effects of bioturbating chironomid larvae on the CH₄ dynamics in aquatic ecosystems. Furthermore, our results point out towards potential functional implications of Bti for carbon cycling beyond those mediated by changes in the macroinvertebrate community.
    Keywords: EXP; Experiment; Laboratory-experiments
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-02-26
    Description: These data were collected from different treatments. Once we added the larvae and Bti, we gas-tight sealed all microcosms, and the experiment started. We vigorously shook the three additional control microcosms to ensure equilibration of gas between pore water, surface water, and headspace, and gas samples were collected for determining the initial amount of CO2 and CH4. At 24 h, 72 h, and 120 h after the start of the experiment, dissolved O2 concentration, and the CO2 and CH4 mixing ratios in the headspace were measured to determine O2 consumption and CO2 and CH4 emission rates of the sediment. We ended the experiment after 120 h when the first adult was observed. The dissolved O2 concentration in the overlying water was 81 ± 8 % saturation at the end of the experiment. After sampling the headspace at 120 h, we vigorously shook the microcosms to ensure full equilibration between porewater, surface water, and headspace, and collected gas samples from the headspace to determine the total net production of CO2 and CH4 during the experimental period, which includes gas that has accumulated in the pore water. We collected 100 µL of headspace gas from each microcosm at 24 h, 72 h, and 120 h after the start of the experiment using a gastight syringe (Hamilton, USA). The mixing ratios (ppmv) of CO2 and CH4 were measured by injecting the samples into a gas analyzer (Ultra-portable Greenhouse Gas Analyzer; UGGA, Los Gatos Research Inc., Mountain View, CA, USA) in closed-loop operation (Wilkinson et al. 2018). By assuming full equilibration between the headspace and the overlying water, we determined the amount of CH4 and CO2 (µmol) in the headspace and overlying water at each sampling time (gas-specific Henry coefficients at incubation temperature were estimated following (International Hydropower Association 2010)). We then calculated the emissions rates of CH4 and CO2 as the difference in mass between two subsequent samplings divided by the elapsed time. The emission rates include fluxes across the sediment-water interface and potential oxidation of CH4 and CO2 production by respiration in the surface water. After each headspace sampling, we measured dissolved O2 concentration in the overlying water. We calculated the amount of O2, assuming equilibrium between the water and the headspace, as the sum of O2 gas in the headspace and dissolved O2 in the overlying water (µmol). We calculated O2 consumption rates (i.e. respiration) from the difference between two subsequent samplings divided by the elapsed time. We estimated the total net production rate of CH4 and CO2, including gas that has accumulated in the sediment porewater and bubbles during the five-day experiment, from the difference in the amounts estimated from measurements after shaking of the additional control microcosms at the beginning of the experiment, and those estimated after the final shaking of each experimental microcosm at the end of the experiment. The net CH4 and CO2 production rates include gas that was produced in the sediment but not emitted to the water and headspace during the incubation period.
    Keywords: Carbon dioxide content; EXP; Experiment; Experimental treatment; Laboratory-experiments; Methane emission content; Oxygen content; Oxygen optode (PyroScience GmbH, Germany); Sampling date/time, experiment; Time point, descriptive; Ultra-portable Greenhouse Gas Analyzer (UGGA), Los Gatos Research Inc.
