ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4889
    Keywords: TiAl ; oxidation ; phosphorus ; microdiffraction ; doping ; rutile
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Recently it has been found that very small amounts (a few 100 ppm) of Padded to γ -titanium aluminide can significantly alter the oxidationbehavior between 973 and 1273 K. The mechanism responsible for this changeis, however, still not clear. In the present study, phosphorus wasincorporated into the surface of TiAl (containing 50 at.% Al) by ionimplantation and oxidation tests were carried out at 1173 K inair. Improvement of oxidation resistance is only temporary up to 100 hr forphosphorus-implanted TiAl. After 100 hr, the oxidation rate increases andbreakaway oxidation follows. XRD and EPMA showed that the breakawayoxidation is connected with massive nitride formation. Two different modelsare proposed which can explain the effect of phosphorus additions on theoxidation kinetics of TiAl during the protective stage within the first100 hr. The breakaway effect can be explained by penetration of air to themetal–oxide interface zone because of microcrack formation in theoxide scale, which was experimentally proved by acoustic-emission analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8264
    Keywords: alfalfa ; arbuscular mycorrhizal fungi ; nitrogen ; nitrogen-fixing bacteria ; phosphorus ; plant growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this research was to carry out a critical study of the method of obtaining size equivalence between non-symbiotic alfalfa and alfalfa associated with Glomus and/or Rhizobium by applying fixed addition rates of nutrients to the non-symbiotic controls. The experimental design included three nutrient response curves in which the levels of added phosphorus and/or nitrogen were constant during the whole plant growth process: 1) a phosphorus response curve, in order to compare the growth of double symbiotic plants with that of only-Rhizobium inoculated ones; 2) a nitrogen response curve, that consisted of a comparison between the growth of double symbiotic alfalfa and four treatments associated only with Glomus; 3) a phosphorus and nitrogen response curve, to compare the growth of non-inoculated alfalfa with that of double symbiotic plants. Although similar size was achieved among some treatments at harvest, shoot growth over time and nutrient concentrations in tissues differed, indicating that growth equivalence did not mean functional equivalence. A second experimental design was performed taking into account the establishment of microsymbionts for determining the adequate moment to add supplemental phosphorus and/or nitrogen. It included four treatments: a) double symbiotic plants (MR); b) plants inoculated with Rhizobium only (R); c) plants inoculated with Glomus only (M), and d) non-inoculated plants (N). Great similarity in terms of plant growth and nutrient contents in tissues were obtained. Moreover, symbiotic plants were able to produce similar dry matter than non-symbiotic ones under P and N limitations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 56 (2000), S. 219-229 
    ISSN: 1573-0867
    Keywords: phosphorus ; P ; dairy farming ; systems research ; environment ; pollution ; soil fertility ; sandy soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In the sandy regions of the Netherlands water quality is threatened by high losses of nutrients from intensive dairy farms. About 67% (32 kg ha-1yr-1) of farm inputs of P in purchased feeds and fertilisers do not leave in milk or cattle. The Dutch government defined decreasing maximum permitted nutrient surplusses for the period 1998–2008, at 9 kg ha-1yr-1 for P. Farmers suppose that reducing the surplusses will be costly, because it limits application of slurry, which then has to be either exported or additional land has to be purchased. Moreover, farmers are worried about the impact on soil fertility and crop growth. To explore the possibilities of reducing surplusses by improved management, farming systems research is carried out at prototype farm ‘De Marke’. Results indicate that average intensive dairy farms can reduce P surplus sufficiently, without the need to buy land or to export slurry. Key factors are reductions in purchased feeds (by reduced needs per kg milk as a result of a higher milk yield per cow, less young stock and judicious feeding) and fertilisers (by improved management of ‘home-made’ manure and an increased maize area). Initially, P fertility status of the fields of ‘De Marke’ decreased, but stabilised in the seventh year at a level not restrictive to crop production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 51 (2000), S. 1-32 
    ISSN: 1573-515X
    Keywords: aluminum ; floodplain forests ; iron ; organic matter ; P sorption capacity ; phosphorus ; soil ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined spatial and temporal variationsin soil chemistry in a floodplain forest landscape todetermine the effects of flooding on aluminum (Al) andiron (Fe) oxide biogeochemistry and inorganicphosphorus (Pi) sorption capacity. Whenpreviously sorbed Pi was considered, the sorptioncapacities of floodplain and adjacent upland soilswere comparable, suggesting that floodplain soilsrepresent a second line of defense protectingdownstream aquatic ecosystems from agriculturalrun-off. Pi sorption capacity was highlycorrelated with oxalate-extractable Al (Alo)(rs = 0.78); Alo and percent organic matter(OM) were also highly correlated (rs = 0.72),suggesting the importance of OM-Al complexes in thesesoils. The correlation of oxalate-extractable Fe(Feo) with OM (rs = 0.64) was improved(rs = 0.80) by removing lower elevation (swale)soils, suggesting that flooding inhibits theassociation of Feo with OM. Fe oxidecrystallinity decreased during seasonal flooding, buttotal extractable Fe did not change significantly. Fesolubilized during flooding was either replaced bysediment deposition (252 ± 3 mmol kg−1yr−1), and/or reprecipitated locally. Al oxidecrystallinity also decreased during flooding due to asignificant decline in NaOH-extractable Al (AlN). AlN concentrations subsequently returned topre-flooding levels, but sediment Al inputs (57 ±3 mmol kg−1 yr−1), were insufficient to account for this recovery. Observed Fetransformations suggest the importance offlooding-induced declines in soil redox potential toFe biogeochemistry; observed Al transformationssuggest the importance of complexation reactions withsoil OM to Al biogeochemistry in this floodplainforest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: Bouteloua eriopoda ; Chihuahuan Desert ; desertification ; hydrology ; Larrea tridentata ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Losses of dissolved nutrients (N, P, K, Ca, Mg, Na,Cl, and SO4) in runoff were measured on grasslandand shrubland plots in the Chihuahuan desert ofsouthern New Mexico. Runoff began at a lowerthreshold of rainfall in shrublands than ingrasslands, and the runoff coefficient averaged 18.6%in shrubland plots over a 7-year period. In contrast,grassland plots lost 5.0 to 6.3% of incidentprecipitation in runoff during a 5.5-year period. Nutrient losses from shrubland plots were greater thanfrom grassland plots, with nitrogen losses averaging0.33 kg ha−1 yr−1 vs0.15 kg ha−1 yr−1, respectively, during a 3-year period. Thegreater nutrient losses in shrublands were due tohigher runoff, rather than higher nutrientconcentrations in runoff. In spite of these nutrientlosses in runoff, all plots showed net accumulationsof most elements due to inputs from atmosphericdeposition. Therefore, loss of soil nutrients byhillslope runoff cannot, by itself, account for thedepletion of soil fertility associated withdesertification in the Chihuahuan desert.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-515X
    Keywords: chloride ; internal eutrophication ; nitrogen ; peat soil ; phosphorus ; phytometer ; sulphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Inputs of surface waters high in chloride and sulphateincreased the availability of nutrients in fenpeatlands. This `internal eutrophication' wasdemonstrated with test plants (`phytometers') andthrough water and soil analysis. Three experiments arepresented in which the level of chloride and/orsulphate was increased to 3 mmolc l−1. Inexperiment 1 chloride levels were increased from 0.5to 3 mmolc l−1 as CaCl2 or NaCl. Inexperiment 2 and 3 similar increased levels forchloride and sulphate (3 mmolc l−1; as NaCland Na2SO4) were used. The following resultswere found: (i) No differences in soil total-N and total-P werefound before and after the treatments in any of thethree experiments. (ii) Experiment 1 showed a significant increase inBio-Available P (BAP) in pots planted with Anthoxanthum odoratum as well as in bare pots for theNaCl and CaCl2 treatments. The plants in thesetreatments had taken up much more P. (iii) Experiment 2 showed an increase in soil BAPafter treatment with chloride and sulphate in potsplanted with Anthoxanthum odoratum. The chloridetreatment had no effect on plant biomass, whereas thesulphate treatment resulted in a reduction in rootbiomass and root N and P content. The shoots showedan increase in P content in the sulphate and chloridetreatments, while N content remained the same. (iv) In experiment 3, treatments with chloride andsulphate led to significantly increased biomass and Puptake of Anthoxanthum odoratum. Again, noeffects on N uptake were found. These experiments provide evidence for distinctlyincreased availability of phosphate in peat soils whenthese come into contact with water with evenmoderately increased sulphate or chloride levels.Surface water originating from the Rhine river, whichis enriched in chloride and sulphate, is oftensupplied to fen reserves in The Netherlands, tocompensate for water losses due to agriculturaldrainage in the region. The results of this study showthat phosphate availability to the vegetation may risedrastically, with detrimental effects on the speciesdensity and the occurrence of rare species in thevegetation. Hence, supply of this water should beavoided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 432 (2000), S. 101-111 
    ISSN: 1573-5117
    Keywords: Hawaii ; light ; nitrogen ; nutrients ; periphyton ; phosphorus ; spate ; stream
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To date, most studies of light- and nutrient-limited primary productivity in forested streams have been carried out in deciduous forests of temperate, continental regions. Conceptual models of light and nutrient limitation have been developed from these studies, but their restricted geographic range reduces the generality of such models. Unlike temperate continental streams, streams on tropical high islands are characterized by flashy, unpredictable discharge and riparian canopies that do not vary seasonally. These contrasting conditions suggest that patterns of light and nutrient limitation in tropical streams may differ from those in temperate streams. The effects of light, and nitrogen and phosphorus availability on periphyton accrual (measured as chlorophyll a per unit area) were investigated using field experiments in 4 low-order streams on the island of Oahu, Hawaii. Levels of chlorophyll a in partially-shaded stream pools were significantly greater than in heavily-shaded pools, and nutrient-enrichment increased the level of chlorophyll a in partially-shaded pools but not in heavily-shaded pools. In each stream, phosphate enrichment resulted in an increase in the level of chlorophyll a, but nitrate enrichment had no effect. Spates following rainstorms occur frequently in these streams, and may increase periphyton productivity by increasing the flux of nutrients to algal cells. However, differences in inorganic nitrogen and phosphorus concentrations measured during spates and baseflow were small, and during some spates, concentrations of these two nutrients declined relative to baseflow concentrations. These observations suggest that phosphorus limitation was not alleviated by spates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-515X
    Keywords: carbon ; landscape geochemical flows ; model ; nitrogen ; phosphorus ; wetland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The importance of landscape geochemical flows wasinvestigated using a dynamic model simulating carbon,nitrogen and phosphorus cycling in riverine wetlands,which has been described in a previous paper. Thehydro-geomorphic unit (HGMU) concept was incorporatedin the model by defining a separate, completeunit-model for each unit (HGMU) within the wetland.These unit-models were connected by defining the flowsof nitrogen and phosphorus between them. These flows,also called landscape geochemical flows, usuallyconsist of flows of water containing N and P. The model was applied to a site at Kismeldon Meadows,in south-western England. This site consists of twounits, a slope and a floodplain, separated by a ditch,which catches most of the run off and shallowgroundwater flows from the slope. Only an estimated1% of the N and P that leaves the slope unit in thewater outflow reaches the floodplain unit; the rest iscaught in the system of ditches, which prevent thegeochemical flows taking their natural course. Toexamine the influence of this system of ditches, themodel was run for the same site, but without theditches. This is comparable to a situation of arestored site, where run off and shallow groundwaterflows containing nutrients, can freely get from theslope to the floodplain. The computer simulation experiment reconnecting theslope and floodplain showed that this (1) increasedthe nutrient input into the floodplain, causing ahigher biomass production, and (2) increased thewetness of the floodplain, causing slowerdecomposition, which together (3) led to a faster soilorganic matter accumulation in the floodplain.Nutrient inflows became relatively more importantcompared to atmospheric deposition, especially forphosphorus. By connecting the slope and the floodplainmore nitrogen and less phosphorus flowed into theriver.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of aquatic ecosystem stress and recovery 8 (2000), S. 53-66 
    ISSN: 1573-5141
    Keywords: Canada ; nitrogen ; periphyton ; phosphorus ; pulp mill effluent ; rivers ; sewage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To evaluate the effects of pulp mill and municipal sewageeffluents on the nitrogen (N) and phosphorus (P) status of northernCanadian rivers, the Northern River Basins Study required an integratedresearch and assessment program consisting of field observation andexperimentation. Analysis of monitoring data collected over 3–13 yshowed that on an annual basis, pulp mills contributed 22% of theP and 20% of the N load discharged from the Wapiti to the Smokyriver, and 6 to 16% of the P load and 4 to 10% of the Nload in the Athabasca River. Despite these low contributions, N and Pconcentrations were elevated below pulp mill discharges on all threerivers during the low discharge period of September to April. Insitu experiments conducted with nutrient diffusing substrata showedthat periphyton biomass was maintained at low levels by insufficient Pin the upper reaches of the Athabasca River and insufficient N+P inthe Wapiti River upstream of point-source discharges. In contrast,effluent loading from pulp mill and sewage inputs alleviated nutrientlimitation downstream of major discharges on both rivers. Experimentsconducted in artificial streams located beside the Athabasca Riverupstream of the first pulp mill showed that P addition increasedperiphyton biomass (expressed as chlorophyll a content) suchthat biomass increased sharply at low P concentrations (2–5µg/L soluble reactive P) and approached saturation at 35µg/L soluble reactive P. As a result of recommendations fromthis integrated program of river monitoring and experimentation,nutrient loading has been reduced to the most affected river(Wapiti-Smoky) and federal and provincial departments of environment arereviewing loading limits for other river reaches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5095
    Keywords: Picea glauca (Moench) Voss × Picea engelmannii Parry ; phosphorus ; phosphorus-use efficiency ; retranslocation ; specific absorption rate ; spring-stock ; stock-type ; summer-stock
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract One-year-old interior spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry) spring-stock and summer-stock were grown under two phosphorus (P) fertility regimes, with (+P) or without (−P), followed by a simulated winter, and a second growing period under an adequate fertility regime in a controlled environment room. The two stock-types differed in their response to low P availability. For spring-stock, morphological development, phosphorus-use efficiency (PUE) and P specific absorption rate (SAR) were similar between −P and +P seedlings. For summer-stock, −P seedlings compared to +P seedlings had lower (p ≤ 0.05) morphological development, but greater PUE and SAR. For both stock-types, P content increased in +P seedlings, remained low in −P seedlings, and P concentration decreased in nursery-needles (i.e., formed in the nursery) of −P seedlings. The difference in stock-type response to low phosphorus availability (−P) was attributed to internal supply of P and it's retranslocation. Assimilation (A) of CO2 in nursery-needles was similar between −P and +P seedlings for both stock-types. For spring-stock, +P seedlings had greater A in new-needles (i.e., needles formed during the trial) than −P seedlings. It was recommended that the spring-stock be selected over summer-stock for sites low in P availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1573-515X
