ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Springer Nature | Springer
    Publication Date: 2024-04-05
    Description: This open access book offers the first comprehensive account of the pan-genome concept and its manifold implications. The realization that the genetic repertoire of a biological species always encompasses more than the genome of each individual is one of the earliest examples of big data in biology that opened biology to the unbounded. The study of genetic variation observed within a species challenges existing views and has profound consequences for our understanding of the fundamental mechanisms underpinning bacterial biology and evolution. The underlying rationale extends well beyond the initial prokaryotic focus to all kingdoms of life and evolves into similar concepts for metagenomes, phenomes and epigenomes. The book’s respective chapters address a range of topics, from the serendipitous emergence of the pan-genome concept and its impacts on the fields of microbiology, vaccinology and antimicrobial resistance, to the study of microbial communities, bioinformatic applications and mathematical models that tie in with complex systems and economic theory. Given its scope, the book will appeal to a broad readership interested in population dynamics, evolutionary biology and genomics.
    Keywords: Microbial Genetics and Genomics ; Evolutionary Biology ; Genetics and Population Dynamics ; Microbial Ecology ; Human Genetics ; Genetics and Genomics ; Comparative genomics ; Metagenomics ; Microbial Population Analysis ; Pangenome Profile ; Supra-Genome Analysis ; Adaptive Evolution ; Computational Tools ; Bioinformatic Genomics ; Core Dispensable Genome ; Selection, Recombination, Composition ; Acquired Resistance ; Bacterial Species Concept ; Genomic Diversity ; Bacterial Ecology, Microevolution ; Open Access ; Pan-metagenomics ; Pan-microbiomics ; Pan-epigenome ; Gene Transfer ; Pan-phenomes ; Microbiology (non-medical) ; Genetics (non-medical) ; Evolution ; Applied mathematics ; Ecological science, the Biosphere ; Medical genetics ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical) ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAJ Evolution ; thema EDItEUR::P Mathematics and Science::PB Mathematics::PBW Applied mathematics ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAF Ecological science, the Biosphere ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFN Medical genetics ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAK Genetics (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Key words Hydra ; Insulin ; Development ; Receptor ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A gene encoding a receptor protein-tyrosine kinase closely related to the vertebrate insulin receptor has been identified in the Cnidarian Hydra vulgaris. The gene is expressed in both epithelial layers of the adult polyp. A particularly high level of expression is seen in the ectoderm of the proximal portions of the tentacles and in a ring of ectodermal cells at the border between the foot basal disk and body column. The expression pattern of the gene in asexual buds is dynamic; expression is high throughout the newly emerging bud but the area of high expression becomes restricted to the apex as the bud lengthens. When the bud begins hypostome and tentacle formation, a high level of expression appears at the bases of the emerging tentacles. Finally, a ring of high expression appears just above the foot of the bud, completing the pattern seen in the adult polyp. The presence of this receptor and its pattern of expression suggested that an endogenous molecule related to insulin plays a role in regulating cell division in the body column and in differentiation of the tentacle and foot cells in Hydra, with the switch between the two being determined by the level of the receptor. Treatment of Hydra polyps with mammalian insulin caused an increase in the number of ectodermal and endodermal cells undergoing DNA synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-041X
    Keywords: Key words Notch pathway ; Antagonist ; Hairless ; Orthologue ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Hairless is a member of the Notch signalling pathway, where it acts as antagonist by binding to Suppressor of Hairless [Su(H)], thereby inhibiting Notch target gene activation. The pathway and its members are highly conserved in metazoans from worms to humans. However, a Hairless orthologue from another species has not yet been identified. The identification of Hairless in largely diverged species by cross-hybridization has failed so far probably due to a low degree of conservation. Therefore, we turned to D. hydei where a Hairless mutation has been described before. The D. hydei Hairless orthologue is reasonably well conserved with regard to gene structure and expression. The prospective Hairless protein orthologues share several highly conserved regions which are separated by quite diverged stretches. As to be expected, the largest region of high conservation corresponds to the Su(H) binding domain. This region is also functionally conserved, since this D. hydei protein domain binds very strongly to the D. melanogaster Su(H) protein. The other conserved regions support our earlier structure-function analysis since they nicely correspond to previously defined, functionally important protein domains. Most notably, the very C-terminal domain which is very sensitive to structural alterations, is nearly identical between the two species. In summary, this evolutionary study improves the knowledge on functionally significant domains of the Hairless protein, and may be helpful for the future identification of homologues in other animals, especially in vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-041X
