ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • International Union of Crystallography (IUCr)
Collection
Keywords
Years
  • 101
    Publication Date: 2017-09-02
    Description: Glycine is the simplest and most polymorphic amino acid, with five phases having been structurally characterized at atmospheric or high pressure. A sixth form, the elusive ζ phase, was discovered over a decade ago as a short-lived intermediate which formed as the high-pressure ∊ phase transformed to the γ form on decompression. However, its structure has remained unsolved. We now report the structure of the ζ phase, which was trapped at 100 K enabling neutron powder diffraction data to be obtained. The structure was solved using the results of a crystal structure prediction procedure based on fully ab initio energy calculations combined with a genetic algorithm for searching phase space. We show that the fate of ζ-glycine depends on its thermal history: although at room temperature it transforms back to the γ phase, warming the sample from 100 K to room temperature yielded β-glycine, the least stable of the known ambient-pressure polymorphs.
    Keywords: amino acidscrystal structure predictionpolymorphismneutron diffractionphase transitionscrystallization under non-ambient conditions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2017-09-02
    Description: Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the `Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous (`four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, `random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external `starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive `ABC-4D' pipeline is based on the two-dimensional reference-free `alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.
    Keywords: alignment by classificationangular reconstitutionMSAworm haemoglobincryo-EM
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2017-09-02
    Description: The mechanical and magnetic properties of Ni–Mn–Sb intermetallic compounds are closely related to the martensitic transformation and martensite variant organization. However, studies of these issues are very limited. Thus, a thorough crystallographic investigation of the martensitic transformation orientation relationship (OR), the transformation deformation and their impact on the variant organization of an Ni50Mn38Sb12 alloy using scanning electron microscopy/electron backscatter diffraction (SEM/EBSD) was conducted in this work. It is shown that the martensite variants are hierarchically organized into plates, each possessing four distinct twin-related variants, and the plates into plate colonies, each containing four distinct plates delimited by compatible and incompatible plate interfaces. Such a characteristic organization is produced by the martensitic transformation. It is revealed that the transformation obeys the Pitsch relation ({0{\overline 1}{\overline 1}}A // {2{\overline 2}{\overline 1}}M and 〈0{\overline 1}1〉A // 〈{\overline 1}{\overline 2}2〉M; the subscripts A and M refer to austenite and martensite, respectively). The type I twinning plane K1 of the intra-plate variants and the compatible plate interface plane correspond to the respective orientation relationship planes {0{\overline 1}{\overline 1}}A and {0{\overline 1}{\overline 1}}A of austenite. The three {0{\overline 1}{\overline 1}}A planes possessed by each pair of compatible plates, one corresponding to the compatible plate interface and the other two to the variants in the two plates, are interrelated by 60° and belong to a single 〈11{\overline 1}〉A axis zone. The {0{\overline 1}{\overline 1}}A planes representing the two pairs of compatible plates in each plate colony belong to two 〈11{\overline 1}〉A axis zones having one {0{\overline 1}{\overline 1}}A plane in common. This common plane defines the compatible plate interfaces of the two pairs of plates. The transformation strains to form the variants in the compatible plates are compatible and demonstrate an edge-to-edge character. Thus, such plates should nucleate and grow simultaneously. On the other hand, the strains to form the variants in the incompatible plates are incompatible, so they nucleate and grow separately until they meet during the transformation. The results of the present work provide comprehensive information on the martensitic transformation of Ni–Mn–Sb intermetallic compounds and its impact on martensite variant organization.
    Keywords: Ni–Mn–Sb intermetallic compoundsmartensitic transformationorientation relationshipvariant organizationelectron backscatter diffraction (EBSD)crystallography
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2017-09-02
    Description: Based on first-principles calculations, the relationship between molecular packing and charge-transport parameters has been investigated and analysed in detail. It is found that the crystal packing forces in the flexible organic molecule 4-(1,2,2-triphenylvinyl)aniline salicylaldehyde hydrazone (A) can apparently overcome the dynamic intramolecular rotations and the intramolecular steric repulsion, effectively enhancing the molecular rigidity and decreasing the internal reorganization energy. The conducting properties of A have also been simulated within the framework of hopping models, and the calculation results show that the intrinsic electron mobility in A is much higher than the corresponding intrinsic hole mobility. These theoretical investigations provide guidance for the efficient and targeted control of the molecular packing and charge-transport properties of organic small-molecule semiconductors and conjugated polymeric materials.