    Keywords: aquatic plants ; dissolved organic carbon ; nutrient cycling ; phosphorus ; sediments ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Release of oxygen from the roots ofaquatic macrophytes into anaerobic sediments canaffect the quantity of interstitial dissolved organicmatter and nutrients that are available to bacteria. Nutrient and dissolved organic carbon (DOC)concentrations were compared between subsurface(interstitial) waters of unvegetated sediments andsediments among stands of the emergent herbaceousmacrophyte Juncus effusus L. in a lotic wetlandecosystem. Concentrations of inorganic nitrogen(NH4 +, NO3 -, and NO2 -)were greater from sediments of the unvegetatedcompared to the vegetated zone. DOC concentrations ofinterstitial waters were greater in sediments of theunvegetated zone both in the winter and springcompared to those from the vegetated zone. AlthoughDOC concentrations in hydrosoils collected from bothzones increased from winter to spring, bacterialproductivity per mg DOC in spring decreased comparedto winter. Greater initial bacterial productivityoccurred on DOM collected from the vegetated comparedto the unvegetated zone in winter samples (days 1 and4), with increased bacterial productivity on samplescollected from the unvegetated zone at the end of thestudy (day 20). Bacterial productivity wassignificantly greater on all sampling days on DOM fromvegetated samples compared to unvegetated samples. In nutrient enrichment experiments, bacterialproductivity was significantly increased (p 〈 0.05)with phosphorus but not nitrogen only amendments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 49 (2000), S. 37-51 
    ISSN: 1573-515X
    Keywords: Arbuscular mycorrhizae/Vesicular-arbuscular mycorrhizae (AM/VAM) ; annual grasslands ; benomyl ; nitrogen limitation ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nutrient availability limits plant production acrossa wide range of terrestrial ecosystems. In this studyof a Californian annual grassland community, theinfluence of arbuscular mycorrhizal (AM) associationson plant nutrient acquisition was investigated usingfactorial combinations of nitrogen (N), phosphorus (P)and benomyl fungicide. N additions resulted in asignificant increase in shoot biomass demonstratingthat plant productivity in these soils was N-limited. The effect of P additions consistently depended onfungicide treatment. In the absence of benomyl, shootP accumulation was unaltered by P addition. In thepresence of benomyl, P addition significantlyincreased shoot P accumulation and was associated witha consistent trend towards enhanced shoot biomass.The induction of P-deficiency with benomylapplication suggests that effective P acquisition byAM may contribute to the strong N-limitation ofproduction observed in many terrestrial ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 431 (2000), S. 135-153 
    ISSN: 1573-5117
    Keywords: cyanobacteria ; wetlands ; biomass ; phosphorus ; nitrogen fixation ; alkaline phosphatase ; Belize
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cyanobacterial mats are important components of oligotrophic wetland ecosystems in the limestone-based regions of the Caribbean. Our goals were to: (1) Estimate the biomass and primary production of cyanobacterial mats, quantify the extent of nitrogen fixation and measure the activity of alkaline phosphatase (APA) in representative marshes of northern Belize; (2) Record changes in these variables following nutrient additions. The mat biomass ranged from 200 to 700 g m−2 AFDM, with the epipelon contributing up to 87% of the total. Tissue nitrogen was similar in all marshes (1.1–1.5%), while tissue phosphorus was extremely low (0.0055–0.0129%) and well correlated with the N:P ratio in water. Nitrogen fixation expressed as nitrogenase activity was high in some marshes (17.5 nmol C2H4 cm−2 h−1) and low (〈 5 nmol C2H4 cm−2 h−1) in others depending mainly on the proportion of heterocyst-forming cyanobacteria (Nostocales, Stigonematales) in the mat. Alkaline phosphatase activity was positively correlated with the N:P ratio of the mat. Experimental addition of phosphorus resulted in significant increase in primary production and nitrogen fixation while it suppressed the APA activity. The presented data clearly showed that oligotrophic marshes of northern Belize are strongly P limited. Increased input of phosphorus would profoundly change their structure and functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Landscape ecology 15 (2000), S. 187-199 
    ISSN: 1572-9761
    Keywords: BOD5 ; catchment ; empirical model ; land use change ; land use scenarios ; nitrogen ; phosphorus ; runoff ; SO4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Due largely to unprecedented land-use changes in the Porijõgi River catchment (southern Estonia) losses of nutrients and organic matter have decreased significantly. During the period 1987–1997 abandoned lands increased from 1.7 to 10.5% and arable lands decreased from 41.8 to 23.9%. At the same time, the runoff of total-N, total-P, SO4 and organic matter (after BOD5) decreased from 25.9 to 5.1, 0.32 to 0.13, 78 to 48, and 7.4 to 3.5 kg ha−1 yr−1, respectively. The most significant decreases occurred in agricultural subcatchments while the changes were insignificant in the forested upper course catchment. A simple empirical model which incorporates land-use pattern, fertilization intensity, soil parameters and water discharge accurately described the variations of total-N and total-P runoff in both the whole catchment and its agricultural subcatchments (R 2 varies from 0.95–0.99 for N to 0.49–0.93 for P). In small agricultural subcatchments the rate of fertilization is found the most important factor for nitrogen runoff, whereas in larger mosaic watersheds land use pattern plays the main role. Seven alternative scenarios compiled on the base of the empirical model allow to forecast potential nitrogen and phosphorus losses from the catchment. This information can be used in further landscape and regional planning of the whole region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1572-9680
    Keywords: biomass transfer ; integrated nutrient management ; nitrogen ; nutrient cycling ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tithonia diversifolia, a shrub in the family Asteraceae, is widely distributed along farm boundaries in the humid and subhumid tropics of Africa. Green biomass of tithonia has been recognized as an effective source of nutrients for lowland rice (Oryza sativa) in Asia and more recently for maize (Zea mays) and vegetables in eastern and southern Africa. This paper reviews the potential of tithonia green biomass for soil fertility improvement based on recent research in western Kenya. Green leaf biomass of tithonia is high in nutrients, averaging about 3.5% N, 0.37% P and 4.1% K on a dry matter basis. Boundary hedges of sole tithonia can produce about 1 kg biomass (tender stems + leaves) m−1 yr−1 on a dry weight basis. Tithonia biomass decomposes rapidly after application to soil, and incorporated biomass can be an effective source of N, P and K for crops. In some cases, maize yields were even higher with incorporation of tithonia biomass than with commercial mineral fertilizer at equivalent rates of N, P and K. In addition to providing nutrients, tithonia incorporated at 5 t dry matter ha−1 can reduce P sorption and increase soil microbial biomass. Because of high labor requirements for cutting and carrying the biomass to fields, the use of tithonia biomass as a nutrient source is more profitable with high-value crops such as vegetables than with relatively low-valued maize. The transfer of tithonia biomass to fields constitutes the redistribution of nutrients within the landscape rather than a net input of nutrients. External inputs of nutrients would eventually be required to sustain production of tithonia when biomass is continually cut and transferred to agricultural land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1573-5036
    Keywords: deciduous tree ; foliar pigmentation ; fungus ; litter mass loss ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We tested the hypothesis that there is a causal connection between autumn colour, nutrient concentration and decomposibility of fresh leaf litter. Samples from patches of different autumn colours within the leaves of the deciduous tree sycamore (Acer pseudoplatanus) were sealed into litter bags and incubated for one winter in an outdoor leaf mould bed. Green leaf patches were decomposed faster than yellow or brown patches and this corresponded with the higher N and P concentrations in the former. Black patches, indicating colonisation by the tar spot fungus Rhytisma acerinum, were particularly high in P, but were decomposed very slowly, owing probably to resource immobilisation by the fungus. The results supported the hypothesis and were consistent with a previous study reporting an interspecific link between autumn coloration and decomposition rate. Autumn leaf colour of deciduous woody plants may serve as a useful predictor of litter decomposibility in ecosystem or biome scale studies where extensive direct measurements of litter chemistry and decomposition are not feasible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 227 (2000), S. 115-126 
    ISSN: 1573-5036
    Keywords: endophyte ; mineral nutrition ; Neotyphodium coenophialum ; phosphorus ; tall fescue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon and Hanlin, a fungal endophyte found primarily in shoots of tall fescue (Festuca arundinacea Shreb.), can modify rhizosphere activity in response to phosphorus (P) deficiency. In a controlled environment experiment, two cloned tall fescue genotypes (DN2 and DN4) free (E-) and infected (E+) with their naturally occurring endophyte strains were grown in nutrient solutions at low P (3.1 ppm) or high P (31 ppm) concentrations for 21 d. Endophyte infection increased root dry matter (DM) of DN4 by 21% but did not affect root DM of DN2. Under P deficiency, shoot and total DM were not affected by endophyte but relative growth rate was greater in E+ than E- plants. In high P nutrient solution, E+ plants produced 13% less (DN2) or 29% more (DN4) shoot DM than E- plants. Endophyte affected mineral concentrations in roots more than in shoots. Regardless of P concentration in nutrient solution, E+ DN2 accumulated more P, Ca, Zn and Cu but less K in roots than E- plants. When grown in high P nutrient solution, concentrations of Fe and B in roots of E+ DN2 plants were reduced compared with those of E- plants. Concentrations of P, Ca and Cu in roots of DN4 were less, but K was greater in E+ than E- plants. In shoots, E+ DN2 had greater concentrations of Fe and Cu than E- DN2, regardless of P concentration in nutrient solution. Genotype DN4 responded to endophyte infection by reducing B concentration in shoots. Nutrient uptake rates were affected by endophyte infection in plants grown in low P nutrient solution. A greater uptake rate of most nutrients and their transport to shoots was observed in DN2, but responses of DN4 were not consistent. Results suggest that endophyte may elicit different modes of tall fescue adaptation to P deficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1573-5036
    Keywords: carbon ; defoliation ; nitrogen ; phosphorus ; sheep urine ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We have determined the temporal changes in the concentration of dissolved organic carbon (DOC) and P and N components in soil solution following application of synthetic sheep urine (500 kg N ha-1) to a brown forest soil in boxes sown with Agrostis capillaris. Three contrasting defoliation treatments (no cutting, single cut before urine application and regular cutting twice per week) plus a fallow soil were studied. The synthetic urine contained 15N labelled urea and was P-free. Intact soil cores were taken after 2, 7, 14, 21 and 56 d and centrifuged to obtain soil solution. The urea in the synthetic urine was rapidly hydrolysed in the soil, increasing soil solution pH, DOC and total dissolved phosphorus (TDP) concentrations. For the regularly defoliated sward, DOC and P reached maximum concentrations (4000 mg DOC L-1 and 59 mg TDP L-1) on day 7. From their peak values, pH and DOC and P concentrations generally decreased with time and at day 56 were near those of the control. Concentrations of NH4 + and NO3 - in the no-urine treatments fluctuated and the greatest treatment differences were between the fallow soil and the soil sown with grass. Adding synthetic urine increased NH4 + concentrations during the first week, but NO3 - concentrations decreased. This was consistent with the 15N labelling of the NO3 - pool which required 3 weeks to reach that of 15NH4 +. Dissolved organic nitrogen (DON) reached a maximum value at day 7 with a concentration of 409 mg N L-1. The DON in soil solution contained no detectable amounts of 15N label indicating that it was derived from sources in the soil. Differences in soil solution composition related to the effect of the other cutting treatments and the fallow treatment were small compared to the effect of synthetic urine addition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5036
    Keywords: Andisol ; phosphatases ; phosphorus ; roots ; VA mycorrhiza ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus deficiency is a major yield limiting constraint in wheat cultivation on acid soils. The plant factors that influence P uptake efficiency (PUPE) are mainly associated with root characteristics. This study was conducted to analyze the genotypic differences and relationships between PUPE, root length density (RLD), colonization by vesicular arbuscular and arbuscular mycorrhizal (V)AM fungi and root excretion of phosphatases in a P-deficient Andisol in the Central Mexican Highlands. Forty-two semidwarf spring-bread-wheat (Triticum aestivumL.) genotypes from CIMMYT were grown without (−P) and with P fertilization (+P), and subsequently in subsets of 30 and 22 genotypes in replicated field trials over 2 and 3 years, respectively. Acid phosphatase activity at the root surface (APASE) was analyzed in accompanying greenhouse experiments in nutrient solution. In this environment, PUPE contributed more than P utilization efficiency, in one experiment almost completely, to the variation of grain yield among genotypes. Late-flowering genotypes were higher yielding, because the postanthesis period of wheat was extended due to the cold weather at the end of the crop cycles, and postanthesis P uptake accounted for 40–45% of total P uptake. PUPE was positively correlated with the numbers of days to anthesis (at −P r=0.57 and at +P r=0.73). The RLD in the upper soil layer (0–20 cm) of the wheat germplasm tested ranged from 0.5 to 2.4 cm cm-3 at –P and 0.7 to 7.7 at +P. RLD was the most important root trait for improved P absorption, and it was positively genetically correlated with PUPE (at –P r=0.42 and at +P r=0.63) and the number of spikes m-2 (at –P r=0.58 and at +P r=0.36). RLD in the upper soil layer was more important with P fertilizer application. Without P fertilization, root proliferation in the deeper soil profile secured access to residual, native P in the deeper soil layer. (V)AM-colonisation and APASE were to a lesser degree correlated with PUPE. Among genoptypes, the level of (V)AM-colonisation ranged from 14 to 32% of the RLD in the upper soil layer, and APASE from 0.5 to 1.1 nmol s-1 plant-1 10-2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 223 (2000), S. 119-132 
    ISSN: 1573-5036
    Keywords: leaf area index ; leaf elongation rate ; phosphorus ; phyllochron ; Zea mays L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass accumulation by crops depends both on light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea Mays L., cv Volga) field crops grown under phosphorus (P) deficiency, and assess their relative importance. In this paper, the effects of P deficiency on leaf appearance, leaf elongation rate, final individual leaf area and leaf senescence were studied. The experimental work was carried out in 1995–1977 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no-P (P0 treatment) and different rates of P fertiliser (P1.5:1.5 times the grain P export and P3:3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply, with the P0 treatment being limiting for growth. Very few differences were observed about leaf growth between the P1.5 and P3 treatments. Conversely, the leaf area index (LAI) was significantly reduced in the P0 treatment, especially during the first phases of the crop cycle (up to −60% between the 7- and 14-visible leaves). This effect gradually decreased over time. The lower LAI in P0 treatment was due to two main processes affecting the leaf growth. The final number of leaves per plant and leaf senescence were only slightly modified by P deficiency. Conversely, leaf appearance was delayed during the period between leaf 4 and leaf 9. The value of the phyllochron increased from 47 °C days in the P1.5 treatment to 65 °C days in the P0 treatment. Leaf elongation rates during the quasi-linear phase of leaf expansion were significantly reduced for lower leaves of P0 plants. The final size of leaves L2–L12 was reduced. On the opposite, leaf elongation duration was not greatly affected by P treatments. Before the emergence of leaf 9, the reduction of individual leaf size was the main factor responsible for the reduced LAI in the P0 treatment. After this stage, the delayed leaf appearance accounted for a great part of the reduced LAI in the P0 treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1573-5036