    Type: Dataset
    Format: text/tab-separated-values, 270 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-02-26
    Description: These data were collected from different treatments. Once we added the larvae and Bti, we gas-tight sealed all microcosms, and the experiment started. We vigorously shook the three additional control microcosms to ensure equilibration of gas between pore water, surface water, and headspace, and gas samples were collected for determining the initial amount of CO2 and CH4. At 24 h, 72 h, and 120 h after the start of the experiment, dissolved O2 concentration, and the CO2 and CH4 mixing ratios in the headspace were measured to determine O2 consumption and CO2 and CH4 emission rates of the sediment. We ended the experiment after 120 h when the first adult was observed. The dissolved O2 concentration in the overlying water was 81 ± 8 % saturation at the end of the experiment. After sampling the headspace at 120 h, we vigorously shook the microcosms to ensure full equilibration between porewater, surface water, and headspace, and collected gas samples from the headspace to determine the total net production of CO2 and CH4 during the experimental period, which includes gas that has accumulated in the pore water. We collected 100 µL of headspace gas from each microcosm at 24 h, 72 h, and 120 h after the start of the experiment using a gastight syringe (Hamilton, USA). The mixing ratios (ppmv) of CO2 and CH4 were measured by injecting the samples into a gas analyzer (Ultra-portable Greenhouse Gas Analyzer; UGGA, Los Gatos Research Inc., Mountain View, CA, USA) in closed-loop operation (Wilkinson et al. 2018). By assuming full equilibration between the headspace and the overlying water, we determined the amount of CH4 and CO2 (µmol) in the headspace and overlying water at each sampling time (gas-specific Henry coefficients at incubation temperature were estimated following (International Hydropower Association 2010)). We then calculated the emissions rates of CH4 and CO2 as the difference in mass between two subsequent samplings divided by the elapsed time. The emission rates include fluxes across the sediment-water interface and potential oxidation of CH4 and CO2 production by respiration in the surface water. After each headspace sampling, we measured dissolved O2 concentration in the overlying water. We calculated the amount of O2, assuming equilibrium between the water and the headspace, as the sum of O2 gas in the headspace and dissolved O2 in the overlying water (µmol). We calculated O2 consumption rates (i.e. respiration) from the difference between two subsequent samplings divided by the elapsed time. We estimated the total net production rate of CH4 and CO2, including gas that has accumulated in the sediment porewater and bubbles during the five-day experiment, from the difference in the amounts estimated from measurements after shaking of the additional control microcosms at the beginning of the experiment, and those estimated after the final shaking of each experimental microcosm at the end of the experiment. The net CH4 and CO2 production rates include gas that was produced in the sediment but not emitted to the water and headspace during the incubation period.
    Keywords: Carbon dioxide emission rate; Carbon dioxide emission rate/production rate; Carbon dioxide production rate; EXP; Experiment; Experimental treatment; Laboratory-experiments; Methane emission rate; Methane emission rate/production rate; Methane production rate; Oxygen consumption rate; Oxygen optode (PyroScience GmbH, Germany); Sampling date/time, experiment; Ultra-portable Greenhouse Gas Analyzer (UGGA), Los Gatos Research Inc.
    Type: Dataset
    Format: text/tab-separated-values, 135 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-02-26
    Description: These data were collected from different treatments. Once we added the larvae and Bti, we gas-tight sealed all microcosms, and the experiment started. We vigorously shook the three additional control microcosms to ensure equilibration of gas between pore water, surface water, and headspace, and gas samples were collected for determining the initial amount of CO2 and CH4. At 24 h, 72 h, and 120 h after the start of the experiment, dissolved O2 concentration, and the CO2 and CH4 mixing ratios in the headspace were measured to determine O2 consumption and CO2 and CH4 emission rates of the sediment. We ended the experiment after 120 h when the first adult was observed. The dissolved O2 concentration in the overlying water was 81 ± 8 % saturation at the end of the experiment. After sampling the headspace at 120 h, we vigorously shook the microcosms to ensure full equilibration between porewater, surface water, and headspace, and collected gas samples from the headspace to determine the total net production of CO2 and CH4 during the experimental period, which includes gas that has accumulated in the pore water. We collected 100 µL of headspace gas from each microcosm at 24 h, 72 h, and 120 h after the start of the experiment using a gastight syringe (Hamilton, USA). The mixing ratios (ppmv) of CO2 and CH4 were measured by injecting the samples into a gas analyzer (Ultra-portable Greenhouse Gas Analyzer; UGGA, Los Gatos Research Inc., Mountain View, CA, USA) in closed-loop operation (Wilkinson et al. 2018). By assuming full equilibration between the headspace and the overlying water, we determined the amount of CH4 and CO2 (µmol) in the headspace and overlying water at each sampling time (gas-specific Henry coefficients at incubation temperature were estimated following (International Hydropower Association 2010)). We then calculated the emissions rates of CH4 and CO2 as the difference in mass between two subsequent samplings divided by the elapsed time. The emission rates include fluxes across the sediment-water interface and potential oxidation of CH4 and CO2 production by respiration in the surface water. After each headspace sampling, we measured dissolved O2 concentration in the overlying water. We calculated the amount of O2, assuming equilibrium between the water and the headspace, as the sum of O2 gas in the headspace and dissolved O2 in the overlying water (µmol). We calculated O2 consumption rates (i.e. respiration) from the difference between two subsequent samplings divided by the elapsed time. We estimated the total net production rate of CH4 and CO2, including gas that has accumulated in the sediment porewater and bubbles during the five-day experiment, from the difference in the amounts estimated from measurements after shaking of the additional control microcosms at the beginning of the experiment, and those estimated after the final shaking of each experimental microcosm at the end of the experiment. The net CH4 and CO2 production rates include gas that was produced in the sediment but not emitted to the water and headspace during the incubation period.