    Keywords: mobilityreorganization energypacking forcesrigidityflexible moleculescharge-transport properties
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2017-09-02
    Description: Energy materials form the central part of energy devices. An essential part of their function is the ability to reversibly host charge or energy carriers, and analysis of their phase composition and structure in real time under non-equilibrium conditions is mandatory for a full understanding of their atomic-scale functional mechanism. Real-time powder diffraction is increasingly being applied for this purpose, forming a critical step in the strategic chemical engineering of materials with improved behaviour. This topical review gives examples of real-time analysis using powder diffraction of rechargeable battery electrodes and porous sorbent materials used for the separation and storage of energy-relevant gases to demonstrate advances in the insights which can be gained into their atomic-scale function.
    Keywords: real-time studiesoperando studiespowder diffractionfunctional materialsenergy materials
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2017-09-02
    Description: Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.
    Keywords: single-particle imagingX-ray free-electron laserssimulationsdiffractionscattering
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2017-08-11
    Description: Due to their high technological and geological relevance, silicates are one of the most studied classes of inorganic compounds. Under ambient conditions, the silicon in silicates is almost exclusively coordinated by four oxygen atoms, while high-pressure treatment normally results in an increase in the coordination from four- to sixfold. Reported here is a high-pressure single-crystal X-ray diffraction study of danburite, CaB2Si2O8, the first compound showing a step-wise transition of Si coordination from tetrahedral to octahedral through a trigonal bipyramid. Along the compression, the Si2O7 groups of danburite first transform into chains of vertice-sharing SiO5 trigonal bipyramids (danburite-II) and later into chains of edge-sharing SiO6 octahedra (danburite-III). It is suggested that the unusual formation of an SiO5 configuration is a consequence of filling up the pentacoordinated voids in the distorted hexagonal close packing of danburite-II.
    Keywords: phase transitionspolymorphismfive-coordinate silicondanburitesilicates
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-09-02
    Keywords: serial femtosecond crystallographyanomalous signaldata qualityde novo phasingXFELs
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-24
    Keywords: metal–organic frameworkshydrogen storagebinding affinitytailored pore geometrydispersive interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-24
    Keywords: high-pressure barium phasesincommensurately modulated structuresBa IVbatomic density waveshost–guest structures
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2017-02-24
    Description: Peptidoglycan is a giant molecule that forms the cell wall that surrounds bacterial cells. It is composed of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) residues connected by β-(1,4)-glycosidic bonds and cross-linked with short polypeptide chains. Owing to the increasing antibiotic resistance against drugs targeting peptidoglycan synthesis, studies of enzymes involved in the degradation of peptidoglycan, such as N-acetylglucosaminidases, may expose new, valuable drug targets. The scientific challenge addressed here is how lysozymes, muramidases which are likely to be the most studied enzymes ever, and bacterial N-acetylglucosaminidases discriminate between two glycosidic bonds that are different in sequence yet chemically equivalent in the same NAG-NAM polymers. In spite of more than fifty years of structural studies of lysozyme, it is still not known how the enzyme selects the bond to be cleaved. Using macromolecular crystallography, chemical synthesis and molecular modelling, this study explains how these two groups of enzymes based on an equivalent structural core exhibit a difference in selectivity. The crystal structures of Staphylococcus aureus N-acetylglucosaminidase autolysin E (AtlE) alone and in complex with fragments of peptidoglycan revealed that N-acetylglucosaminidases and muramidases approach the substrate at alternate glycosidic bond positions from opposite sides. The recognition pocket for NAM residues in the active site of N-acetylglucosaminidases may make them a suitable drug target.
    Keywords: Staphylococcus aureusautolysinssubstrate specificityN-acetylglucosaminidasemuramidaseslysozyme
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2017-06-15
    Description: The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2−xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu2−xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.