    Keywords: light interception ; phosphorus ; radiation-use efficiency ; yield components ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biomass accumulation by crops depends on both light interception by leaves and on the efficiency with which the intercepted light is used to produce dry matter. Our aim was to identify which of these processes were affected for maize (Zea mays L., cv Volga) field crops grown under phosphorus (P) deficiency. In the preceding paper (Plénet et al., 2000), it was shown that P deficiency severely reduced leaf growth. In this paper, the effect of P deficiency on the radiation-use efficiency (RUE) was investigated. The experimental work was carried out in 1995, 1996 and 1997 on a long-term P fertilisation trial located on a sandy soil in the south-west of France. Three P fertilisation regimes have been applied since 1972: no- P (P0 treatment) and different rates of P fertiliser (P1.5: 1.5 times the grain P export and P3: 3 times the grain P export). These fertilisation regimes have led to contrasted levels of soil P supply. Only slight differences were observed between the P1.5 and P3 treatment for above-ground biomass accumulation and grain yield. Conversely the grain yield was significantly reduced in P0 (−11%). Above-ground biomass production was severely reduced, with the maximum difference between treatment (−60% in P0) occurring between 400 and 600 °C days after sowing. The lower biomass production in P0 was accounted for by the reduced amount of photosynthetically active radiation (PAR) absorbed by the canopy, which was itself the consequence of the reduced leaf area index (see Plénet et al., 2000). The calculated RUE were found to depend on the plant stage, especially during the pre-flowering period, and on the average air temperature. No effect of P deficiency was observed on the calculated RUE, even during the period when above-ground biomass accumulation was the most severely reduced. These results obtained in field crop conditions strengthen the idea that P deficiency affects plant growth, especially leaf growth, earlier and to a greater extent than photosynthesis per unit leaf area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1573-5036
    Keywords: anion/cation uptake ; cowpea ; millet ; phosphorus ; rhizosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata L.) and groundnut (Arachnis hypogeae L.) was conducted on severely P-deficient acid sandy soils of Niger, Mali and Burkina Faso to measure changes in pH and nutrient availability as affected by distance from the root surface and by mineral fertiliser application. Treatments included three rates of phosphorus (P) and four levels of nitrogen (N) application. Bulk, rhizosphere and rhizoplane soils were sampled at 35, 45 and 75 DAS in 1997 and at 55 and 65 DAS in 1998. Regardless of the cropping system and level of mineral fertiliser applied, soil pH consistently increased between 0.7 and two units from the bulk soil to the rhizoplane of millet. Similar pH gradients were observed in cowpea, but pH changes were much smaller in sorghum with a difference of only 0.3 units. Shifts in pH led to large increases in nutrient availability close to the roots. Compared with the bulk soil, available P in the rhizoplane was between 190 and 270% higher for P-Bray and between 360 and 600% higher for P-water. Exchangeable calcium (Ca) and magnesium (Mg) levels were also higher in the millet rhizoplane than in the bulk soil, whereas exchangeable aluminium (Al) levels decreased with increasing pH close to the root surface. The results suggest an important role of root-induced pH increases for crops to cope with acidity-induced nutrient deficiency and Al stress of soils in the Sudano-Sahelian zone of West Africa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 219 (2000), S. 57-69 
    ISSN: 1573-5036
    Keywords: decomposition ; litter quality ; mycorrhiza ; nitrogen ; phosphorus ; saprotrophic microorganisms ; tannins ; forest soils ; acidification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We studied variation in forest floor thickness in four plantations of red pine (Pinus resinosa Ait.) which were similar in age, soil type and associated vegetation. The plantations were located (west to east) in the Clear Creek, Moshannon, Sproul and Tiadaghton State Forests of Pennsylvania, USA. A gradient in forest floor thickness exists across these plantations; the forest floor is thickest in the west and it becomes progressively thinner toward the east. Decomposition of imported litter increased from west to east, suggesting that the variation in forest floor thickness is related to variation in the rate of decomposition. Decomposition rates were related to saprotroph abundance. Variation in forest floor N and phenolic concentrations, in overall mycorrhiza density and in the relative proportions of three common mycorrhiza morphotypes could not explain the variation in decomposition rate. The P concentrations and pH of the forest floor were significantly lower at Clear Creek and Moshannon, where decomposition rates were lowest, compared to Sproul and Tiadaghton, where decomposition rates were most rapid. This suggests that P concentration and pH may have exerted some control on decomposition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 226 (2000), S. 199-210 
    ISSN: 1573-5036
    Keywords: Histochemical staining ; mineral nutrition ; phosphorus ; stress ; vital staining
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphatase activity of arbuscular mycorrhizal (AM) fungi has attracted attention in three fairly distinct domains: intracellular enzymes with defined metabolic functions that have been studied in intraradical hyphae, histochemical staining of alkaline phosphatase as an indicator of fungal activity measured both intra- and extraradically, and extracellular activity related to mineralization of organic P (Po) compounds that may enhance mycorrhizal utilization of an important nutrient pool in soil. This review focuses on the latter subjects with emphasis on extraradical mycelium (ERM), while it draws on selected data from the vast material available concerning phosphatases of other organisms. We conclude that histochemical staining of alkaline phosphatase is a sensitive and suitable method for monitoring the effect of adverse conditions encountered by ERM both as a symbiotically functional entity in soil, and in vitro without modifying interference of soil or other solid substrates. Furthermore, the quantitative importance of extracellular enzymes for P nutrition of AM plants is estimated to be insignificant. This is concluded from the low quantitative contribution extracellular hyphae of AM fungi give to the total phosphatase activity in soil, and from estimations of which processes that may be rate limiting in organic P mineralization. Maximum values for the former is in the order of a few percent. As for the latter, solubilization of Po seems to be far more important than Po hydrolysis for utilization of Po by AM fungi and plants, as both endogenous soil phosphatase activity and phosphatases of other soil organisms are ubiquitous and abundant. Our discussion of mycorrhizal phosphatases supports the view that extracellular phosphatases of roots and micro-organisms are to a large extent released incidentally into soil, and that the source has limited benefit from its activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5036
    Keywords: competition ; roots ; common bean ; mineral nutrition ; models ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We have observed that low soil phosphorus availability alters the gravitropic response of basal roots in common bean (Phaseolus vulgaris L.), resulting in a shallower root system. In this study we use a geometric model to test the hypotheses that a shallower root system is a positive adaptive response to low soil P availability by (1) concentrating root foraging in surface soil horizons, which generally have the highest P availability, and (2) reducing spatial competition for P among roots of the same plant. The growth of nine root systems contrasting in gravitropic response over 320 h was simulated in SimRoot, a dynamic three-dimensional geometric model of root growth and architecture. Phosphorus acquisition and inter-root competition were estimated with Depzone, a program that dynamically models nutrient diffusion to roots. Shallower root systems had greater P acquisition per unit carbon cost than deeper root systems, especially in older root systems. This was due to greater inter-root competition in deeper root systems, as measured by the volume of overlapping P depletion zones. Inter-root competition for P was a significant fraction of total soil P depletion, and increased with increasing values of the P diffusion coefficient (De), with root age, and with increasing root gravitropism. In heterogenous soil having greater P availability in surface horizons, shallower root systems had greater P acquisition than deeper root systems, because of less inter-root competition as well as increased root foraging in the topsoil. Root P acquisition predicted by SimRoot was validated against values for bean P uptake in the field, with an r 2 between observed and predicted values of 0.75. Our results support the hypothesis that altered gravitropic sensitivity in P-stressed roots, resulting in a shallower root system, is a positive adaptive response to low P availability by reducing inter-root competition within the same plant and by concentrating root activity in soil domains with the greatest P availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 218 (2000), S. 249-256 
    ISSN: 1573-5036
    Keywords: ectomycorrhiza ; phosphorus ; Paxillus ; Suillus ; weathering ; ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The role of ectomycorrhizal (EM) fungi in increasing apatite dissolution was tested in a pot system with Pinus sylvestris (L.) seedlings growing in a sand/peat mixture. Non-mycorrhizal seedlings and seedlings inoculated with one of three different isolates of EM fungi were grown for 210 days in pots divided into a root-containing and a root-free compartment. The EM mycelium was allowed to colonise the root-free compartment, to which apatite had been added as a P source in half of the pots. All mineral nutrients except P were supplied in the form of a balanced nutrient solution. Seedlings grown with apatite as their P source grew significantly better and had higher P concentrations (1.1–1.5 mg/g) compared with seedlings growing without any P source (0.6–1.0 mg/g), indicating that they were able to use apatite-P. A weathering budget based on P uptake indicated that 6.7–18.9 mg apatite was weathered per pot which corresponds to 0.3–0.9% of the added apatite. A similar budget based on Sr uptake indicated that the apatite weathering rate was lower (0.13-0.3%). One Suillus variegatus isolate and an unidentified fungus had a significant positive influence on the dissolution of apatite, while another S. variegatus isolate had colonised roots poorly and did not influence weathering significantly. Oxalic acid was detected in root-free soil and was especially abundant in compartments colonised by S. variegatus. The concentration of oxalic acid was correlated to the concentration of phosphate in the soil solution of root-free soil, indicating that oxalic acid influences apatite dissolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5036
    Keywords: chilling ; chlorophyll fluorescence ; nutrient ; phosphorus ; photosynthesis ; starvation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The experiments were conducted on two tomato cultivars: Garbo and Robin. Mineral starvation due to plant growth in 20-fold diluted nutrient solution (DNS) combined with chilling reduced the rate of photosynthesis (P N) and stomatal conductance (g) to a greater extent than in plants grown in full nutrient solution (FNS). In phosphate-starved tomato plants the P N rate and stomatal conductance decreased more after chilling than in plants grown on FNS. In low-P plants even 2 days after chilling the recovery of CO2 assimilation rate and stomatal conductance was low. A resupply of phosphorus to low-P plants (low P + P) did not improve the rate of photosynthesis in non-chilled plants (NCh) but prevented PN inhibition in chilled (Ch) plants. The greatest effect of P resupply was expressed as a better recovery of photosynthesis and stomatal conductance, especially in non-chilled low P + P plants. The F v/F m (ratio of variable to maximal chlorophyll fluorescence) decreased more during P starvation than as an effect of chilling. Supplying phosphorus to low-P plants caused the slight increase in the F v/F mratio. In conclusion, after a short-term chilling in darkness a much more drastic inhibition of photosynthesis was observed in nutrient-starved or P-insufficient tomato plants than in plants from FNS. This inhibition was caused by the decrease in both photochemical efficiency of photosystems and the reduction of stomatal conductance. The presented results support the hypothesis that tomato plants with limited supply of mineral nutrients or phosphorus are more susceptible to chilling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1573-5036
    Keywords: cations ; fire ; nitrogen ; nutrients ; phosphorus ; slash-and-burn ; soil ; tropical forests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The most commonly observed change in soil following slash-and-burn clearing of tropical forest is a short-term increase in nutrient availability. Studies of shifting cultivation commonly cite the incorporation of nutrient-rich ash from consumed aboveground biomass into soil as the reason for this change. The effects of soil heating on nutrient availability have been examined only rarely in field studies of slash-and-burn, and soil heating as a mechanism of nutrient release is most often assumed to be of minor importance in the field. Few budgets for above and belowground nutrient flux have been developed in the tropics, and a survey of results from field and laboratory studies indicates that soils are sufficiently heated during most slash-and-burn events, particularly in dry and monsoonal climates, to cause significant, even substantial release of nutrients from non-plant-available into plant-available forms in soil. Conversely, large aboveground losses of nutrients during and after burning often result in low quantities of nutrients that are released to soil. Assessing the biophysical sustainability of an agricultural practice requires detailed information about nutrient flux and loss incurred during management. To this end, current conceptual models of shifting cultivation should be revised to more accurately describe these fluxes and losses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 63 (2000), S. 431-446 
    ISSN: 1573-2959
    Keywords: aquatic bacteria ; benthic macroinvertebrates ; bioindicator ; eutrophication ; nitrogen ; phosphorus ; stream pollution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A combination field and laboratorystudy was conducted to evaluate the ability of arecently developed bioindicator to detect detrimentalnutrient conditions in streams. The method utilizesbacterial growth on aquatic insects to determinenutrient impacts. Field investigations indicated thatelevated concentrations of nitrate and phosphate wereassociated with growth of filamentous bacteria oninsect body surfaces, and that there was a significantreduction in the density of major insect taxa in thenutrient-enriched stream reaches. Laboratoryinvestigations confirmed a strong linkage betweenbacterial growth and reduced survival of insects. Survival was examined for insects with bacterialinfestation ranging from 0% to greater than 50%coverage of the body surface. A threshold forcatastrophic mortality occurred at about 25% bodycoverage; there were few survivors above that amount. Based on these findings, the diagnostic endpoint forthe bioindicator is 25% body coverage by bacterialgrowth, a level that signifies major impacts and isalso easy to detect visually. This study providesadditional evidence that the insect-bacteriabioindicator is a reliable tool for assessing nutrientimpacts on stream macroinvertebrate communities. Thebioindicator should prove useful for identifyingnutrient-impacted sites as well as monitoring thesuccess of management actions to improve water quality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 119 (2000), S. 91-103 
    ISSN: 1573-2932
    Keywords: eutrophication ; external load ; mass balance ; P-export coefficient ; phosphorus ; reservoir
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract This paper presents two methods used to estimate the externalphosphorus load for the hydroelectric reservoir ofBort-Les-Orgues (in France's `Massif Central' region). The Pload calculated from export coefficients (150 t yr-1) agreedwith field measurements taken during a one-year survey carriedout from March 1996 to February 1997 (121 t yr-1). Exportcoefficients represent a good option for estimating phosphorusloads of other reservoirs in the region of Bort-Les-Orgues,provided that they display similar characteristics. Theseexternal load estimates are greater than the maximum permissibleload for a mesotrophic lake calculated from the OECD equations(40 t yr-1); thus, a yearly reduction of about 60 t shouldideally be achieved. This target, however, is probably tooambitious, and measures to reduce both point and non-pointsources must be implemented for the reservoir to tbe mesotrophic.Moreover, Bort-Les-Orgues is a tourist area. As such, thepresence of algal blooms (a regular occurrence on the lake) dueto an excess of P in the lake's water inflow could actuallyexert a negative impact on regional economy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-2932
    Keywords: Everglades ; mercury ; mobility ; peat ; phosphorus ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Soils in the southern half of Water Conservation Area3A are mostly peats with some organic-rich marls. Mercury contents of 64 surface samples over a500 km2 area average 28.7 ng cc-1 (209 ppb drysediment), which is typical of organic-rich soils. High Hg contents in Everglades fish are therefore notcaused by anomalously high soil Hg. Hg contents showno systematic lateral variation, consistent withdeposition from well-mixed atmospheric sources ratherthan nearby point sources or runoff from canals.Cores from 9 sites contain more Hg and P at or nearthe surface than at 20–30 cm depth. Hg and P contentsof individual cores correlate well and define separatebackground and anomalous populations. The subsurfacedistribution of P is determined largely by uptake bysawgrass and other plants. The correlation between Pand Hg suggests that, although atmospheric Hgdeposition has undoubtedly increased in recentdecades, postdepositional mobilization of Hg may beimportant in Everglades soils. This finding, togetherwith recent direct measurements of atmospheric Hgdeposition, indicates that previous estimates of Hgdeposition rates based on Everglades peat cores, whichassumed that Hg is immobile in peat after deposition,have yielded large overestimates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Journal of thermal analysis and calorimetry 62 (2000), S. 335-344 