    Keywords: Carbon dioxide content; EXP; Experiment; Experimental treatment; Laboratory-experiments; Methane emission content; Number; Sampling date/time, experiment; Ultra-portable Greenhouse Gas Analyzer (UGGA), Los Gatos Research Inc.
    Type: Dataset
    Format: text/tab-separated-values, 75 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-02-21
    Description: Paleo±Dust is an updated compilation of bulk and 〈10-µm paleo-dust deposition rate with quantitative 1-σ uncertainties that are inter-comparable among archive types (lake sediment cores, marine sediment cores, polar ice cores, peat bog cores, loess samples). Paleo±Dust incorporates a total of 285 pre-industrial Holocene (pi-HOL) and 209 Last Glacial Maximum (LGM) dust flux constraints from studies published until December 2022. We also recalculate previously published dust fluxes to exclude data from the last deglaciation and thus obtain more representative constraints for the last pre-industrial interglacial and glacial end-member climate states. Metadata include all components necessary to derive dust deposition rate, including: age range, thickness, density, eolian content. We also include 1-sigma uncertainties on each of these components, and on the final bulk and 〈10-µm dust deposition rates. Specific notes for each site and a list of references are also included.
    Keywords: Dust flux; Holocene; Ice core; Lake sediment core; Last Glacial Maximum; Loess; Marine Sediment Core; Peat bog; Uncertainty
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; FUA; Fukuoka; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090230, WRMC No. 6003; Pyranometer, Kipp & Zonen, CMP22, SN 090100, WRMC No. 6004; Pyrgeometer, Kipp & Zonen, CGR4, SN 090121, WRMC No. 6005; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090142, WRMC No. 6002; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 820148 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; FUA; Fukuoka; Japan; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 27397 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; FUA; Fukuoka; HYGRO; Hygrometer; Japan; Monitoring station; MONS; Pressure, atmospheric; Temperature, air; Thermometer; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 223200 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; ISH; Ishigakijima; Japan; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 29446 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; FUA; Fukuoka; HYGRO; Hygrometer; Japan; Monitoring station; MONS; Pressure, atmospheric; Temperature, air; Thermometer; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 223200 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-21
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; ISH; Ishigakijima; Japan; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 090231, WRMC No. 4006/86006; Pyranometer, Kipp & Zonen, CMP22, SN 090101, WRMC No. 4007; Pyrgeometer, Kipp & Zonen, CGR4, SN 090114, WRMC No. 7004; Pyrheliometer, Kipp & Zonen, CHP 1, SN 090145, WRMC No. 7001; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 847887 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    PANGAEA
    In:  Aerological Observatory, Japan Meteorological Agency
    Publication Date: 2024-02-21
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; Japan; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; TAT; Tateno; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 32168 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-19
    Description: Here we present physico-chemical data collected during two research cruises conducted to and across the Ross Sea, Antarctica in the summer of 2018 (February-March) and 2019 (January-February). The dataset includes measurements of temperature, salinity, oxygen, par and transmissivity obtained with a Sea-Bird Electronics (SBE) 911plus CTD. The CTD sensor was configured with SBE 3plus, SBE 4, and SBE 43 dual sensors for the parameters above, in addition to a seapoint fluorescence sensor, and a photosynthetically active radiation (PAR) sensor (Biospherical Instruments QCP‐2300L‐HP). These data were used to provide oceanographic context to DNA metabarcoding analysis of 18S rRNA V4 region that was carried out on DNA samples collected in parallel to nutrient and chlorophyll-a samples. Fastq samples from DNA metabarcoding analysis and the associated metadata (including nutrients, Chlorophyll-a, and size-fractionated chlorophyll-a) were deposited to GenBank under project numbers PRJNA756172 (2018 cruise) and PRJNA974160 (2019 cruise). The study resulting from this analysis has been submitted to Limnology and Oceanography.
