ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Journal cover
    Unknown
    Public Library of Science (PLoS)
    Online: 1.2003 –
    Publisher: Public Library of Science (PLoS)
    Print ISSN: 1544-9173
    Electronic ISSN: 1545-7885
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Journal cover
    Unknown
    Public Library of Science (PLoS)
    Online: 1.2005 –
    Publisher: Public Library of Science (PLoS)
    Print ISSN: 1553-734X
    Electronic ISSN: 1553-7358
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Journal cover
    Unknown
    Public Library of Science (PLoS) | PubMed Central
    Online: 1.2009 – 10.2018
    Publisher: Public Library of Science (PLoS) , PubMed Central
    Electronic ISSN: 2157-3999
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Journal cover
    Unknown
    Public Library of Science (PLoS)
    Online: 1.2005 –
    Publisher: Public Library of Science (PLoS)
    Print ISSN: 1553-7390
    Electronic ISSN: 1553-7404
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © 2005 Sullivan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Biology 3 (2005): e144, doi:10.1371/journal.pbio.0030144.
    Description: The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish ‘‘core’’ genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of ‘‘cyanobacterial’’ genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent ‘‘signature’’ cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.
    Description: This research was supported by the US DOE under grant numbers DEFG02– 99ER62814 and DE-FG02–02ER63445, and the National Science Foundation under grant number OCE-9820035 (to SWC).
    Keywords: Oceanic cyanobacteria ; Prochlorococcus phages
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 696275 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © 2006 Bordenstein et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Pathogens 2(2006): e43, doi:10.1371/journal.ppat.0020043.
    Description: By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic.
    Description: This work was supported by grants from the NASA Astrobiology Institute (NNA04CC04A) and National Institutes of Health (R01 GM62626-01) to JJW, and by the Marine Biological Laboratory's Program in Global Infectious Diseases, funded by the Ellison Medical Foundation, to SRB.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1943515 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © 2006 Parfrey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Genetics 2 (2006): e220, doi:10.1371/journal.pgen.0020220.
    Description: Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six ‘‘supergroups.’’ The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life.
    Description: This work is supported by the National Science Foundation Assembling the Tree of Life grant (043115) to DB, DJP, and LAK.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1716544 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: This is an open-access article distributed under the terms of the Creative Commons Public Domain dedication. The definitive version was published in PLoS Biology 4 (2006): e383, doi:10.1371/journal.pbio.0040383.
    Description: Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.
    Description: This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory, University of California, under contract W-7405-ENG-48. Genome closure was funded in part by a University of South Florida Innovative Teaching Grant (to KMS). KMS, SKF, and CAK gratefully acknowledge support from the United States Department of Agriculture Higher Education Challenge Grants Program (Award # 20053841115876). SMS kindly acknowledges support through a fellowship received from the Hanse Wissenschaftskolleg in Delmenhorst, Germany (http://www.h-w-k.de). MH was supported by a Woods Hole Oceanographic Institution postdoctoral scholarship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 4436005 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Public Library of Science (PLoS)
    Publication Date: 2022-05-25
    Description: © 2004 Jennifer J. Wernegreen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in PLoS Biology 2 (2004): e68, doi:10.1371/journal.pbio.0020068.
    Description: Symbiosis, an interdependent relationship between two species, is an important driver of evolutionary novelty and ecological diversity. Microbial symbionts in particular have been major evolutionary catalysts throughout the 4 billion years of life on earth and have largely shaped the evolution of complex organisms. Endosymbiosis is a specifi c type of symbiosis in which one—typically microbial—partner lives within its host and represents the most intimate contact between interacting organisms. Mitochondria and chloroplasts, for example, result from endosymbiotic events of lasting significance that extended the range of acceptable habitats for life. The wide distribution of intracellular bacteria across diverse hosts and marine and terrestrial habitats testifies to the continued importance of endosymbiosis in evolution. Among multicellular organisms, insects as a group form exceptionally diverse associations with microbial associates, including bacteria that live exclusively within host cells and undergo maternal transmission to offspring. These microbes have piqued the interest of evolutionary biologists because they represent a wide spectrum of evolutionary strategies, ranging from obligate mutualism to reproductive parasitism (Buchner 1965; Ishikawa 2003) (Box 1; Table 1).
    Description: JJW gratefully acknowledges the support of the National Institutes of Health (R01 GM62626-01), the National Science Foundation (DEB 0089455), the National Aeronautics and Space Administration Astrobiology Institute (NNA04CC04A), and the Josephine Bay Paul and C. Michael Paul Foundation.
    Keywords: Endosymbiosis ; Endosymbiosis manipulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 541080 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Public Library of Science (PLoS)
    In:  EPIC3PLOS ONE, Public Library of Science (PLoS), 15(8), pp. e0237704-e0237704, ISSN: 1932-6203
    Publication Date: 2023-06-21
    Description: Since plastics degrade very slowly, they remain in the environment on much longer timescales than most natural organic substrates and provide a novel habitat for colonization by bacterial communities. The spectrum of relationships between plastics and bacteria, however, is little understood. The first objective of this study was to examine plastics as substrates for communities of Bacteria in estuarine surface waters. We used next-generation sequencing of the 16S rRNA gene to characterize communities from plastics collected in the field, and over the course of two colonization experiments, from biofilms that developed on plastic (low-density polyethylene, high-density polyethylene, polypropylene, polycarbonate, polystyrene) and glass substrates placed in the environment. Both field sampling and colonization experiments were conducted in estuarine tributaries of the lower Chesapeake Bay. As a second objective, we concomitantly analyzed biofilms on plastic substrates to ascertain the presence and abundance of Vibrio spp. bacteria, then isolated three human pathogens, V. cholerae, V. parahaemolyticus, and V. vulnificus, and determined their antibiotic-resistant profiles. In both components of this study, we compared our results with analyses conducted on paired samples of estuarine water. This research adds to a nascent literature that suggests environmental factors govern the development of bacterial communities on plastics, more so than the characteristics of the plastic substrates themselves. In addition, this study is the first to culture three pathogenic vibrios from plastics in estuaries, reinforcing and expanding upon earlier reports of plastic pollution as a habitat for Vibrio species. The antibiotic resistance detected among the isolates, coupled with the longevity of plastics in the aqueous environment, suggests biofilms on plastics have potential to persist and serve as focal points of potential pathogens and horizontal gene transfer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...