    ISSN: 1572-8943
    Keywords: phosphorus ; polydimethylsiloxane ; silica ; surface ; thermogravimetry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Thermogravimetry, differential thermal analysis, and IR spectroscopy were used to investigate the process of thermal destruction of adsorbed polydimethylsiloxane (PDMS) in air. The disperse adsorbents were pristine fumed silica and modified fumed silica whose surface contained oxygen compounds of phosphorus. It was shown that under the given experimental conditions the thermal destruction of PDMS on the fumed silica surface was accompanied by the complete transformation of the adsorbed PDMS to SiO2. In the case of phosphorus-containing silica, the thermal destruction proceeded in a different way. It was found that at 140–300°C depolymerization of the siloxane chains of a certain part of the adsorbed polymer took place with the concurrent removal of volatile products of the reaction. However, the remaining part of the adsorbed PDMS interacted with the modified silica surface to form chemisorbed dimethylsilyl structures. The thermal destruction of the chemisorbed fragments of PDMS in air was initiated at 400°C or above for both types of silica investigated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1572-9028
    Keywords: ethane ; vanadium ; molybdenum ; phosphorus ; titanium oxide ; acetic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Different complementary physicochemical tools have been used to explain the improvement of the catalytic performances for ethane oxidation into acetic acid induced by the addition of molybdenum as phosphate to vanadium phosphate deposited on TiO2-anatase, at a coverage below the monolayer. Electron microscopy techniques have shown that the elements are dispersed on the support. Electron spin resonance, laser Raman and UV-visible spectroscopies have evidenced that the short range order around vanadium is modified by the presence of molybdenum. 51V NMR has shown that molybdenum favours the octahedral symmetry of vanadium. The acidic properties of the catalyst are improved by the adding effect of molybdenum and by the addition of water. This should explain a better desorption of acetic acid and the improvement of the corresponding yield. This confirms the importance of the atomic environment of vanadium-based oxides to control the mild oxidation of light alkanes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    ISSN: 1573-2932
    Keywords: eutrophication ; nitrogen ; phosphorus ; river ; sediment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Nitrogen (N) and phosphorus (P) concentrations were determined in sediment samples along the bed of Catatumbo river in both Colombian and Venezuelan territories until the river outlet in Maracaibo lake. Total phosphorus was determined by digestion with HCl followed by analysis using the ascorbic acid method and total nitrogen was done using the standard microkjeldahl method plus nitrate-nitrite. Ammonium, orthophosphate and nitrate were determined using standard methods after extraction steps. The mean concentrations along the river bed were found in an interval of 0.035 and 1.492 mg g-1 dry sed. for nitrogen and 0.027 and 1.039 mg g-1 dry sed. for phosphorus at 95% confidence level. The mean molar ratio N/P in the river bed was 4.42 and 3.46 for river outlet zones in the lake, which indicates that nitrogen is the limiting nutrient. For comparison with previous results of lake sediments from sites near the river outlet it was concluded that Catatumbo river is a significant source of nutrients to the Maracaibo Lake system because sediment nutrients concentrations from Catatumbo river were higher than the ones in Maracaibo Lake. Statistic studies showed significant differences between countries, zones and similar behaviour in the river bed as related to the affluent rivers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-1618
    Keywords: grassland soils ; mapping ; phosphorus ; potassium ; sampling strategies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Unlike the situation for arable soils, virtually nothing is known about the spatial dependencies of soil properties in cool temperate grassland or about what the optimal sampling strategies ought to be for mapping soil nutrient distributions in such situations. The aim of this study was to investigate the spatial variability in ‘plant-available’ (soil) phosphorus and potassium in a grass silage field in Northern Ireland and devise ‘optimal’ sampling strategies for mapping their distributions. Soil samples were collected from the field at 25 m intervals in a regular rectangular grid to provide a database of soil properties. Different data combinations were subsequently abstracted from this database for comparison purposes, and ordinary kriging used to produce interpolated soil maps. Soil potassium displayed greater spatial variability than soil phosphorus. In keeping with this observation, the results of three separate statistical procedures demonstrated that the optimal sample size for estimating the ‘true’ population means was about twice as large for soil potassium as for soil phosphorus. Optimal sampling strategies, however, related not just to sample size but to sample combination and field shape as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1573-1642
    Keywords: nitrogen ; phosphorus ; macroalgae ; estuary ; anthropogenic
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Our objective was to begin to investigate sources, sinks, and flux rates of nitrogen (N) and phosphorus (P) in Famosa Slough, a small (12 ha) highly modified urban estuary in San Diego, California, U.S.A. The hydrology of Famosa Slough has been modified by culverts that dampen tidal influence and seasonal runoff from two urban watersheds, each of which has been implicated as a nutrient source that generates nuisance algal blooms. In 1995 and 1996, the ranges of nutrients measured in the water column were extremely wide; upper values exceeded those in other estuaries identified as eutrophic. Average dissolved inorganic nitrogen ranged from 2 to 250 μM, while dissolved inorganic phosphorus ranged from 〈1 to 15 μM. Nutrient content of the water changed rapidly both spatially and temporally depending on the tides and rainfall. While tidal water dominated this system, especially in the dry season, our results indicate that Famosa Slough's small watershed, not the larger watershed of the San Diego River, was the major source of nutrients during rainfall. Sediment nutrients were also high (∼3 mg N g dry wt−1 and 0.600 mg P g dry wt−1). Short-term flux studies suggest that the large accumulations of opportunistic green macroalgae commonly found in this estuary, and possibly the sediments, may act as a large and rapid sink for nutrients during times of high nutrient supply. We suggest that small, shallow estuaries in urban settings may have more complex and rapid nutrient dynamics than those found in larger systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 8 (2000), S. 197-207 
    ISSN: 1572-9834
    Keywords: benthic invertebrates ; mitigation ; nitrogen ; organic matter ; pedogenesis ; phosphorus ; plant productivity ; restoration and rehabilitation ; salt marsh ; wetland creation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of wetland soil characteristics andbenthic invertebrate communities were evaluated increated Spartina alterniflorasalt marshes inNorth Carolina ranging in age from 1 to 25 years-old.A combination of measurements from different-agecreated marshes as well as periodic measurements overtime on two marshes were used to (1) document rates ofwetland pedogenesis, especially soil organic matter,and, (2) explore relationships between soil andbenthic invertebrate community development. Soilmacro-organic matter (MOM, the living and dead rootand rhizome mat), organic C and N increased and bulkdensity decreased during the 25 years following marshestablishment. The most dramatic changes in bulkdensity, MOM, C and N occurred within the upper 10 cmof the soil with lesser changes below this depth.Created marshes were sinks for organic C (90–140g·m-2·yr-1) and N (7–11g·m-2·yr-1) but not for P (0–1g·m-2·yr-1). The density of benthicinvertebrates (〉250 μm) and subsurface-depositfeeding oligochaetes also increased over time oncreated salt marshes. Invertebrate and oligochaetedensity were strongly related to MOM content(r2= 0.83–0.87) and soil organic C(r2= 0.52–0.82) and N (r2= 0.62–0.84). Thesefindings suggest that, in created salt marshes,development of the benthic invertebrate community istied to marsh soil formation, especially accumulationof organic matter as MOM and soil. Field studies thatmanipulate the quantity and quality of soil organicmatter are needed to elucidate the relationshipbetween salt marsh pedogenesis and benthicinvertebrate community development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1432-0789
    Keywords: Key words Phosphorus dynamics ; Olsen ; phosphorus ; Soil phosphorus fractions ; Manure ; Soybean-wheat rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1572-8838
    Keywords: alloys ; electroless ; microstructure ; morphology ; nickel ; phosphorus ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Electroless Ni–Zn–P alloy coatings were obtained on an iron substrate from a sulfate bath at various pH values. The effects of changes in bath pH on alloy composition, morphology, microstructure and corrosion resistance were studied. Scanning electron microscopy was performed to observe the morphological change of the deposits with bath pH. Coating crystallinity was investigated by grazing incidence asymmetric Bragg X-ray diffraction and transmission electron microscopy. A transition from an amorphous to polycrystalline structure was observed on increasing the bath alkalinity, and thus decreasing the phosphorus content of the alloys. A single crystalline phase corresponding to face-centred-cubic nickel was identified in the alloys obtained from a strong alkaline solution. An increase in zinc percentage up to 23% in the deposits does not change the f.c.c. nickel crystalline structure. Corrosion potential and polarization resistance measurements indicated that the corrosion resistance of electroless Ni–Zn–P alloys depends strongly on the microstructure and chemical composition. The deposits obtained at pH 9.0–9.5 and with 11.4–12.5% zinc and 11.8–11.2% phosphorous exhibited the best corrosion resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 29 (1999), S. 1171-1176 
    ISSN: 1572-8838
    Keywords: alloys ; cyclic voltammetry ; electrodeposition ; electroless deposition ; nickel ; phosphorus ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Electroless Ni–Zn–P alloy deposition from a sulphate bath, containing sodium hypophosphite as reducer, was investigated. To increase the plating rate, the deposition parameters were optimized. The effect of process parameters (T, pH and [Zn2+]) on the plating rate and deposit composition was examined and it was found that the presence of zinc in the bath has an inhibitory effect on the alloy deposition. As a consequence, the percentage of zinc in the electroless Ni–Zn–P alloys never reaches high values. Using cyclic voltammetry the electrodeposition mechanism of Ni–Zn–P alloys was investigated. It was observed that the zinc deposition inhibits the nickel discharge and, as a consequence, its catalytic activity on hypophosphite oxidation. It was also found that increase in temperature or pH leads to the deposition of nickel rich alloys.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-0417
    Keywords: diatoms ; Everglades ; phosphorus ; wetland ; calibration ; multivariate ; Florida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The relationship between diatom taxa preserved in surface soils and environmental variables at 31 sites in Water Conservation Area 2A (WCA-2A) of the Florida Everglades was explored using multivariate analyses. Surface soils were collected along a phosphorus (P) gradient and analyzed for diatoms, total P, % nitrogen (N), %carbon (C), calcium (Ca), and biogenic silica (BSi). Phosphorus varied from 315-1781 μg g-1, and was not found to be correlated with the other geochemical variables. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlated most closely with the distributions in diatom taxa. Canonical correspondence analysis with forward selection, constrained and partial CCA, and Monte Carlo permutation tests of significance show the most significant changes in diatom assemblages along the P gradient (p 〈 0.01), with additional species differences correlated with soil C, N, Ca, and BSi. Weighted-averaging (WA) regression and calibration models of diatom assemblages to P and BSi were developed. The diatom-based inference model for soil [P] had a high apparent r2 (0.86) with RMSEboot = 218 μg g-1. Indicator diatom species identified by assessing species WA optima and WA tolerance to [P], such as Nitzschia amphibia and N. palea for high [P] (~1300-1400 μ g-1) and Achnanthes minutissima var. scotica and Mastogloia smithii for low [P] (~400-600 μg g-1), may be useful as monitoring tools for eutrophication in WCA-2A as well as other areas of the Everglades. Diatom assemblages analyzed by cluster analysis were related to location within WCA-2A, and dominant taxa within clusters are discussed in relation to the geochemical variables measured as well as hydrology and pH. Diversity of diatom assemblages and a ‘Disturbance Index’ based on diatom data are discussed in relation to the historically P-limited Everglades ecosystem. Diatom assemblages should be very useful for reconstructions of [P] through time in the Florida Everglades, provided diatoms are well preserved in soil cores.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1573-0417
    Keywords: carbon isotopes ; diatoms ; lake management ; nitrogen isotopes ; phosphorus ; radium-226 ; sediments ; trophic state
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract We explored the use of carbon and nitrogen isotopes (δ13C and δ15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low δ13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher δ13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the δ15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both δ13C and δ15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that δ13C and δ15N reflect shifts in historic lake trophic state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1573-0867
    Keywords: leaching ; phosphorus ; poultry litter ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract To determine P loadings, added through poultry litter, sufficient to cause downward movement of P from the cultivated layer of a sandy soil, six rates of poultry litter were applied annually for four years to a site in central England. (total loading 0 – 1119 kg P ha-1). A single extra plot also received an extra 1000 kg ha-1 as triple superphosphate (TSP; total loading 2119 kg P ha-1) and three other treatments received 200 – 800 kg ha-1 P as TSP only. Annual soil sampling in 30-cm increments to 1.5-m depth provided information on P build-up in the topsoil and P movement to depth. There were strong linear trends between P balance (P applied – P removed in crops) and total P, Olsen bicarbonate extractable P and water-soluble P in the topsoil. Phosphorus from TSP and poultry litter fell on the same regression lines, suggesting that both would be equally effective as fertilizer sources. We calculated that 100 kg ha-1 surplus total P would increase the Olsen extractable P content by c. 6 mg kg-1 and the water-soluble P by c. 5 mg kg-1. Thus, relatively large amounts of P would need to be applied to raise soil P status. We found some evidence of P movement into the soil layers immediately below cultivation depth. However, neither soil sampling nor soil solution extracted through Teflon water samplers showed evidence of movement into the deep subsoil (1 m) despite large P loadings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 54 (1999), S. 259-266 
    ISSN: 1573-0867
    Keywords: bahiagrass ; manure ; pasture fertilization ; phosphorus ; phosphorus cycling ; Spodosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Bahiagrass (Paspalum notatum Flugge) pasture fertilization recommendations have traditionally been based upon clipping studies. Inclusion of P from manure, not originally considered when P recommendations were developed for pastures, may minimize the need for P fertilization without reducing bahiagrass production or P uptake. The objective of this research was to determine if manure contributes greatly to the P crop nutrient requirement. A 2-year field study utilized a factorial arrangement of 0 and 6.9 Mg air-dried manure ha-1 with 0, 17, 34, 51, and 68 kg inorganic P ha-1 from triple superphosphate to evaluate bahiagrass yield, root distribution, and P uptake response on a Myakka fine sand (sandy, siliceous, hyperthermic Aeric Alaquod). Because air-dried manure was used in the field study, a greenhouse study was employed to confirm that there were no differences in bahiagrass yield or P uptake from either air-dried or fresh cattle (Bos spp.) manure sources. There were no manure or manure by P interaction effects on yield or P uptake of bahiagrass indicating that manure source did not effect grass production in the greenhouse. In the field study, bahiagrass roots were distributed into the Bh horizon, and the Bh horizon had at least four times more Mehlich-1 extractable P than that of the Ap horizon. This horizon was most likely acting as a main source for P-uptake by the grass. This observation was further confirmed by no yield response to levels of inorganic P application in 1989. A linear-response-and-plateau (R2=0.196) relationship with a critical point of 15.4 kg P ha-1 was found in 1990. Bahiagrass yield and P uptake were not dependent on P fertilization, either from manure or inorganic P, due to the availability of P from the Bh horizon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 55 (1999), S. 7-14 