    Keywords: Key words Tooth morphogenesis ; Evolution ; Mouse ; Microtus rossiaemeridionalis ; Enamel knot
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  While the evolutionary history of mammalian tooth shapes is well documented in the fossil record, the developmental basis of their tooth shape evolution is unknown. We investigated the expression patterns of eight developmental regulatory genes in two species of rodents with different molar morphologies (mouse, Mus musculus and sibling vole, Microtus rossiaemeridionalis). The genes Bmp-2, Bmp-4, Fgf-4 and Shh encode signal molecules, Lef-1, Msx-1 and Msx-2, are transcription factors and p21 CIP1/WAF1 participates in the regulation of cell cycle. These genes are all known to be associated with developmental regulation in mouse molars. In this paper we show that the antisense mRNA probes made from mouse cDNA cross-hybridized with vole tissue. The comparisons of gene expression patterns and morphologies suggest that similar molecular cascades are used in the early budding of tooth germs, in the initiation of tooth crown base formation, and in the initiation of each cusp’s development. Furthermore, the co-localization of several genes indicate that epithelial signalling centres function at the three stages of morphogenesis. The earliest signalling centre in the early budding epithelium has not been reported before, but the latter signalling centres, the primary and the secondary enamel knots, have been studied in mouse. The appearance of species-specific tooth shapes was manifested by the regulatory molecules expressed in the secondary enamel knots at the areas of future cusp tips, whilst the mesenchymal gene expression patterns had a buccal bias without similar species-specific associations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-041X
    Keywords: Key words Amphioxus ; Snail ; Neural crest ; Evolution ; Chordate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Homologs of the Drosophila snail gene have been characterized in several vertebrates. In addition to being expressed in mesoderm during gastrulation, vertebrate snail genes are also expressed in presumptive neural crest and/or its derivatives. Given that neural crest is unique to vertebrates and is considered to be of fundamental importance in their evolution, we have cloned and characterized the expression of a snail gene from amphioxus, a cephalochordate widely accepted as the sister group of the vertebrates. We show that, at the amino acid sequence level, the amphioxus snail gene is a clear phylogenetic outgroup to all the characterized vertebrate snail genes. During embryogenesis snail expression initially becomes restricted to the paraxial or presomitic mesoderm of amphioxus. Later, snail is expressed at high levels in the lateral neural plate, where it persists during neurulation. Our results indicate that an ancestral function of snail genes in the lineage leading to vertebrates is to define the paraxial mesoderm. Furthermore, our results indicate that a cell population homologous to the vertebrate neural crest may be present in amphioxus, thus providing an important link in the evolution of this key vertebrate tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 210 (2000), S. 329-336 
    ISSN: 1432-041X
    Keywords: Key words Development ; Evolution ; Notch ; Insect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Studies of somitogenesis in vertebrates have identified a number of genes that are regulated by a periodic oscillator that patterns the pre-somitic mesoderm. One of these genes, hairy, is homologous to a Drosophila segmentation gene that also shows periodic spatial expression. This, and the periodic expression of a zebrafish homologue of hairy during somitogenesis, has suggested that insect segmentation and vertebrate somitogenesis may use similar molecular mechanisms and possibly share a common origin. In chicks and mice expression of the lunatic fringe gene also oscillates in the presomitic mesoderm. Fringe encodes an extracellular protein that regulates Notch signalling. This, and the finding that mutations in Notch or its ligands disrupt somite patterning, suggests that Notch signalling plays an important role in vertebrate somitogenesis. Although Notch signalling is not known to play a role in the formation of segments in Drosophila, we reasoned that it might do so in other insects such as the grasshopper, where segment boundaries form between cells, not between syncytial nuclei as they do in Drosophila. Here we report the cloning of a single fringe gene from the grasshopper Schistocerca. We show that it is not detectably expressed in the forming trunk segments of the embryo until after segment boundaries have formed. We conclude that fringe is not part of the mechanism that makes segments in Schistocerca. Thereafter it is expressed in a pattern which shows that it is a downstream target of the segmentation machinery and suggests that it may play a role in segment morphogenesis. Like its Drosophila counterpart, Schistocerca fringe is also expressed in the eye, in rings in the legs, and during oogenesis, in follicle cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 187 (1979), S. 105-127 