    Keywords: 61TG20180205; 8911; Antarctica; Attenuation, optical beam transmission; CTD, Sea-Bird, SBE 911plus; CTD, Sea-Bird, SBE 911plus; measured with conductivity sensor, SEA-BIRD SBE 4; CTD, Sea-Bird, SBE 911plus; measured with Dissolved oxygen sensor, Sea-Bird, SBE 43; CTD, Sea-Bird, SBE 911plus; measured with PAR sensor, Biospherical Instruments Inc., QCP‐2300L‐HP; CTD, Sea-Bird, SBE 911plus; measured with temperature sensor, SEA-BIRD SBE 3Plus; DATE/TIME; DEPTH, water; diatoms; Dinoflagellates; ELEVATION; Event label; Fluorescence; LATITUDE; LONGITUDE; Name; Oxygen; Phaeocystis antarctica; Phytoplankton; Radiation, photosynthetically active; Ross Sea; Salinity; Sample method; seasonality; Station label; TAN1802_U8911; TAN1802_U8912; TAN1802_U8913; TAN1802_U8914; TAN1802_U8915; TAN1802_U8916; TAN1802_U8917; TAN1802_U8918; TAN1802_U8919; TAN1802_U8920; TAN1802_U8921; TAN1802_U8922; TAN1802_U8923; TAN1802_U8924; TAN1802_U8925; TAN1802_U8926; TAN1802_U8927; TAN1802_U8928; TAN1802_U8929; TAN1802_U8930; TAN1802_U8931; TAN1802_U8932; TAN1802_U8933; TAN1802_U8934; TAN1802_U8935; TAN1802_U8936; TAN1802_U8937; TAN1802_U8938; TAN1802_U8939; TAN1802_U8940; TAN1802_U8941; TAN1802_U8942; TAN1802_U8943; TAN1802_U8944; TAN1802_U8945; TAN1802_U8946; TAN1802_U8947; TAN1802_U8948; TAN1802_U8949; TAN1802_U8950; TAN1802_U8951; TAN1802_U8952; TAN1802_U8953; TAN1802_U8954; TAN1802_U8955; TAN1802_U8956; TAN1802, TAN1802_CTD; TAN1901; TAN1901_U9201; TAN1901_U9202; TAN1901_U9203; TAN1901_U9204; TAN1901_U9205; TAN1901_U9206; TAN1901_U9207; TAN1901_U9208; TAN1901_U9209; TAN1901_U9210; TAN1901_U9211; TAN1901_U9212; TAN1901_U9213; TAN1901_U9214; TAN1901_U9215; TAN1901_U9216; TAN1901_U9217; TAN1901_U9218; TAN1901_U9219; TAN1901_U9220; TAN1901_U9221; TAN1901_U9222; TAN1901_U9223; TAN1901_U9224; TAN1901_U9225; TAN1901_U9226; TAN1901_U9227; TAN1901_U9228; TAN1901_U9229; TAN1901_U9230; TAN1901_U9231; TAN1901_U9232; TAN1901_U9233; TAN1901CTD; Tangaroa; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 488789 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-23
    Description: Time series data of physical oceanography (seawater conductivity, temperature, pressure, salinity) and ocean current velocities were obtained from mooring M6 on the upper part (500 m isobath) of the continental slope, just east of the Filchner Trough in the southern Weddell Sea in February 2017 - February 2021. The mooring was deployed during the WAPITI expedition on James Clark Ross (JR16004), and recovered during the COSMUS expedition with Polarstern (PS124). The attached archive contains data from 1 RCM7 (24 meters above bottom (mab herafter) and sampling interval (sint hereafter) 2h), 5 SBE56 (25, 59, 74, 126, 202 mab, sint: 120 s), 3 SBE37 (34, 99, 176 mab, sint: 600 s), 1 RDI ADCP 150 kHz (235 mab, upwardlooking, sint: 1h), 1 SBE39 (15 mab, sint: 900s). Mooring diagrams and information about data processing are provided
    Keywords: ADCP; Antarctica; AWI_PhyOce; Continental Slope; Filchner Region; Filchner Trough; GPF 19-2_039, COSMUS; James Clark Ross; JR16004; JR16004_160; JR16004_160, PS124_99-1; M6_MOOR_WeddellSea; M6, M6_MOOR_WeddellSea; MOOR; Mooring; oceanographic moorings; oceanographic time series; Physical Oceanography @ AWI; Polarstern; PS124; PS124_99-1; Temperature and Salinity; WAPITI; Weddell Sea
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-23
    Description: Time series of currents, salinity (conductivity), temperature Chlorophyl-a and CDOM were obtained in the period May- June 2014 by use of a McLane ice-tethered profiler in Young Sound, Greenland. At YS05 (74.238 N, 20.188 W) the mooring consisted of a 600 kHz downward-looking Nortek Aquadopp ADCP and an SBE 52-MP CTD (accuracy temperature ±0.002 C and conductivity ±0.0003 Sm-1) and WetLab ECO triplet (Cholorphyll-a and CDOM). Velocities were corrected for magnetic deviation (18.5o). The water column sampling spanned between 1.5 and 30 m depth every 30 min. The ADCP was set to sample 80 bins (bin size of 0.5 m) and each bin consisted of a 1 min ensemble average of 60 pings. The first and last bins were centred at 1m and 41 m depth. Only bins between 2.5 and 30 m were adequately measured. For further details see Boone et al., 2017 (Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northwest Greenland (74 N). Estuar. Coast. Shelf Sci., 15, 194-205. https://doi.org/10.1016/j.ecss.2017.06.021).