    ISSN: 1573-0867
    Keywords: fertiliser formulation ; nutrients ; phosphorus ; relative humidity ; soil moisture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus lost in runoff from agricultural land leads to the enrichment of surface waters and contributes to algal blooms. Fertilisers are one source of this P. To compare the water available P of different fertiliser formulations in the laboratory it is necessary to control environmental conditions, temperature, relative humidity and soil water content, prior to simulating rainfall. Two chambers were designed in which relative humidity and soil water content were controlled using salt solutions. An initial design comprising a sealed chamber with three layers of soil samples over a salt bath was found to be inferior to a single layer design. The changes in water content of soil samples were used to test the single layer chamber in a constant temperature environment (15 °C) using a saturated KCl solution (90% relative humidity). Based on the final soil water content of the samples, the spatial variation within the chamber was within tolerable limits. The single layer chamber was used for a simulation experiment comparing the water available P of two commercial fertilisers. Using a saturated resorcinol solution (95% relative humidity) soil samples were equilibrated at 15 °C for 21 days, fertiliser added, and the water available P measured up to 600 h after fertiliser application. The results indicate that the amount of water available P was related to the fertiliser compound and exponentially related to the time since fertiliser application. It was concluded that the single layer chamber is suitable for controlling relative humidity and soil water content in trials such as these where the water available P of fertilisers are being compared.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1573-0867
    Keywords: dairy systems ; feeds ; fertilizers ; phosphorus ; P surplus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inputs of phosphorus (P) above requirements for production on dairy farms lead to surplus P with increased risk of P transfer in land run-off to surface waters causing eutrophication. The impact of reducing surplus P inputs in purchased feeds and fertilizers on milk and forage production was investigated in a comparison of three dairy farm systems on chalkland soils in southern England over a 3-year period. In accordance with current commercial practice, no attempt was made to regulate P inputs in system 1, which accumulated an average annual surplus of 23 kg P ha-1. Progressive reductions in purchased feed and/or fertilizer inputs into systems 2 and 3 decreased surplus P to 17 and 3 kg ha-1, respectively, without apparently limiting either milk or herbage dry matter production. The estimated reduction in faecal P output from system 3 cows fed a low P diet compared to system 1 cows fed a high P diet was 26%. Milk P concentrations significantly (P 〈0.001) increased in systems 2 and 3 which included maize in the diet. Output of P in milk and meat products, as a proportion of the total dietary P inputs, increased from 28% in system 1 to 36% in system 3. Surplus P was greatest in continuous maize fields receiving both dairy manure and starter P fertilizer. Withholding P fertilizer in system 3 did not reduce P offtake in cut herbage on soils of moderate P fertility. Total annual losses of P in storm run-off and leaching were no greater than annual inputs of P from the atmosphere (0.5 kg ha-1). The results indicate there is scope to reduce surplus P on commercial dairy farms without sacrificing production targets at least in the short term. Purchased feeds are the largest of the P inputs on intensive dairy farms, yet these are rarely quantified on commercial holdings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1 × 104 kg nitrogen and 3.91 × 104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7 × 104 kg (676 kg/ha) nitrogen and 3.88 × 104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55 × 104 kg nitrogen and 0.40 × 104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m-2 yr-1 were made to Sphagnum magellanicum cores at two-week intervals in situ at four sites across Europe, i.e. Lakkasuo (Finland), Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N:P ratio 68) and greatest in Moidach More (N:P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4+ in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3- were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition by Sphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1573-515X
    Keywords: atmospheric deposition ; moss ; bog ; nitrogen ; phosphorus ; water table
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Nitrogen additions as NH4NO3 corresponding to 0 (N0), 1 (N1), 3 (N3) and 10 (N10) g N m−2 yr−1 were made toSphagnum magellanicurn cores at two-week intervalsin situ at four sites across Europe, i.e. Lakkasuo (Finland). Männikjärve (Estonia), Moidach More (UK) and Côte de Braveix (France). The same treatments were applied in a glasshouse experiment in Neuchâtel (Switzerland) in which the water table depth was artificially maintained at 7, 17 and 37 cm below the moss surface. In the field, N assimilation in excess of values in wet deposition occurred in the absence of growth, but varied widely between sites, being absent in Lakkasuo (moss N∶P ratio 68) and greatest in Moidach More (N∶P 21). In the glasshouse, growth was reduced by lowering the water table without any apparent effect on N assimilation. Total N content of the moss in field sites increased as the mean depth of water table increased indicating growth limitation leading to increased N concentrations which could reduce the capacity for N retention. Greater contents of NH4 + in the underlying peat at 30 cm depth, both in response to NH4NO3 addition and in the unamended cores confirmed poor retention of inorganic N by the moss at Lakkasuo. Nitrate contents in the profiles at Lakkasuo, Moidach More, and Côte de Braveix were extremely low, even in the N10 treatment, but in Männikjärve, where the mean depth of water table was greatest and retention absent, appreciable amounts of NO3 − were detected in all cores. It is concluded that peatland drainage would reduce the capture of inorganic N in atmospheric deposition bySphagnum mosses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 45 (1999), S. 197-221 
    ISSN: 1573-515X
    Keywords: intertidal marshes ; phosphorus ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22‰) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 21:1 to 31:1 mol:mol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7 ± 11.1 µmol P g dw-1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23% in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%) than in the salt marshes (33–85%). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 25-38 
    ISSN: 1573-515X
    Keywords: Hedley fractionation ; phosphorus ; Ruttenberg fractionation ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We used l6 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2 = 0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 47 (1999), S. 25-38 
    ISSN: 1573-515X
    Keywords: Hedley fractionation ; phosphorus ; Ruttenberg fractionation ; soil phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We used 16 soils to compare the Hedley method for soil phosphorus fractionation to an alternative method recently developed by Ruttenberg to differentiate among P fractions in marine sediments. For forms of labile and Fe-bound P in soils, these methods were poorly correlated, with the Hedley fractionation showing a greater ability to discriminate among variations in plant-available P. For Ca-bound P, total organic P, and total P, the methods were well correlated (r2=0.93, 0.48, 0.74, respectively), although the sum of P measured in the Ruttenberg extractions is only 45% of the total P recovered by the Hedley fractionation. The Hedley fractionation seems superior when an index of plant-available phosphorus and a separation of organic and inorganic forms is needed, whereas the Ruttenberg method allows a separation of CaCO3-bound P from apatite-P, which is potentially useful in calcareous soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/1) and lowest in bare plots in the shrubland (0.55 mg/1). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands — consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1573-515X
    Keywords: Chaohu Lake ; chemical fertilizer ; cycling ; denitrification ; multipond system ; nitrogen ; nutrient budget ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract During a two-year field study, an annual nutrient budget and cycles were developed for a small agricultural watershed. The study emphasized the integrated unit of the watershed in understanding the biogeochemistry. It was found that the total nutrient input was 39.1× 104 kg nitrogen and 3.91×104 kg phosphorus in the year 1995, of which the greatest input of nutrients to the watershed was chemical fertilizer application, reaching 34.7×104 kg (676 kg/ha) nitrogen and 3.88×104 kg (76 kg/ha) phosphorus. The total nutrient output from the watershed was 13.55×104 kg nitrogen and 0.40×104 kg phosphorus, while the largest output of nitrogen was denitrification, accounting for 44.1% of N output; the largest output of phosphorus was sale of crops, accounting for 99.4% of P output. The results show that the nutrient input is larger than output, demonstrating that there is nutrient surplus within the watershed, a surplus which may become a potential source of nonpoint pollution to area waters. The research showed that both denitrification and volatilization of nitrogen are key ways of nitrogen loss from the watershed. This suggests that careful management of fertilizer application will be important for the sustainable development of agriculture. The research demonstrated that a multipond system within the watershed had high retention rate for both water and nutrients, benefiting the water, nutrient and sediment recycling in the terrestrial ecosystem and helping to reduce agricultural nonpoint pollution at its source. Therefore, this unique watershed system should be recommended due to its great potential relevance for sustainable agricultural development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1573-5117
    Keywords: sedimentation ; carbon ; nitrogen ; phosphorus ; resuspension ; export production ; Baltic Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal changes of total particulate material (TPM), particulate organic carbon (POC), nitrogen (PON) and phosphorus (PTP) concentrations in the water column, in sediment traps and on the sediment surface were studied in the SW coast of Finland, Baltic Sea, from March to November 1992. Sampling was carried out along a coastal gradient from the fjord-like, semi-enclosed Pojo Bay to the outer archipelago and open sea area. In Pojo Bay, TPM sedimentation rates were high and relatively constant, and had low organic carbon contents throughout the seasonal cycle. Resuspension was estimated to contribute 〉 90% of total sedimentation of POC and PON. Clear seasonality in sedimentation with high settling rates of primary organic material in spring, low sedimentation rates during summer and a considerable increase of resuspension during autumn was found in the outer archipelago and open sea. The C:N:P ratios of suspended, settled and sediment surface material indicated greater sedimentary loss of N (as compared to P and C) and closer coupling between pelagial and benthos in the archipelago and open sea area than in Pojo Bay. The sedimentation of P was 20–50% more effective (as compared to N and C) in Pojo Bay than elsewhere. These results indicate that the shift of planktonic nutrient limitation (from P to N limitation) is enhanced due to the more efficient sedimentation of the main limiting element along the estuarine gradient. The primary sedimentation of organic carbon (approximating export flux from the pelagic system) during the whole study period was estimated to be 30–48% of the total net primary production. This indicates that despite the differences in the salinity, nutrient dynamics and planktonic community structure along the coastal gradient, a relatively constant fraction of the annual primary production is exported from the pelagic system by sedimentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 45 (1999), S. 197-221 
    ISSN: 1573-515X
    Keywords: intertidal marshes ; phosphorus ; sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We examined forms of solid phosphorus fractions in intertidal marsh sediments along a salinity (0–22%.) gradient in a river-dominated estuary and in a marine-dominated salt marsh with insignificant freshwater input. Freshwater marsh sediments had the highest ratio of organic N:P of between 28:1 and 47:1 mol:mol, compared to 21∶1 to 31∶1 mol∶mol in the saltmarshes, which is consistent with a trend toward P-limitation of primary production in freshwater and N-limitation in salt marshes. However, total P concentration, 24.7±11.1μmol P g dw−1 (±1 SD) averaged over the upper meter of sediment, was greatest in the freshwater marsh where bioavailablity of P is apparently limited. In the freshwater marsh the greatest fraction of total P (24–51%.) was associated with humic acids, while the importance of humic-P decreased with increasing salinity to 1–23%. in the salt marshes. Inorganic P contributed considerably less to total sediment P in the freshwater marsh (15–40%.) than in the salt marshes (33–85%.). In reduced sediments at all sites, phosphate bound to aluminum oxides and clays was an important inorganic P pool irrespective of salinity. Inorganic P associated with ferric iron [Fe(III)] phases was most abundant in surface sediments of freshwater and brackish marshes, while Ca-bound P dominated inorganic P pools in the salt marshes. Thus, our results showed that particle-bound P in marsh sediments exhibited changes in chemical association along the salinity gradient of an estuarine system, which is a likely consequence of changes in ionic strength and the availability of iron and calcium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1573-515X
    Keywords: acidification ; anthropogenic nitrogen ; cations ; nitrate leaching ; nitric oxide ; nitrous oxide ; nutrient limitation ; phosphorus ; productivity ; tropical ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soil-water and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 394 (1999), S. 93-102 
    ISSN: 1573-5117
    Keywords: acidification ; phosphorus ; oligotrophication ; cyanophyceans ; desmids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phytoplankton development in the acidified Lakes Östra Nedsjön and Ömmern, situated in SW Sweden, was followed during 1973–92. The former lake was first limed in 1971–73 which increased the pH value from ca 5.3 to 6, without affecting the plankton markedly. In Lake Ömmern, acidification lowered the pH value from ca 6 to 5.3 during 1976–1981, which caused oligotrophication and reduced number of species. In 1981/82 both lakes were limed, and during the following period treatments were regularly made, resulting in average pH levels of 7.2 and 6.9, respectively. The concentrations of humic compounds and phosphorus increased and the distribution of the major plankton groups was markedly changed. In both lakes the cyanophycean volume decreased, whereas diatoms became quantitatively important. Especially in relation to the acidic period 1979–81, there was increased species richness in both lakes. However, in contrast to the development in Lake Ömmern, the desmids were eliminated in Lake Ö.Nedsjön, where the pre-acidification phytoplankton was not restored.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 149-159 
    ISSN: 1573-5117
    Keywords: sediment ; diatoms ; phosphorus ; acidification ; eutrophication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Palaeolimnology has developed rapidly over the last two decades to deal with problems of eutrophication, and acidification. This paper reveiew the techniques for coring, dating and interpreting sediments. The applications of palaeolimnology in interpreting the past through ‘transfer functions’ calculated from biological indices are reviewed. Rates of change, the causes of change, and the restoration of lakes to some predefined target are reviewed and the direction of future developments considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1573-515X
    Keywords: Chihuahuan desert ; desert ; desertification ; grassland ; nitrogen ; nutrient budgets ; phosphorus ; runoff
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Rainfall simulation experiments were performed in areas of semiarid grassland (Bouteloua eriopoda) and arid shrubland (Larrea tridentata) in the Chihuahuan desert of New Mexico. The objective was to compare the runoff of nitrogen (N) and phosphorus (P) from these habitats to assess whether losses of soil nutrients are associated with the invasion of grasslands by shrubs. Runoff losses from grass- and shrub-dominated plots were similar, and much less than from bare plots located in the shrubland. Weighted average concentrations of total dissolved N compounds in runoff were greatest in the grassland (1.72 mg/l) and lowest in bare plots in the shrubland (0.55 mg/l). More than half of the N transported in runoff was carried in dissolved organic compounds. In grassland and shrub plots, the total N loss was highly correlated to the total volume of discharge. We estimate that the total annual loss of N in runoff is 0.25 kg/ha/yr in grasslands and 0.43 kg/ha/yr in shrublands – consistent with the depletion of soil N during desertification of these habitats. Losses of P from both habitats were very small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1573-515X