    Keywords: thermoelectricsnegative thermal expansionproperties of solidsinorganic materials
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2017-06-06
    Description: There has been significant recent interest in differentiating multicomponent solid forms, such as salts and cocrystals, and, where appropriate, in determining the position of the proton in the X—H...A—Y X−...H—A+—Y continuum in these systems, owing to the direct relationship of this property to the clinical, regulatory and legal requirements for an active pharmaceutical ingredient (API). In the present study, solid forms of simple cocrystals/salts were investigated by high-field (700 MHz) solid-state NMR (ssNMR) using samples with naturally abundant 15N nuclei. Four model compounds in a series of prototypical salt/cocrystal/continuum systems exhibiting {PyN...H—O—}/{PyN+—H...O−} hydrogen bonds (Py is pyridine) were selected and prepared. The crystal structures were determined at both low and room temperature using X-ray diffraction. The H-atom positions were determined by measuring the 15N—1H distances through 15N-1H dipolar interactions using two-dimensional inversely proton-detected cross polarization with variable contact-time (invCP-VC) 1H→15N→1H experiments at ultrafast (νR ≥ 60–70 kHz) magic angle spinning (MAS) frequency. It is observed that this method is sensitive enough to determine the proton position even in a continuum where an ambiguity of terminology for the solid form often arises. This work, while carried out on simple systems, has implications in the pharmaceutical industry where the salt/cocrystal/continuum condition of APIs is considered seriously.
    Keywords: saltcocrystalcontinuumnatural abundancesolid-state NMRX-ray diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2017-06-15
    Description: The conceptual relationship between crystal reactivity, stability and metastability, solubility and morphology on the one hand and shape, charge distribution, chirality and distribution of functional groups over the molecular surfaces on the other hand is discussed, via a number of examples coming from three decades of research in the field of crystal engineering at the University of Bologna. The bottom-up preparation of mixed crystals, co-crystals and photoreactive materials starting from molecular building blocks across the borders of organic, organometallic and metalorganic chemistry is recounted.
    Keywords: cocrystalssolid solutionspolymorphismluminescencechirality
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2017-06-15
    Description: A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.
    Keywords: convolutional neural network (CNN)artificial neural network (ANN)powder X-ray diffractioncrystal systeminorganic materialscomputational modellingcrystal structure predictionproperties of solids
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2017-06-17
    Description: Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (AspCAT and HisCAT) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the AspCAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site `capping residue' (IleCAT), a determinant of ligand binding, are influenced both by temperature and by the protonation state of AspCAT. A previously unobserved conformation of IleCAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.
    Keywords: serial crystallographyhigh temperaturecatalysismolecular dynamicsdensity functional theorydenitrificationcopper nitrite reductaseradiolysissynchrotron radiation
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-07-01
    Keywords: X-ray lasersXFELsbiologystructuredynamics
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2017-07-01
    Description: Traditional synthesis of metal–organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.
    Keywords: metal–organic frameworkMOFionic liquidionothermal synthesistemplate
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2017-07-05
    Description: For martensitic transformations the macroscopic crystal strain is directly related to the corresponding structural rearrangement at the microscopic level. In situ optical microscopy observations of the interface migration and the change in crystal shape during a displacive single crystal to single crystal transformation can contribute significantly to understanding the mechanism of the process at the atomic scale. This is illustrated for the dehydration of samarium oxalate decahydrate in a study combining optical microscopy and single-crystal X-ray diffraction.
    Keywords: thermomechanical effectssolid-state chemical reactionsmartensitic transformationstopotactic transformationsmaterials modellingphase transitionscrystal morphologyproperties of solidsoptical microscopy
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2017-07-05
    Description: The application domain of accurate and efficient CE-B3LYP and CE-HF model energies for intermolecular interactions in molecular crystals is extended by calibration against density functional results for 1794 molecule/ion pairs extracted from 171 crystal structures. The mean absolute deviation of CE-B3LYP model energies from DFT values is a modest 2.4 kJ mol−1 for pairwise energies that span a range of 3.75 MJ mol−1. The new sets of scale factors determined by fitting to counterpoise-corrected DFT calculations result in minimal changes from previous energy values. Coupled with the use of separate polarizabilities for interactions involving monatomic ions, these model energies can now be applied with confidence to a vast number of molecular crystals. Energy frameworks have been enhanced to represent the destabilizing interactions that are important for molecules with large dipole moments and organic salts. Applications to a variety of molecular crystals are presented in detail to highlight the utility and promise of these tools.