    Keywords: Current velocity, east-west; Current velocity, north-south; DATE/TIME; DEPTH, water; Event label; Fluorescence, chlorophyll; Fluorescence, colored dissolved organic matter; Fluorometer, WET Labs ECO 3-Triplet; Hydrographic time series; ice-covered conditions; LATITUDE; LONGITUDE; MOOR; Moored Profiler CTD, Sea-Bird, SBE 52-MP; Mooring; Nortek Acoustic Wave and Current Profiler (AWAC); Pressure, water; Salinity; Temperature, water; Young Sound, Greenland; Young Sound-Greenland; YS05
    Type: Dataset
    Format: text/tab-separated-values, 284915 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Amount of cloud layer 1; Amount of cloud layer 2; Amount of cloud layer 3; Anemometer; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cloud base height code, layer 1; Cloud base height code, layer 2; Cloud layer 1; Cloud layer 2; Cloud layer 3; Code; DATE/TIME; Dew/frost point; High cloud; HYGRO; Hygrometer; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; SON; Sonnblick; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visibility sensor; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 5511 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Amount of cloud layer 1; Amount of cloud layer 2; Amount of cloud layer 3; Anemometer; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cloud base height code, layer 1; Cloud base height code, layer 2; Cloud base height code, layer 3; Cloud layer 1; Cloud layer 2; Cloud layer 3; Code; DATE/TIME; Dew/frost point; High cloud; HYGRO; Hygrometer; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; SON; Sonnblick; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visibility sensor; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 5214 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Hukseflux, SR30, SN 2302, WRMC No. 75040; Pyranometer, Hukseflux, SR30, SN 6355, WRMC No. 75039; Pyrgeometer, Kipp & Zonen, CGR4, SN 100175, WRMC No. 75041; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9119, WRMC No. 75038; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 832913 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-23
    Description: Data was collected in a project investigating the importance of prokaryotic maintenance respiration in the marine environment. Prokaryotic respiration, growth and abundance was measured at multiple stations encompassing three sites along the Baltic Sea gradient and North Sea. Salinity covered 3 to 30. Temperature, total dissolved phosphorus and nitrogen were also measured. Measurements were done during the late summer in August and September 2017. Data from the northern most site was collected 2015 with the same methods. Duplicate Niskin bottle samples were taken from discrete depths in surface waters covering up to 70 m depth depending on site. Prokaryotic respiration was measured in 1.2 µm pre-filtered samples using oxygen optode. Prokaryotic growth was measured by the tritiated thymidine incorporation technique in pre-filtered samples. Prokaryotic abundance was measured by acridine orange stain and direct epi-fluorescence microscopy applying image analysis. Cell-specific respiration and growth rates were calculated for evaluating influence of prokaryotic maintenance respiration. The prokaryotic growth efficiency was also estimated. Results are reported in a scientific article in Frontiers in marine Science (doi:10.3389/fmars.2023.1070070).