    Keywords: acidification ; anthropogenic nitrogen ; cations ; nitrate leaching ; nitric oxide ; nitrous oxide ; nutrient limitation ; phosphorus ; productivity ; tropical ecosystems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; pore water ; macrophyte ; floodplain ; Paraná River
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Inorganic nitrogen and soluble reactive phosphate (o-P) concentrations were measured in the water of a marsh and in its interstitial water at two sites, and in the river water of a floodplain marsh of the Lower Paraná River. These values were compared with the N and P concentration in sediments and macrophyte biomass in order to assess nutrient availability, fate and storage capacity. High variability was found in the interstitital water using a 1 cm resolution device. Nitrate was never detected in the pore water. Depth averaged NH4 + concentrations in the upper 30 cm layer often ranged from N = 1.5 to 1.8 mg l-1, but showed a pronounced minimum (0.5–0.7 mg l-1), close to (March 95), or relatively soon after (May 94) the end of the macrophyte growing season. Soluble phosphate showed a large variation between P = 0.1–1.1 mg l-1 without any discernible seasonal pattern. NH4 + depletion in the pore water concentration and low N/P ratios (3.7 by weight) within the macrophyte biomass at the end of the growing period suggest that available N limits plant growth. NH4 + and o-P concentrations were 35 and 7 times higher, respectively, in the pore water than in the overlying marsh, suggesting a permanent flux of nutrients from the sediments. o-P accumulate in the marsh leading to higher concentrations than in the incoming river. NH4 + did not accumulate in the marsh, and no significant differences were observed between the river and the marsh water, while the NO3 - contributed by the river water was depleted within the marsh, caused probably by coupled nitrification-denitrification at the sediment–water interface. Although an order of magnitude smaller, the pore water pool can supply enough nutrients to build up the macrophyte biomass pool, but only if a fast turnover is attained. The Paraná floodplain marsh retains a large amount of nutrients being stored mainly in the sediment compartment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 293-308 
    ISSN: 1573-5117
    Keywords: phosphorus ; sediments ; eutrophication ; Scotland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This paper considers the range of management techniques which are currently available for the remediation of eutrophic lakes, with respect to two lochs within southwest Scotland. Preliminary studies of sources of nutrients identified the need for the development of different management prescriptions for each. Such studies will ensure that the management is tailored to meet the specific needs of the site. The two lochs, Carlingwark Loch at Castle Douglas and Castle Loch at Lochmaben, both support algal blooms but have different nutrient sources. Carlingwark Loch appears to be receiving large quantities of nutrients from the surrounding catchment, whereas Castle Loch shows a net loss of nutrients over its surface inflows, indicating release from the sediments and/or input from overwintering wildfowl. In these cases, if preliminary studies had not been undertaken, the management programmes developed may not have used the most effective control measures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 46 (1999), S. 179-202 
    ISSN: 1573-515X
    Keywords: carbon dioxide ; grazing ; nitrogen fixation ; nitrogen limitation ; phosphorus ; shade
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The widespread occurrence ofN limitation to net primary production (NPP) and other ecosystem processes, despite the ubiquitous occurrence ofN-fixing symbioses, remains a significant puzzle in terrestrial ecology. We describe a simple simulation model for an ecosystem containing a generic nonfixer and a symbioticN fixer, based on: (1) a higher cost forN acquisition byN fixers than nonfixers; (2) growth of fixers and fixation ofN only when lowN availability limits the growth of nonfixers, and other resources are available; and (3) losses of fixedN from the system only when the quantity of availableN exceeds plant and microbial demands. Despite the disadvantages faced by theN fixer under these conditions,N fixation and loss adjustN availability close to the availability of other resources, and biomass and NPP in this simple model can be substantially but only transientlyN limited. We then modify the model by adding: (1) losses ofN in forms other than excess availableN (e.g., dissolved organicN, trace gases produced by nitrification); and (2) constraints to the growth and activity ofN fixers imposed by differential effects of shading,P limitation, and grazing. The combination of these processes is sufficient to describe an open system, with input from both precipitation andN fixation, that is nevertheless stronglyN-limited at equilibrium. This model is useful for exploring causes and consequences of constraints toN fixation, and hence ofN limitation, and we believe it will also be useful for evaluating howN fixation and limitation interact with elevatedCO 2 and other components of global enviromental change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 44 (1999), S. 93-118 
    ISSN: 1573-515X
    Keywords: Everglades National Park ; mangrove soils ; organic matter ; nitrogen ; phosphorus ; sedimentation ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The distribution and accumulation of organic matter, nitrogen (N) and phosphorus (P) in mangrove soils at four sites along the Shark River estuary of south Florida were investigated with empirical measures and a process-based model. The mangrove nutrient model (NUMAN) was developed from the SEMIDEC marsh organic matter model and parameterized with data from mangrove wetlands. The soil characteristics in the four mangrove sites varied greatly in both concentrations and profiles of soil carbon, N and P. Organic matter decreased from 82% in the upstream locations to 30% in the marine sites. Comparisons of simulated and observed results demonstrated that landscape gradients of soil characteristics along the estuary can be adequately modeled by accounting for plant production, litter decomposition and export, and allochthonous input of mineral sediments. Model sensitivity analyses suggest that root production has a more significant effect on soil composition than litter fall. Model simulations showed that the greatest change in organic matter, N, and P occurred from the soil surface to 5 cm depth. The rapid decomposition of labile organic matter was responsible for this decrease in organic matter. Simulated N mineralization rates decreased quickly with depth, which corresponded with the decrease of labile organic matter. The increase in organic matter content and decrease in soil bulk density from mangrove sites at downstream locations compared to those at upstream locations was controlled mainly by variation in allochthonous inputs of mineral matter at the mouth of the estuary, along with gradients in mangrove root production. Research on allochthonouns sediment input and in situ root production of mangroves is limited compared to their significance to understanding nutrient biogeochemistry of these wetlands. More accurate simulations of temporal patterns of nutrient characteristics with depth will depend on including the effects of disturbance such as hurricanes on sediment redistribution and biomass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1573-515X
    Keywords: estuaries ; lakes ; marine ; nitrogen ; phosphorus ; rivers ; streams ; temperate ; tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Published data and analyses from temperate and tropical aquatic systems are used to summarize knowledge about the potential impact of land-use alteration on the nitrogen biogeochemistry of tropical aquatic ecosystems, identify important patterns and recommend key needs for research. The tropical N-cycle is traced from pre-disturbance conditions through the phases of disturbance, highlighting major differences between tropical and temperate systems that might influence development strategies in the tropics. Analyses suggest that tropical freshwaters are more frequently N-limited than temperate zones, while tropical marine systems may show more frequent P limitation. These analyses indicate that disturbances to pristine tropical lands will lead to greatly increased primary production in freshwaters and large changes in tropical freshwater communities. Increased freshwater nutrient flux will also lead to an expansion of the high production, N- and light-limited zones around river deltas, a switch from P- to N-limitation in calcareous marine systems, with large changes in the community composition of fragile mangrove and reef systems. Key information gaps are highlighted, including data on mechanisms of nutrient transport and atmospheric deposition in the tropics, nutrient and material retention capacities of tropical impoundments, and N/P coupling and stoichiometric impacts of nutrient supplies on tropical aquatic communities. The current base of biogeochemical data suggests that alterations in the N-cycle will have greater impacts on tropical aquatic ecosystems than those already observed in the temperate zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 46 (1999), S. 179-202 
    ISSN: 1573-515X
    Keywords: carbon dioxide ; grazing ; nitrogen fixation ; nitrogen limitation ; phosphorus ; shade
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The widespread occurrence of N limitation to net primary production (NPP) and other ecosystem processes, despite the ubiquitous occurrence of N-fixing symbioses, remains a significant puzzle in terrestrial ecology. We describe a simple simulation model for an ecosystem containing a generic nonfixer and a symbiotic N fixer, based on: (1) a higher cost for N acquisition by N fixers than nonfixers; (2) growth of fixers and fixation of N only when low N availability limits the growth of nonfixers, and other resources are available; and (3) losses of fixed N from the system only when the quantity of available N exceeds plant and microbial demands. Despite the disadvantages faced by the N fixer under these conditions, N fixation and loss adjust N availability close to the availability of other resources, and biomass and NPP in this simple model can be substantially but only transiently N limited. We then modify the model by adding: (1) losses of N in forms other than excess available N (e.g., dissolved organic N, trace gases produced by nitrification); and (2) constraints to the growth and activity of N fixers imposed by differential effects of shading, P limitation, and grazing. The combination of these processes is sufficient to describe an open system, with input from both precipitation and N fixation, that is nevertheless strongly N-limited at equilibrium. This model is useful for exploring causes and consequences of constraints to N fixation, and hence of N limitation, and we believe it will also be useful for evaluating how N fixation and limitation interact with elevated CO2 and other components of global enviromental change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 131-144 
    ISSN: 1573-5117
    Keywords: phosphorus ; model ; excretion ; grazing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1573-5117
    Keywords: biomanipulation ; nutrient reduction ; zooplankton ; phytoplankton ; bottom-up ; top-down ; phosphorus ; submerged vegetation ; benthic macrofauna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 19-26 
    ISSN: 1573-5117
    Keywords: sediment ; phosphorus ; eutrophication ; biomanipulation ; fish ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Ringsjön did not respond with decreased algal production following a substantial reduction in external phosphorus loading. This is typical of many shallow lakes which for decades have received excessive amounts of nutrients. The inertia is due to large amounts of phosphorus (P) stored in sediments and biota, causing internal phosphorus loading. Much of this phosphorus is thought to be released from the organic-rich profundal sediments. In Lake Ringsjön, only one third of the total bottom area is covered by such sediments, the rest being dominated by sand and silt. In the profundal sediments bulk P content was not exceptionally high (approximately 2 mg P·g DW−1), while the pore water phosphate concentrations, especially in Sätofta Basin, were very high, indicating large potential for phosphorus release to the water. This is also indicated by the large proportion of Fe- and Al-bound P in the sediments of Sätofta Basin. Although there are no direct quantifications of phosphorus release from the sediments in Lake Ringsjön, measurements of phosphorus concentrations in the water mass as well as budget calculations for the three basins clearly show a high capacity for internal loading. Phosphorus concentrations generally increase during summer, when external additions are minimal. Until 1980, the annual external phosphorus addition to Lake Ringsjön greatly exceeded the output, showing that the lake was an efficient phosphorus trap. Since then, input and output have been balanced, but in recent years signs that the lake is once again retaining phosphorus on an annual basis are evident. There are marked differences between the three basins, with Western Basin generally retaining phosphorus, while the upstream Eastern Basin and Sätofta Basin during the 1980s often exported phosphorus. It is not possible to evaluate the effects of the fish biomanipulation on the internal loading of phosphorus from the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 43-50 
    ISSN: 1572-9729
    Keywords: biodegradation ; nitrogen ; nutrients ; phenanthrene ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 45 (1999), S. 215-244 
    ISSN: 1572-9680
    Keywords: biodiversity ; disturbance ; nitrogen ; phosphorus ; resilience ; resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient and hydrologic cycles in harvested native forests in southern Australia are largely balanced. For example, we have little or no evidence of any decline in nutrient capital or availability in harvested forests. Short-term and small-scale reductions in evapotranspiration due to loss of leaf area after harvesting are adequately balanced at the landscape scale by large areas of regenerating or older-age forest. In contrast, agricultural systems on similar soils are a) dependent on large inputs of fertilisers to maintain growth and b) frequently subject to increasing salinity and waterlogging or other forms of degradation. The large-scale replacement of long-lived communities of perennial and often deep- rooting native species with annual crops or other communities of shallow-rooting species might be better managed within the framework of knowledge developed from studies of native plant communities. However, application of such a mimic concept to systems of low natural productivity is limited when agricultural systems require continued high productivity. Nonetheless, the mimic concept may help in developing sustainable management of agriculture on marginal lands, and contribute to the nutritional resilience of agroecosystems. Relevant characteristics for mimic agroecosystems in south western Australia include: high species diversity, diversity of rooting attributes, utilisation of different forms of nutrients (especially of N and P) in space and time, and the promotion of practices which increase soil organic matter content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1573-5036
    Keywords: hydraulic conductivity ; leaf growth ; phosphorus ; Rhizoctonia ; water status ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Wheat seedlings infected with a pure inoculum of the root-rotting fungus Rhizoctonia solani were grown in pots designed to fit in pressure chambers, to allow the effects of the Rhizoctonia infection on leaf growth to be studied while maintaining the leaves at elevated water status. Wheat was grown to the third leaf stage in soil inoculated with three different levels of Rhizoctonia, and the pots were then pressurised for seven days to maintain the leaf xylem at the point of bleeding (ie. the leaves were at full turgor). The reduction in leaf expansion caused by Rhizoctonia was not overcome by pressurisation, indicating that a reduced supply of water to the leaves was not responsible for reduced leaf growth. The addition of phosphorus to pots marginally deficient in P did not increase the leaf growth of Rhizoctonia-infected plants, despite increased P uptake to the leaves. These results indicate that a reduced supply of water to the leaves and a supply of phosphorus that was bordering on deficient was not the cause of the growth reduction in seedlings with Rhizoctonia infection. The nature of this reduced growth remains uncertain but may involve growth regulators produced by the fungus, or by the plant as a result of the infection process. The mechanism of these growth reductions is of interest as it may provide a key to the development of plant resistance mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 283-295 
    ISSN: 1573-5036
    Keywords: leaf emergence ; phosphorus ; photosynthesis ; tillering ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1573-5036
    Keywords: ectomycorrhizae ; Eucalyptus regnans ; forest burns ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 212 (1999), S. 173-181 
    ISSN: 1573-5036