    ISSN: 1432-041X
    Keywords: Drosophila ; Pattern formation ; Leg ; Bristle ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The bristle pattern of the second-leg basitarsus inDrosophila melanogaster was studied as a function of the number and size of the cells on this segment in well-fed and starved wild-type flies, in triploid flies, and in two mutants (dachs andfour-jointed) that have abnormally short basitarsi. The second-leg basitarsi of well-fed, wild-type flies from 22 otherDrosophila species were studied in a similar manner. There are typically 8 longitudinal rows of evenly-spaced bristles on the second-leg basitarsus, and in each row the number of bristles was consistently found to vary in proportion to the estimated number of cells along the segment, and the interval between bristles was found to vary in proportion to the average cell diameter on the segment. These correlations are interpreted to mean that the spacing of the bristles within each row is controlled developmentally, whereas the number of bristles is not. The interval between bristles is evidently measured either as a fixed number of cells or as a distance which indirectly depends upon cell diameter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 205 (1995), S. 160-170 
    ISSN: 1432-041X
    Keywords: Drosophila ; Evolution ; fz ; Homeodomain ; Plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Drosophila melanogaster segmentation gene fushi tarazu (ftz) encodes a homeodomain-type transcription factor involved in the control of larval pattern formation. Loss of function mutations cause an embryonic lethal, pair-rule phenotype. The segmentation defects, but not the lethality, can be partially rescued by the ftz orthologue from Drosophila hydei. In this work, the primary structure, expression and regulation of the D. hydei ftz gene was characterized. Sequence comparisons classify ftz as a rather fast evolving gene. However, since the homeodomain of the D. hydei FTZ protein is highly similar to that of D. melanogaster, proper regulation of D. melanogaster ftz downstream genes would be expected. In D. melanogaster embryos, a D. hydei ftz transgene is expressed normally, independent of endogenous ftz gene activity, suggesting that D. hydei ftz regulatory sequences are correctly recognized by D. melanogaster transcription factors. Accordingly, lacZ fusion constructs driven by the D. hydei ftz upstream element are expressed normally in D. melanogaster embryos. Altogether, the similarities between the two ftz orthologues by far outweigh the differences. The limited success of the trans-species rescue might be, therefore, a consequence of the accumulation of too many subtle changes in gene function, exceeding the limits of developmental plasticity during fly embryogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 208 (1998), S. 94-99 
    ISSN: 1432-041X
    Keywords: Key words T-box ; Evolution ; Zebrafish ; Paraxial mesoderm ; Tail bud
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We report on a new zebrafish T-box-containing gene, tbx16. It encodes a message that is first detected throughout the blastoderm soon after the initiation of zygotic gene expression. Following gastrulation, expression becomes restricted to paraxial mesoderm and later primarily to the developing tail bud. To gain an evolutionary prospective on the potential function of this gene, we have analyzed its phylogenetic relationships to known T-box genes from other species. Zebrafish tbx16 is likely orthologous to the chicken Tbx6L and Xenopus Xombi/Antipodean/Brat/VegT genes. Our analysis also shows that zebrafish tbx6 and mouse Tbx6 genes are paralogous to zebrafish tbx16. We present evidence which argues, that despite the same name and similar expression, zebrafish tbx6 and mouse Tbx6 genes are not orthologous to each other but instead represent relatively distant paralogs. The expression patterns of all genes are discussed in the light of their evolutionary relationships.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 208 (1998), S. 113-116 
    ISSN: 1432-041X
    Keywords: Key words TALE homeobox gene ; MEINOX domain ; Hox cluster ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A recent survey of TALE superclass homeobox genes revealed a new domain upstream of the homeodomain that is conserved between the plant KNOX genes and the animal MEIS genes. At the same time, another paper identified the Drosophila gene homothorax (hth) as a homologue of the vertebrate MEIS genes, which prompted a reexamination of the sequences of the MEIS, KNOX (collectively named MEINOX) and PBC domains. Similarity of the complete MEINOX domain was found within the PBC domain. This suggests that the PBC class genes were also derived from the ancient MEINOX genes. Recently, it has been shown that the MEIS genes can interact with the Abd-B genes, whilst previous results have shown that the PBC genes interact with anterior Hox genes. This leads to the hypothesis that the duplication of an ancestral MEINOX gene into the PBC and MEIS genes happened at a point in time when the first two Hox cluster genes, an anterior one and a posterior one, emerged, and that subsequently these gene classes coevolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...