    Keywords: Area/locality; B1; Bacteria; Baltic Sea; Bottle, Niskin; Calculated; Carbon, organic, dissolved; Carbon per cell; Cocoa; Confidence interval; Cook's distance; CTD probe; DATE/TIME; DEPTH, water; Epifluorescence microscopy after acridine orange staining; Event label; Flag; GF1; GF2; GF3; GF4; GF5; growth; Identification; KA1; KA2; KA3; KA4; Kalmar_KA1; Kalmar_KA2; Kalmar_KA3; Kalmar_KA4; Kalmar_SB; Kalmar_SS; Kristineberg_GF1; Kristineberg_GF2; Kristineberg_GF3; Kristineberg_GF4; Kristineberg_GF5; Latitude of event; Longitude of event; maintenance; MAIRE1; MAIRE2; N11; N14; N26; N27; N28; N29; N30; N31; N6; NB8; NIS; Nitrogen, total dissolved; North Sea; nutrients; Oere_B1; Oere_N11; Oere_N14; Oere_N26; Oere_N27; Oere_N28; Oere_N29; Oere_N30; Oere_N31; Oere_N6; Oere_NB8; OPTODE; Oxygen optode; Phosphorus, total dissolved; Prokaryotes; Prokaryotes, biomass as carbon; Prokaryotes, biomass as carbon, standard deviation; Prokaryotes, growth efficiency; Prokaryotic community growth rate, in mass carbon; Prokaryotic community growth rate, standard deviation; Prokaryotic growth rate per cell; Prokaryotic growth rate per cell, standard deviation; QuAAtro AutoAnalyzer; Respiration; Respiration rate, oxygen, prokaryotic; Respiration rate, oxygen, prokaryotic, per cell; Respiration rate, oxygen, prokaryotic, standard deviation; RV Lotty; Salinity; SB; SS; Temperature, water; Thymidine incorporation
    Type: Dataset
    Format: text/tab-separated-values, 2213 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-02-23
    Description: CTD data was obtained in the period April-June 2014 in Young Sound, Greenland. CTD casts were performed using an SBE-19 plus CTD (accuracy: ±0.005 C and ±0.0005 Sm-1) which was lowered through ice-drilled holes. In total, 4 transects were performed and covered from the mouth to the head of the fjord. Standardized routines of Seabird software were used on the data set for quality control and bin averaging. The data sets consist of profiles of practical salinity, temperature, potential temperature, dissolved oxygen, fluorescence, turbidity, and irradiance (PAR). For further details see Boone et al., 2017 (Circulation and fjord-shelf exchange during the ice-covered period in Young Sound-Tyrolerfjord, Northwest Greenland (74o N). Estuar. Coast. Shelf Sci., 15, 194-205. https://doi.org/10.1016/j.ecss.2017.06.021).
    Keywords: CTD, Sea-Bird, SBE 19plus; CTD data; DATE/TIME; DEPTH, water; Event label; Fluorescence; ice-covered conditions; LATITUDE; LONGITUDE; Oxygen, dissolved; Pressure, water; Radiation, photosynthetically active; Salinity; Sample elevation; Temperature, water; Temperature, water, potential; Turbidity (Formazin Turbidity Unit); Young Sound, Greenland; Young Sound-Greenland; YS-001; YS-002; YS-003; YS-004; YS-005; YS-006; YS-007; YS-008; YS-009; YS-010; YS-011; YS-012; YS-013; YS-014; YS-015; YS-016; YS-017; YS-018; YS-019; YS-020; YS-021; YS-022; YS-023; YS-024; YS-025; YS-026; YS-027; YS-028; YS-029; YS-030; YS-031; YS-032; YS-033; YS-034; YS-035; YS-036; YS-037; YS-038; YS-039; YS-040; YS-041; YS-042; YS-043; YS-044; YS-045; YS-046; YS-047; YS-048; YS-049; YS-050; YS-051; YS-052; YS-053; YS-054; YS-055; YS-056; YS-057; YS-058; YS-059; YS-060; YS-061; YS-062; YS-063; YS-064; YS-065; YS-066; YS-067; YS-068; YS-069; YS-070; YS-071; YS-072; YS-073; YS-074; YS-075; YS-076; YS-077; YS-078; YS-079; YS-080; YS-081; YS-082; YS-083; YS-084; YS-085; YS-086; YS-087; YS-088; YS-089; YS-090; YS-091; YS-092; YS-093; YS-094; YS-095; YS-096; YS-097; YS-098; YS-099; YS-100; YS-101; YS-102; YS-103; YS-104; YS-105; YS-106; YS-107; YS-108; YS-109; YS-110; YS-111; YS-112; YS-113; YS-114; YS-115; YS-116; YS-117; YS-118; YS-119; YS-120; YS-121; YS-122; YS-123; YS-124; YS-125; YS-126; YS-127; YS-128; YS-129; YS-130; YS-131; YS-132
    Type: Dataset
    Format: text/tab-separated-values, 191889 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    facet.materialart.