    Keywords: nitrogen ; phosphatase activity ; phosphorus ; protease activity ; soil microbial biomass ; substrate-induced respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Estimating in situ N and P status of the soil microbiota is complicated because microbiological features reflect potentials rather than field conditions. Complementary microbiological assays were, therefore, combined to evaluate the N and P requirement of the microbiota in seven agricultural, grassland and forest topsoils of the Bornhöved Lake district as follows: (i) the sensitivity of the substrate-induced respiration (SIR) to supplemental addition of N and P was monitored during microbial growth and (ii) soil protease and phosphatase activities were analysed and related to soil mass and microbial biomass content. Nitrogen addition increased the maximal SIR rate in all except one soil indicating that the growth of organisms is restricted by this element when easily degradable C source is present. Supplemental N (and in some cases also P) retarded the respiratory response within the first 24 h which suggests microbial sensitivity and/or greater anabolic efficiency. With additional N the maximal SIR rate was most strongly enhanced in topsoils of the beech forest and the dystric alder forest. Thus, the microbial growth in these soils that were below litter horizons seems to be mostly restricted by N. Supplemental P positively affected respiratory response of soils under monoculture, wet grassland and dystric alder forest. In the dystric alder forest soil, high rates of alkaline and unbuffered phosphatase activity were observed when activity was related to either soil mass or microbial biomass content. The data of proteolytic and phospholytic enzymes are discussed with reference to nutrient deficiency and microbial strategy for N and P adsorption.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 211 (1999), S. 103-110 
    ISSN: 1573-5036
    Keywords: bioavailability ; isotopic evaluation ; phosphate ion exchange ; phosphorus ; rhizosphere ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The uptake of phosphorus (P) by roots results in a depletion of phosphate ions (PO4) in the rhizosphere. The corresponding decrease in PO4 concentration in the soil solution (CP) gives rise to a replenishment of P from the solid phase which is time- and CP-dependent. This PO4 exchange which reflects the buffer power of the soil for PO4 also varies with the composition and the physico-chemical conditions of the soil. As root activity can modify these physico-chemical conditions in the rhizosphere, the question arises whether these modifications affect the ability of PO4 bound to the soil solid phase to exchange with PO4 in soil solution. The aim of the present work was to measure and compare the parameters which describe the amount of PO4 bound to soil solid phase that is capable to replenish solution P for both rhizosphere and bulk soils. The soil sample was a P-enriched, calcareous topsoil collected from a long-term fertiliser trial. Rhizosphere soil samples were obtained by growing dense mats of roots at the surface of 3 mm thick soil layer for one week. Three plant species were compared: oilseed rape (Brassica napus L., cv Goeland) pea (Pisum sativum L., cv. Solara) and maize ( Zea mays L., cv. Volga). The time- and CP-dependence of the PO4 exchange from soil to solution were described using an isotopic dilution method. The measured CP values were 0.165 mg P L−1 for bulk soil and 0.111, 0.101 and 0.081 mg P L−1 for rhizosphere soils of maize, pea and rape, respectively. The kinetics of the PO4 exchange between liquid and solid phases of soil were significantly different between rhizosphere and bulk soils. However, when changes in CP were accounted for, the parameters describing the PO4 exchange with time and CP between soil solution and soil solid phase were found to be very close for bulk and rhizosphere soils. For this calcareous and P-enriched soil, plant species differed in their ability to deplete PO4 in solution. The resulting changes in the ability of the soil solid phase to replenish solution PO4 were almost fully explained by the depletion of soil solution P.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1573-5036
    Keywords: fire ; nitrogen ; phosphorus ; soil nutrient heterogeneity ; tree effects ; tropical dry forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 109 (1999), S. 303-312 
    ISSN: 1573-2932
    Keywords: adsorption ; citrus ; fractionation ; leaching ; phosphorus ; Spodosol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The retention and transport of P by three horizon samples (A, E, and Bh) of a Spososol (Oldsmar sand: sandy, silicious, hyperthermic Alfic Arenic Haplaquods) were evaluated using a batch-equilibration and leaching column techniques with application of P in rates equivalent to 25 and 100 kg P ha-1. Adsorption coefficient (K) values followed the order: Bh 〉 A 〉 E. Adsorption of P by the E horizon soil sample was negligible (M = 4 μg g-1 soil) as compared to that of either A or Bh horizon samples, e.g., 303 and 479 μg g-1, respectively. The leaching column study with application of P equivalent to 100 kg ha-1 showed 39, 68, and 98% of applied P were leached from the Bh, A, and E horizons, respectively, with eight pore volumes of leachate. Elution curves showed the peak P elution at the second pore volume (equivalent to 3.7 cm of water addition). After leaching with eight pore volumes, the residual P in the soil was present primarily in non-occluded Fe and Al-P forms in the A and Bh horizons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 111 (1999), S. 1-18 
    ISSN: 1573-2932
    Keywords: biodegradation ; hydrocarbon ; nitrogen ; nutrient ratios ; phosphorus ; soils
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The biodegradation of hexadecane (C as hexadecane-C) was assessed under 34 different external nitrogen (N supplied as NO3-N) and phosphorus (P supplied as PO4-3-P) supply conditions in order to determine how different nutrient formulations affected nutrient limitation conditions during degradation. CO2 production yields indicated that shifts in N and P supply levels resulted in variable biodegradation responses due to shifts in the limiting-nutrient (e.g., from N to P). For example, the estimated maximum fractional CO2 yield ratio was 0.24 (mg CO2-C produced mg-1 hexadecane-C) for P-limited nutrient formulations (P:hexadecane-C〈0.01), whereas the yield ratio was more than two times greater when the system was not P- limited. Similar effects were observed for N-limited (N:hexadecane- C〈0.15) versus non-N-limited formulations. The relative bioavailability of natural soil-N and soil-P also was examined. In the soil studied, background soil-N was 96.3% organic-N and was found to be largely nonbioavailable. In contrast, high CO2 yields were observed even when no external P was supplied. An iterative mathematical procedure indicated that the Olsen soil-P subfraction (inorganic soil-P plus soluble organic soil- P) best approximated bioavailable soil-P for this soil. Our results indicate that both N and P additions affect biodegradation yields, but that stoichiometrically inappropriate nutrient mixes produce suboptimal CO2 yields. We also found that the bioavailable fractions of soil-N and soil-P should be incorporated into estimating the most suitable nutrient formulations for a given contamination scenario.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Environmental monitoring and assessment 58 (1999), S. 151-172 
    ISSN: 1573-2959
    Keywords: GIS ; ground water vulnerability ; leaching index ; nitrate ; pesticide ; phosphorus ; potassium ; statistical analysis ; uncertainty
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Statistical methods and a Geographic Information System (GIS) were used to investigate potential indicators of ground water vulnerability to agricultural chemical contamination in a representative area of the Mississippi River alluvial aquifer. A total of 47 wells were sampled for analysis of nitrate, phosphorus, potassium, and 13 pesticides commonly-used in the area. Ten soil and hydrogeologic variables and five ground water vulnerability indices were examined to explain the variations of chemical concentrations. The results showed that no individual soil or hydrogeologic variables or their linear combinations could explain more than 25% of the variation of the chemical concentrations. A quadratic response surface model with the values of confining unit thickness, slope, soil permeability, depth to ground water, and recharge rate accounted for 62% of the variation of nitrate, 43% of P, and 83% of K, suggesting that the interactions among soil and hydrogeologic variables were significant. Observed trends of decreasing nitrate and P concentrations with increasing well depth and/or depth to ground water seemed to correlate with carbonate equilibrium in the aquifer and more reduced environment with depth. In view of uncertainties involved, it was recognized that the limitations associated with input data resolution used in GIS and the formulation of leaching indices limited their use for predicting ground water vulnerability. Misuse of pesticides could be another factor that would complicate the relationships between pesticide concentrations and the vulnerability indices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1573-5125
    Keywords: denitrification ; nature restoration ; nitrogen ; phosphorus ; riparian areas ; sedimentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Denmark, as in many other European countries, the diffuse losses of nitrogen (N) and phosphorus (P) from the rural landscape are the major causes of surface water eutrophication and groundwater pollution. The export of total N and total P from the Gjern river basin amounted to 18.2 kg ha−1 and 0.63 kg P ha−1 during June 1994 to May 1995. Diffuse losses of N and P from agricultural areas were the main nutrient source in the river basin contributing 76% and 51%, respectively, of the total export. Investigations of nutrient cycling in the Gjern river basin have revealed the importance of permanent nutrient sinks (denitrification and overbank sedimentation) and temporary nutrient storage in watercourses. Temporary retention of N and P in the watercourses thus amounted to 7.2–16.1 g N m−2 yr−1 and 3.7–8.3 g P m−2 yr−1 during low-flow periods. Deposition of P on temporarily flooded riparian areas amounted from 0.16 to 6.50 g P m−2 during single irrigation and overbank flood events, whereas denitrification of nitrate amounted on average to 7.96 kg N yr−1 per running metre watercourse in a minerotrophic fen and 1.53 kg N yr−1 per linear metre watercourse in a wet meadow. On average, annual retention of N and P in 18 Danish shallow lakes amounted to 32.5 g N m−2 yr−1 and 0.30 g P m−2 yr−1, respectively, during the period 1989–1995. The results indicate that permanent nutrient sinks and temporary nutrient storage in river systems represent an important component of river basin nutrient budgets. Model estimates of the natural retention potential of the Gjern river basin revealed an increase from 38.8 to 81.4 tonnes yr−1 and that P-retention increased from −0.80 to 0.90 tonnes yr−1 following restoration of the water courses, riparian areas and a shallow lake. Catchment management measures such as nature restoration at the river basin scale can thus help to combat diffuse nutrient pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic ecology 33 (1999), S. 55-64 
    ISSN: 1573-5125
    Keywords: estuaries ; nitrogen ; oxygen depletion ; phosphorus ; regression model ; vertical mixing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In a detailed analysis of oxygen saturation in a shallow Danish estuary it was possible to separate the effect of meteorological forcings (i.e. wind and solar radiation) and nutrient loads on oxygen depletion in bottom water. Regression analysis showed that oxygen saturation tied to nitrogen load rather than to phosphorus load. During summer periods of stratification the oxygen saturation could be attributed to the time elapsed after the onset of stratification and the accumulated nitrogen loading 10 month prior to measurement. Using a 10-year meteorological database and an empirical model it was calculated that a 25% reduction in nitrogen loading would reduce the number of days with severe oxygen depletion (i.e. 〈15% of saturation) by more than 50%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    Reaction kinetics and catalysis letters 66 (1999), S. 257-263 
    ISSN: 1588-2837
    Keywords: Alkylation ; toluene ; ZSM-5 ; phosphorus ; chromium ; nickel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract H-ZSM-5 zeolite was modified with phosphorus. The obtained P/ZSM-5 catalyst was subjected to further treatments with chromium and nickel. The distribution and strength of different acid sites of zeolites were investigated by means of temperature-programmed desorption of ammonia. The active and strong acid sites were confirmed by measuring the rate constants for cracking ofn-hexane, as a probe molecule. Reduction of pore opening size of the modified ZSM-5 was monitored by a standard test reaction of probe molecules ofm-xylene and ethylbenzene. Selective alkylation of toluene with methanol top-xylene was studied over ZSM-5 and modified zeolite catalysts. The P/ZSM-5 zeolite was the most selective catalyst top-xylene but the toluene conversion decreased drastically. The addition of chromium to P/ZSM-5 zeolite increased the toluene conversion and the yield ofp-xylene was very close to P/ZSM-5 catalyst. The addition of nickel did not exhibit a significant improvement of the catalyst performance. The deactivation of catalysts, due to coke deposition during run, was also considered. P/ZSM-5 zeolite showed the lowest stability with time on stream. The addition of chromium and nickel to P/ZSM-5 zeolite increased the stability of the catalyst.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Wetlands ecology and management 7 (1999), S. 165-175 
    ISSN: 1572-9834
    Keywords: flow ; loading ; models ; phosphorus ; removal limits ; wetlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phosphorus concentrations exported from wetlands are explored via data and a first order model. The graph of outlet concentration versus areal phosphorus loading is used to display these data and the model. For a given wetland, data and models show that P concentrations show an ‘S’ curve response to increasing P loadings. The lower plateau is the background concentration and the upper plateau is the inlet concentration. The position of the ascending limb between the two plateaus is positioned differently for different wetlands. Phosphorus (P) removal in wetlands is often typified by a stable decreasing gradient of P concentrations from inlet to outlet, and an accompanying stable decreasing gradient in P assimilation. Limits to removal are inherent in the physical, chemical and biological processes. A lower outlet concentration limit exists because of the P cycle in the un-impacted wetland. The loading at which the outlet concentration departs from background, the lower knee in the loading curve, varies from wetland to wetland. An upper outlet concentration limit is imposed by the source concentration for extremely high inflows. The first order mass balance equation interpolates between these limits. The model gives further insights about performance within an overall envelope. The water carrying capacity of the wetland precludes flows in excess of the hydraulic conveyance capacity, thus limiting the possible P loadings to the system. Conversely, extremely low hydraulic loadings cause the wetland to be dominated by atmospheric additions and losses. The central tendency of inter-system data in the North American Database is shown to be inadequate to draw generalized conclusions about ecosystem processes in an individual wetland. The proposed ‘one gram rule’ of Richardson, et al. (1997) is shown to be an over-simplification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Reaction kinetics and catalysis letters 66 (1999), S. 177-181 
    ISSN: 1588-2837
    Keywords: Silica ; surface ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The interaction of gaseous PCl3 and POCl3 with dried and wetted pyrogenic silica has been studied by IR spectroscopy. The acceleration of the chemisorption accompanied by the formation of Si−O−P bonds in the presence of water vapor has been observed only with phosphorus trichloride.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 393 (1999), S. 35-43 
    ISSN: 1573-5117
    Keywords: eutrophication ; modelling ; biogeochemical cycles ; nitrogen ; phosphorus ; load reduction ; Baltic Sea ; Gulf of Finland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The entire Baltic Sea, as well as many of its different sub-regions, are subject to eutrophication due to high nutrient inputs. To plan expensive water management measures one needs a tool to quantify effects of different water management policy decisions. The tools implemented here are simulation models based on similar descriptions of biochemical interactions in the water and sediments but coupled to different hydrodynamical models. For the Baltic Proper a 1D physical model with high vertical resolution but horizontally integrated was used. Simulations for 20 years made with 50% load reduction each 5 year show that for this domain and at these scales the recovery would take decades. The most effective is reduction of phosphorus, while reduction of only nitrogen leads to a dramatic increase in cyanobacteria blooms. For the Gulf of Finland a high-resolution 3D hydrodynamic model was coupled to a more crude 3D-box biogeochemical model describing concrete conditions during August and November 1991. In the Eastern Gulf of Finland the effects of a 50% load reduction from the St. Petersburg region are pronounced even after two weeks. Here, nitrogen reduction would be more beneficial than that of phosphorus, both locally and at a larger scale. The conclusion from these simulations is that the difference in effects of nitrogen versus phosphorus reduction is dependent on scales and locations of management.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 395-396 (1999), S. 41-60 
    ISSN: 1573-5117