    Keywords: CrystalExplorermodel energiesenergy frameworkscoordination compoundsopen-shell systemsintermolecular interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-08-04
    Description: Based on a description of bond valence as a function of valence electron density, a systematic bond softness sensitive approach to determine bond-valence parameters and related quantities such as coordination numbers is elaborated and applied to determine bond-valence parameters for 706 cation–anion pairs. While the approach is closely related to the earlier softBV parameter set, the new softNC1 parameters proposed in this work may be simpler to apply in plausibility checks of crystal structures, as they follow the first coordination shell convention. The performance of this softNC1 bond-valence parameter set is compared with that of the previously derived softBV parameter set that also factors in contributions from higher coordination shells, and with a benchmarking parameter set that has been optimized following the conventional choice of a universal value of the bond-valence parameter b. The results show that a systematic adaptation of the bond-valence parameters to the bond softness leads to a significant improvement in the bond-valence parameters, particularly for bonds involving soft anions, and is safer than individual free refinements of both R0 and b from a limited number of reference cation environments.
    Keywords: bond-valence methodcoordination numberscrystal radiibond-valence parametersbond softness
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2017-08-09
    Description: The progress in X-ray microbeam applications using synchrotron radiation is beneficial to structure determination from macromolecular microcrystals such as small in meso crystals. However, the high intensity of microbeams causes severe radiation damage, which worsens both the statistical quality of diffraction data and their resolution, and in the worst cases results in the failure of structure determination. Even in the event of successful structure determination, site-specific damage can lead to the misinterpretation of structural features. In order to overcome this issue, technological developments in sample handling and delivery, data-collection strategy and data processing have been made. For a few crystals with dimensions of the order of 10 µm, an elegant two-step scanning strategy works well. For smaller samples, the development of a novel method to analyze multiple isomorphous microcrystals was motivated by the success of serial femtosecond crystallography with X-ray free-electron lasers. This method overcame the radiation-dose limit in diffraction data collection by using a sufficient number of crystals. Here, important technologies and the future prospects for microcrystallography are discussed.
    Keywords: protein microcrystallographymulti-point data collectionmulti-crystal data collectionserial synchrotron crystallography
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2017-08-09
    Description: An algorithm for modelling the background for each Bragg reflection in a series of X-ray diffraction images containing Debye–Scherrer diffraction from ice in the sample is presented. The method involves the use of a global background model which is generated from the complete X-ray diffraction data set. Fitting of this model to the background pixels is then performed for each reflection independently. The algorithm uses a static background model that does not vary over the course of the scan. The greatest improvement can be expected for data where ice rings are present throughout the data set and the local background shape at the size of a spot on the detector does not exhibit large time-dependent variation. However, the algorithm has been applied to data sets whose background showed large pixel variations (variance/mean 〉 2) and has been shown to improve the results of processing for these data sets. It is shown that the use of a simple flat-background model as in traditional integration programs causes systematic bias in the background determination at ice-ring resolutions, resulting in an overestimation of reflection intensities at the peaks of the ice rings and an underestimation of reflection intensities either side of the ice ring. The new global background-model algorithm presented here corrects for this bias, resulting in a noticeable improvement in R factors following refinement.