    Unknown
    PANGAEA
    In:  GeoSphere Austria
    Publication Date: 2024-02-23
    Keywords: Amount of cloud layer 1; Amount of cloud layer 2; Amount of cloud layer 3; Anemometer; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cloud base height code, layer 1; Cloud base height code, layer 2; Cloud base height code, layer 3; Cloud layer 1; Cloud layer 2; Cloud layer 3; Code; DATE/TIME; Dew/frost point; High cloud; HYGRO; Hygrometer; Low/middle cloud amount; Low cloud; Middle cloud; Monitoring station; MONS; Past weather1; Past weather2; Present weather; SON; Sonnblick; Station pressure; Temperature, air; Thermometer; Total cloud amount; Visibility sensor; Visual observation; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 5666 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-02-29
    Description: Here we present monthly resolved geochemical proxy data (Sr/Ca, Mg/Ca, δ¹⁸O, δ¹³C) extracted along the growth axes of modern Porites corals recovered at Tahiti that grew between 1996 and 2008. These records serve as a modern-day benchmark for paleoclimate reconstructions from deglacial Tahiti corals recovered during IODP Expedition 310. Furthermore, this data set contains annual linear extension rates for the modern Porites corals.
    Keywords: Center for Marine Environmental Sciences; Coral; d13C; d18O; IODP; MARUM; Sr/Ca
    Type: Dataset
    Format: application/zip, 10 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-02-29
    Description: Concentrations of volcanic glass shards of the sediment size fraction between 45 - 100 micrometer of sediments of core DP30PC (southeastern Gulf of Taranto) have been determined by polar light microscopy. Based on these results the positions of cryptotephras can be determined. This forms the basis for the establishment of the tephra-chronologic age model of core DP30PC that is based on the elemental analysis of selected shards from these crypto-tephra.
    Keywords: 64PE297; Age; Age, tephra-chronostratigraphy; Center for Marine Environmental Sciences; DEPTH, sediment/rock; DP30PC; elements; MARUM; Mediterranean; PC; Pelagia; Piston corer; Polarisation microscopy; Roman Climate Optimum; Volcanic glass; volcanic glass shards
    Type: Dataset
    Format: text/tab-separated-values, 699 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    PANGAEA
    In:  National Meteorological Office of Algeria
    Publication Date: 2024-02-29
    Keywords: Algeria; ALTITUDE; Baseline Surface Radiation Network; BSRN; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Vaisala, RS92; TAM; Tamanrasset; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 3650 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 259082 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 253409 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: Anemometer; BARO; Barometer; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Horizontal visibility; HYGRO; Hygrometer; Monitoring station; MONS; Pressure, atmospheric; SYO; Syowa; Temperature, air; Thermometer; Visibility sensor; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 264341 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 24497 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 23263 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    PANGAEA
    In:  Japan Meteorological Agency, Tokyo
    Publication Date: 2024-02-29
    Keywords: ALTITUDE; Baseline Surface Radiation Network; BSRN; Cosmonauts Sea; DATE/TIME; Dew/frost point; Monitoring station; MONS; Pressure, at given altitude; Radiosonde, Meisei, iMS; SYO; Syowa; Temperature, air; Wind direction; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 22391 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...