    Keywords: nitrogen ; phosphorus ; non-point source ; export ; catchment modelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sustainable lake management for nutrient-enriched lakes must be underpinned by an understanding of both the functioning of the lake, and the origins of changes in nutrient loading from the catchment. To date, limnologists have tended to focus on studying the impact of nutrient enrichment on the lake biota, and the dynamics of nutrient cycling between the water column, biota and sediments within the lake. Relatively less attention has been paid to understanding the specific origins of nutrient loading from the catchment and nutrient transport pathways linking the lake to its catchment. As such, when devising catchment management strategies to reduce nutrient loading on enriched lakes, assumptions have been made regarding the relative significance of non-point versus point sources in the catchment. These are not always supported by research conducted on catchment nutrient dynamics in other fields of freshwater science. Studies on nutrient enrichment in lakes need to take account of the history of catchment use and management specific to each lake in order to devise targeted and sustainable management strategies to reduce nutrient loading to enriched lakes. Here a modelling approach which allows quantification of the relative contribution of nutrients from each specific point and non-point catchment source over the course of catchment history is presented. The approach has been applied to three contrasting catchments in the U.K. for the period 1931 to present. These are the catchment of Slapton Ley in south Devon, the River Esk in Cumbria and the Deben Estuary in Suffolk. Each catchment showed marked variations in the nature and intensity of land use and management. The model output quantifies the relative importance of point source versus non-point livestock and land use sources in each of the catchments, and demonstrates the necessity for an understanding of site-specific catchment history in devising suitable management strategies for the reduction of nutrient loading on enriched lakes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1573-5117
    Keywords: lake ; phosphorus ; loading ; restoration ; Loch Leven ; Scotland
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eight tonnes of phosphorus in all forms (total phosphorus, TP) entered Loch Leven from its catchment in 1995, compared to 20 t in 1985. Diffuse run-off from the land, and waste from over-wintering geese contributed 59% of the total loading in 1995 cf. 42% in 1985. Point-sources of sewage, and waste-water from fish-rearing ponds, produced the rest. Inputs of phosphorus in soluble reactive form (SRP) totalled 5 t, i.e. 63% of the TP loading in 1995, as compared with 1985 values of 11.8 t and 59%. Point-sources of SRP contributed 54% of the total SRP input in 1995 cf. 69% in 1985. Loadings from three sewage treatment works (STW) totalled 3.1 t TP in 1995 as compared with 5.3 t in 1985; this included 2.6 t SRP (cf. 3.6 t). Daily per capita outputs of the upgraded Kinross North and Milnathort STWs were 0.68 g and 0.81 g TP, respectively, compared with pre-upgrade values of 1.77 g and 2.03 g. Nett reductions in TP and SRP loadings between 1985 and 1995, are 55% and 59% respectively. These values are attributable as much to the lower rainfall of 890 mm over the period of study in 1995, compared to 1250 mm in 1985, as to ‘managed’ elimination of P usage at a major industrial source, and upgrades of STWs. In spite of these cutbacks, a combination of the lower rainfall and an extraordinarily hot summer in 1995 negated the expected reduction in lake phosphorus and chlorophyll levels. The lowered specific areal loading of ca. 0.7 g P m−2 estimated for 1995 still considerably exceeds the ideal maximum for the loch. These statistics nevertheless ignore the significance of a reduction of ca. 7 t in P entering the system in bio-available form, a recently completed upgrade of a major STW and channelling of effluent from a small works out of the catchment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 27-40 
    ISSN: 1573-5117
    Keywords: phytoplankton ; fish reduction ; phosphorus ; biomanipulation ; blue-green algae ; cyanobacteria ; Microcystis ; Anabaena ; Aphanizomenon ; Aulacoseira ; cryptomonads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The algal record from Lake Ringsjön covers a period of more than 100 years. Towards the end of the 19th century, the lake had a well-functioning commercial fishery, when a brownish mess began to appear in the water, clogging-up the fishing nets and making fishing difficult. This was the first record of algal problems in the lake. Following complaints from the fishermen, the algal flora was investigated and the mess was stated to be a mass development of diatoms belonging to the genus Melosira ( Aulacoseira). Diatom maxima then appeared regularly in spring and autumn, whereas blue-green algae only occurred occasionally and in low abundances. Between 1900 and 1950, nutrient concentrations slowly increased in the lake. Algal blooms of Anabaena lemmermannii and Gloeotrichia echinulata began to appear in summer. Between 1960 and 1980, the lake developed into a hypertrophic status with extensive blooms of blue-green algae from May to October, including high biomasses of mainly Microcystis spp. This severe pollution started with increased usage of the lake, increased tourism and recreation, intensified farming with the introduction of artificial fertilization, and also the diversion of sewage water from a sewage treatment plant. In 1968, cattle death was reported and in 1981, algal toxicity was verified by mouse bioassay. After a period of extremely poor water quality, the lake began to show signs of improvement as a result of the nutrient and fish reduction programmes. The very heavy blooms of blue-green algae decreased and the duration of blooms became shorter. The Microcystis species were to a certain extent replaced by Anabaena and Aphanizomenon species, and biodiversity of algae increased. With respect to the algal community, the lake has improved considerably, but is still eutrophic and suffers summer blooms of toxic blue-green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 131-144 
    ISSN: 1573-5117
    Keywords: phosphorus ; model ; excretion ; grazing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1573-5117
    Keywords: biomanipulation ; nutrient reduction ; zooplankton ; phytoplankton ; bottom-up ; top-down ; phosphorus ; submerged vegetation ; benthic macrofauna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The reduction in external phosphorus load to Lake Ringsjön during the 1980s, did not result in improved water transparency during the following ten-year period. Furthermore, a fish-kill in the Eastern Basin of the lake, in addition to a cyprinid reduction programme (biomanipulation; 1988–1992), in contrast to theory, did not lead to any increase in zooplankton biomass or size. This absence of response in the pelagic food chain may have been attributed to the increase in abundance of YOY (0+) fish, following the fish reduction programme. Despite the lack of effect on zooplankton, there was a decrease in phytoplankton biomass, a change in species composition and an increase in water transparency following biomanipulation. In 1989, one year after the fish-kill in Eastern Basin, the Secchi depth (summer mean) increased from 60 cm to 110 cm. In the following years, water transparency increased further, despite an increase in phosphorus loading. An unexpected effect of the biomanipulation was an increase in benthic invertebrate and staging waterfowl abundances, which occurred 2–4 years after fish reduction. Hence, the response in the benthic community following biomanipulation was considerably stronger than in the pelagic community. A likely explanation is that reduction in abundance of the benthic feeding fish species bream (Abramis brama), strongly affected the benthic invertebrate fauna. In this paper, we present what we believe happened in Lake Ringsjön, and which processes are likely to have been important at various stages of the restoration process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 19-26 
    ISSN: 1573-5117
    Keywords: sediment ; phosphorus ; eutrophication ; biomanipulation ; fish ; Sweden
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lake Ringsjön did not respond with decreased algal production following a substantial reduction in external phosphorus loading. This is typical of many shallow lakes which for decades have received excessive amounts of nutrients. The inertia is due to large amounts of phosphorus (P) stored in sediments and biota, causing internal phosphorus loading. Much of this phosphorus is thought to be released from the organic-rich profundal sediments. In Lake Ringsjön, only one third of the total bottom area is covered by such sediments, the rest being dominated by sand and silt. In the profundal sediments bulk P content was not exceptionally high (approximately 2 mg P·g DW−1), while the pore water phosphate concentrations, especially in Sätofta Basin, were very high, indicating large potential for phosphorus release to the water. This is also indicated by the large proportion of Fe- and Al-bound P in the sediments of Sätofta Basin. Although there are no direct quantifications of phosphorus release from the sediments in Lake Ringsjön, measurements of phosphorus concentrations in the water mass as well as budget calculations for the three basins clearly show a high capacity for internal loading. Phosphorus concentrations generally increase during summer, when external additions are minimal. Until 1980, the annual external phosphorus addition to Lake Ringsjön greatly exceeded the output, showing that the lake was an efficient phosphorus trap. Since then, input and output have been balanced, but in recent years signs that the lake is once again retaining phosphorus on an annual basis are evident. There are marked differences between the three basins, with Western Basin generally retaining phosphorus, while the upstream Eastern Basin and Sätofta Basin during the 1980s often exported phosphorus. It is not possible to evaluate the effects of the fish biomanipulation on the internal loading of phosphorus from the sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 404 (1999), S. 27-40 
    ISSN: 1573-5117
    Keywords: phytoplankton ; fish reduction ; phosphorus ; biomanipulation ; blue-green algae ; cyanobacteria ; Microcystis ; Anabaena ; Aphanizomenon ; Aulacoseira ; cryptomonads
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The algal record from Lake Ringsjön covers a period of more than 100 years. Towards the end of the 19th century, the lake had a well-functioning commercial fishery, when a brownish mess began to appear in the water, clogging-up the fishing nets and making fishing difficult. This was the first record of algal problems in the lake. Following complaints from the fishermen, the algal flora was investigated and the mess was stated to be a mass development of diatoms belonging to the genus Melosira ( Aulacoseira). Diatom maxima then appeared regularly in spring and autumn, whereas blue-green algae only occurred occasionally and in low abundances. Between 1900 and 1950, nutrient concentrations slowly increased in the lake. Algal blooms of Anabaena lemmermannii and Gloeotrichia echinulata began to appear in summer. Between 1960 and 1980, the lake developed into a hypertrophic status with extensive blooms of blue-green algae from May to October, including high biomasses of mainly Microcystis spp. This severe pollution started with increased usage of the lake, increased tourism and recreation, intensified farming with the introduction of artificial fertilization, and also the diversion of sewage water from a sewage treatment plant. In 1968, cattle death was reported and in 1981, algal toxicity was verified by mouse bioassay. After a period of extremely poor water quality, the lake began to show signs of improvement as a result of the nutrient and fish reduction programmes. The very heavy blooms of blue-green algae decreased and the duration of blooms became shorter. The Microcystis species were to a certain extent replaced by Anabaena and Aphanizomenon species, and biodiversity of algae increased. With respect to the algal community, the lake has improved considerably, but is still eutrophic and suffers summer blooms of toxic blue-green algae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1573-5117
    Keywords: shallow lake ; sediment ; dy ; phosphorus ; calcium ; metals
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A chemical characterization of the surficial sediment (0–20 cm) of type `dy' (org-Cpart/TNpart〉10) of the anthropogenically polluted shallow Lake Petersdorf is presented. Eighty samples were analyzed for a set of parameters, i.e. dry weight, loss on ignition (LOI), total inorganic carbon (TIC), N, S, P, Ca, Si, As, Fe, Al, Mn, Zn, Cd, and Pb. LOI, TIC, N, S, Ca, P, and Zn tend to accumulate at a water depth 〉2 m (70.6% of the lake surface) in contrast to Mn and Fe which are more widely distributed, and Cd and Pb which are accumulated in the lake part close to a road. The enrichment factors of certain elements, e.g. Al (23.9%), Si (31.5%), P (12.2%), and Ca (68.7%) from 20 cm sediment depth up to the surface, are attributed to incisive changes in the immediate catchment. Erosion, fertilization, amelioration, and separation of the peatland north of the lake by a dam within the last 60 yrs resulted in the change of Lake Petersdorf from a dystrophic to a eutrophic stage. This enhanced the mineralization of its meso-humic (LOI/TNpart=20.6) sediment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1573-5117
    Keywords: shallow lake ; nutrient loading ; retention ; nitrogen ; phosphorus ; release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The shallow (mean depth 4.9 m), polymictic and eutrophic lake Müggelsee was highly loaded with phosphorus (6 gP m-2a-1) and nitrogen (170 gN m-2a-1) by the river Spree up to the end of the 1980s. Annual load declined by 40–50% during the last years (1991–97). Phosphorus retention fluctuated strongly during the seasonal cycle between −200 and +100 kgP d-1and from year to year between −44% and + 26% of the P import. At the end of the eighties, the P retention capacity of the sediment was exceeded and Müggelsee became a source of phosphorus. The lake regained its ability to retain P in the sediments after external load reduction in the 1990s. However, the internal load of P reached the level of the external one. The release of P during summer was strongly related to the import of nitrate. On long-term average (1979–1997), less than 1% of the P input was retained in Müggelsee. About 24% of the nitrogen load were removed in the lake on annual mean. This rate decreased during the last years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 389-394 
    ISSN: 1573-5117
    Keywords: mictic type ; water transparency ; nitrogen ; phosphorus ; chlorophyll:nutrient ratio ; chlorophyll:seston ratio
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Data for comparison are from 17 dimictic and four polymictic lakes interconnected to form a system of the Great Masurian Lakes. Both summer epilimnetic total phosphorus and chlorophyll were higher in dimictic than in polymictic lakes. Chlorophyll was probably not limited either by phosphorus or by nitrogen in shallow lakes. Utilization of phosphorus in terms of chlorophyll:particulate phosphorus and chlorophyll:particulate nitrogen ratios was similar in the two groups of lakes. Significant differences were found, however, in the chlorophyll:seston ratio, higher in dimictic lakes. These observations together suggest that seston in shallow lakes contains a significant, though unpredictable contribution of detritus/mineral particles much poorer in phosphorus than those in dimictic lakes. Secchi disc depth was better explained in shallow lakes by seston variability than by chlorophyll. Thus, algal production in shallow masurian lakes seems to be limited by light conditions resulting from resuspension of non-living particles while the production in deep lakes is nutrient (both nitrogen and phosphorus) limited.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 408-409 (1999), S. 307-316 
    ISSN: 1573-5117
    Keywords: macrophytes ; turbidity ; phytoplankton ; zooplankton ; nutrients ; phosphorus ; model ; grazing ; top-down control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A review of the literature suggests that aquatic macrophytes can enhance water clarity and reduce phytoplankton biomass through shading, reduction of nutrient availability, excretion of allelopathic substances and reduction of resuspension. In addition, vegetation fields are reported to enhance grazing on phytoplankton by providing a day-time refuge against fish predation for planktonic filter feeders such as Daphniaand by providing a suitable habitat for macrophyte associated filter feeders such as Sida crystallina, Eurycercus lamellatusand Simocephalus velutus. I use a graphical and a simple mathematical model to explore how top-down control by these grazers may interact with the effect of reduced phytoplankton production due to the other factors mentioned. The analysis suggests that grazing tends to be an all-or-none effect, driving phytoplankton to a very low biomass once a certain threshold level of grazing pressure is exceeded. This threshold level is predicted to increase with the productivity of the phytoplankton. Thus, the model suggests that, in plant beds, productivity reducing factors such as shading and reduced nutrient concentrations can pave the way for top-down control of phytoplankton even by a relatively moderate population of filter-feeders, and that phytoplankton biomass will decrease sharply beyond a critical macrophyte (or grazer) density. Indeed such a discontinuous response is observed in field experiments. Also, the idea that filter feeding cladocerans such as Daphniaplay a key role is in line with the observation that brackish lakes where Daphniadoes not thrive tend to be turbid despite the often dense weed beds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...