    Keywords: protein structurerefinementX-ray crystallographyice ringsdata processingdata analysisX-ray diffractiondata qualityAUSPEXDIALS
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2017-08-09
    Description: Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
    Keywords: small-angle X-ray scatteringstructural modellingtime-resolved SAXS
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-08-09
    Description: Understanding the protein main-chain conformational space forms the basis for the modelling of protein structures and for the validation of models derived from structural biology techniques. Presented here is a novel idea for a three-dimensional distance geometry-based metric to account for the fine details of protein backbone conformations. The metrics are computed for dipeptide units, defined as blocks of Cαi−1—Oi−1—Cαi—Oi—Cαi+1 atoms, by obtaining the eigenvalues of their Euclidean distance matrices. These were computed for ∼1.3 million dipeptide units collected from nonredundant good-quality structures in the Protein Data Bank and subjected to principal component analysis. The resulting new Euclidean orthogonal three-dimensional space (DipSpace) allows a probabilistic description of protein backbone geometry. The three axes of the DipSpace describe the local extension of the dipeptide unit structure, its twist and its bend. By using a higher-dimensional metric, the method is efficient for the identification of Cα atoms in an unlikely or unusual geometrical environment, and its use for both local and overall validation of protein models is demonstrated. It is also shown, for the example of trypsin proteases, that the detection of unusual conformations that are conserved among the structures of this protein family may indicate geometrically strained residues of potentially functional importance.
    Keywords: Ramachandran plotprotein stereochemistryvalidationgeometrical straindipeptide unitdistance matrixEuclidean orthogonal three-dimensional spacetrypsin proteases
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2017-08-09
    Description: Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 Å wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.
    Keywords: serial femtosecond crystallographySAD phasingXFELsselenomethionine derivatizationmercury soaking
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2017-08-09
    Description: Rieske nonheme iron oxygenases (ROs) are a well studied class of enzymes. Naphthalene 1,2-dioxygenase (NDO) is used as a model to study ROs. Previous work has shown how side-on binding of oxygen to the mononuclear iron provides this enzyme with the ability to catalyze stereospecific and regiospecific cis-dihydroxylation reactions. It has been well documented that ROs catalyze a variety of other reactions, including mono-oxygenation, desaturation, O- and N-dealkylation, sulfoxidation etc. NDO itself catalyzes a variety of these reactions. Structures of NDO in complex with a number of different substrates show that the orientation of the substrate in the active site controls not only the regiospecificity and stereospecificity, but also the type of reaction catalyzed. It is proposed that the mononuclear iron-activated dioxygen attacks the atoms of the substrate that are most proximal to it. The promiscuity of delivering two products (apparently by two different reactions) from the same substrate can be explained by the possible binding of the substrate in slightly different orientations aided by the observed flexibility of residues in the binding pocket.
    Keywords: naphthalene 1,2-dioxygenasemonooxygenationsulfoxidationdeoxygenationsubstrate orientation
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2017-09-27
    Description: The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a non-invasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall.
    Keywords: in vivo analysisEscherichia coliultrastructuresmall-angle scattering
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2017-10-14
    Description: Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s−1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.
    Keywords: protein crystallographyradiation damageserial crystallographymicrocrystallographystructure determinationprotein structureX-ray crystallographystructural biologyintense X-ray microbeams
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2017-10-14
    Description: Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.
    Keywords: X-ray interferometrysplit-and-delay optical systemX-ray free-electron laserstemporal coherence
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2017-10-14
    Description: Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.
    Keywords: hit detectionplasma emission spectraserial femtosecond crystallographyprotein structure
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2017-09-27
    Description: The introduction of direct detectors and the automation of data collection in cryo-EM have led to a surge in data, creating new opportunities for advancing computational processing. In particular, on-the-fly workflows that connect data collection with three-dimensional reconstruction would be valuable for more efficient use of cryo-EM and its application as a sample-screening tool. Here, accelerated on-the-fly analysis is reported with optimized organization of the data-processing tools, image acquisition and particle alignment that make it possible to reconstruct the three-dimensional density of the 70S chlororibosome to 3.2 Å resolution within 24 h of tissue harvesting. It is also shown that it is possible to achieve even faster processing at comparable quality by imposing some limits to data use, as illustrated by a 3.7 Å resolution map that was obtained in only 80 min on a desktop computer. These on-the-fly methods can be employed as an assessment of data quality from small samples and extended to high-throughput approaches.
    Keywords: cryo-EMimage processingchlororibosome
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2017-09-27
    Description: X-ray free-electron lasers (XFELs) provide new opportunities for structure determination of biomolecules, viruses and nanomaterials. With unprecedented peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray doses by exploiting the femtosecond-scale exposure time, and can thus go beyond the resolution limits achieved with conventional X-ray diffraction imaging techniques. Using XFELs, it is possible to collect scattering information from single particles at high resolution, however particle heterogeneity and unknown orientations complicate data merging in three-dimensional space. Using the Linac Coherent Light Source (LCLS), synthetic inorganic nanocrystals with a core–shell architecture were used as a model system for proof-of-principle coherent diffractive single-particle imaging experiments. To deal with the heterogeneity of the core–shell particles, new computational methods have been developed to extract the particle size and orientation from the scattering data to assist data merging. The size distribution agrees with that obtained by electron microscopy and the merged data support a model with a core–shell architecture.
    Keywords: orientation determinationstructure heterogeneitysingle-particle scatteringnanoparticlescore–shell architectureXFELs
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-10-07
    Description: Understanding published research results should be through one's own eyes and include the opportunity to work with raw diffraction data to check the various decisions made in the analyses by the original authors. Today, preserving raw diffraction data is technically and organizationally viable at a growing number of data archives, both centralized and distributed, which are empowered to register data sets and obtain a preservation descriptor, typically a `digital object identifier'. This introduces an important role of preserving raw data, namely understanding where we fail in or could improve our analyses. Individual science area case studies in crystallography are provided.
    Keywords: raw diffraction datasharing raw data and its reuseopen scienceeducationcrystallographic science case studies
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2017-10-07
    Description: Magnetic Heusler compounds (MHCs) have recently attracted great attention since these types of material provide novel functionalities in spintronic and magneto-electronic devices. Among the MHCs, some compounds have been predicted to be spin-filter semiconductors [also called magnetic semiconductors (MSs)], spin-gapless semiconductors (SGSs) or half-metals (HMs). In this work, by means of first-principles calculations, it is demonstrated that rare earth-based equiatomic quaternary Heusler (EQH) compounds with the formula MCoVZ (M = Lu, Y; Z = Si, Ge) are new spin-filter semiconductors with total magnetic moments of 3 µB. Furthermore, under uniform strain, there are physical transitions from spin-filter semiconductor (MS) → SGS → HM for EQH compounds with the formula LuCoVZ, and from HM → SGS → MS → SGS → HM for EQH compounds with the formula YCoVZ. Remarkably, for YCoVZ EQH compounds there are not only diverse physical transitions, but also different types of spin-gapless feature that can be observed with changing lattice constants. The structural stability of these four EQH compounds is also examined from the points of view of formation energy, cohesive energy and mechanical behaviour. This work is likely to inspire consideration of rare earth-based EQH compounds for application in future spintronic and magneto-electronic devices.
    Keywords: spin-filter materialsspin-gapless semiconductorsband structuresmagnetic propertiesfirst-principles predictionsdensity functional theorymaterials modelling
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2017-10-10
    Description: Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.
    Keywords: drug discoveryprotein structureX-ray crystallographyserial crystallographytime-resolved studieslysozyme
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2017-11-28
    Description: The characteristics of magnetostructural coupling play a crucial role in the magnetic field-driven behaviour of magnetofunctional alloys. The availability of magnetostructural coupling over a broad temperature range is of great significance for scientific and technological purposes. This work demonstrates that strong magnetostrucural coupling can be achieved over a wide temperature range (222 to 355 K) in Co-doped high Mn-content Mn50Ni42−xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons. It is shown that, over a wide composition range with Co content from 3 to 9 at.%, the paramagnetic austenite first transforms into ferromagnetic austenite at TC on cooling, then the ferromagnetic austenite further transforms into a weakly magnetic martensite at TM. Such strong magnetostructural coupling enables the ribbons to exhibit field-induced inverse martensitic transformation behaviour and a large magnetocaloric effect. Under a field change of 5 T, a maximum magnetic entropy change ΔSM of 18.6 J kg−1 K−1 and an effective refrigerant capacity RCeff of up to 178 J kg−1 can be achieved, which are comparable with or even superior to those of Ni-rich Ni–Mn-based polycrystalline bulk alloys. The combination of high performance and low cost makes Mn–Ni–Co–Sn ribbons of great interest as potential candidates for magnetic refrigeration.
    Keywords: MnNi-based alloysmelt-spun ribbonsmagnetostructural couplingmagnetocaloric effect
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2017-11-28
    Description: Hirshfeld atom refinement (HAR) is a novel X-ray structure refinement technique that employs aspherical atomic scattering factors obtained from stockholder partitioning of a theoretically determined tailor-made static electron density. HAR overcomes many of the known limitations of independent atom modelling (IAM), such as too short element–hydrogen distances, r(X—H), or too large atomic displacement parameters (ADPs). This study probes the accuracy and precision of anisotropic hydrogen and non-hydrogen ADPs and of r(X—H) values obtained from HAR. These quantities are compared and found to agree with those obtained from (i) accurate neutron diffraction data measured at the same temperatures as the X-ray data and (ii) multipole modelling (MM), an established alternative method for interpreting X-ray diffraction data with the help of aspherical atomic scattering factors. Results are presented for three chemically different systems: the aromatic hydrocarbon rubrene (orthorhombic 5,6,11,12-tetraphenyltetracene), a co-crystal of zwitterionic betaine, imidazolium cations and picrate anions (BIPa), and the salt potassium hydrogen oxalate (KHOx). The non-hydrogen HAR-ADPs are as accurate and precise as the MM-ADPs. Both show excellent agreement with the neutron-based values and are superior to IAM-ADPs. The anisotropic hydrogen HAR-ADPs show a somewhat larger deviation from neutron-based values than the hydrogen SHADE-ADPs used in MM. Element–hydrogen bond lengths from HAR are in excellent agreement with those obtained from neutron diffraction experiments, although they are somewhat less precise. The residual density contour maps after HAR show fewer features than those after MM. Calculating the static electron density with the def2-TZVP basis set instead of the simpler def2-SVP one does not improve the refinement results significantly. All HARs were performed within the recently introduced HARt option implemented in the Olex2 program. They are easily launched inside its graphical user interface following a conventional IAM.
    Keywords: Hirshfeld atom refinementmultipole modellinganisotropic displacement parametershydrogen-atom propertiescrystallographic software
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2017-11-28
    Description: Direct observation and structural characterization of a kinetic product and a thermodynamic product for complexes with an NO2S2 macrocycle (L) are reported. L reacts with copper(I) iodide to give a mononuclear complex [Cu(L)]2(Cu2I4)·2CH2Cl2 (1), featuring three separate units. When cadmium(II) iodide was reacted with L, an anion-coordinated complex [Cd(L)I]2(Cd2I6)·4CH3CN (2) with a needle-type crystal shape was formed as the kinetic product. Interestingly, when the needle-type kinetic product was left undisturbed in the mother solution it gradually transformed to the pseudo-dimer complex [Cd2(L)2I2](Cd2I6) (3) with a brick-type crystal shape as the thermodynamic product. The dissolution–recrystallization process resulted in the elimination of the lattice solvent molecules (acetonitrile) in 2 and the contraction of two neighboring macrocyclic complex units [Cd(L)I]+, forming the pseudo-dimer 3 via an intermolecular Cd...I interaction between two monomers. For the entire process from kinetic to thermodynamic products, it was possible to obtain sequential photographic snapshots, single-crystal X-ray structures and powder X-ray diffraction patterns. For the copper(I) and cadmium(II) complexes, competitive NMR results agree with the solid-state data that show copper(I) has a higher affinity for L than does cadmium(II).
    Keywords: snapshotskinetic productsthermodynamic productssingle-crystal-to-single-crystal transformationscrystal engineeringmolecular crystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2017-11-15
    Description: In order to develop transferable and practical avenues for the assembly of coordination complexes into architectures with specific dimensionality, a strategy utilizing ligands capable of simultaneous metal coordination and self-complementary hydrogen bonding is presented. The three ligands used, 2(1H)-pyrazinone, 4(3H)-pyrimidinone and 4(3H)-quinazolinone, consistently deliver the required synthetic vectors in a series of CdII coordination polymers, allowing for reproducible supramolecular synthesis that is insensitive to the different steric and geometric demands from potentially disruptive counterions. In all nine crystallographically characterized compounds presented here, directional intermolecular N—H...O hydrogen bonds between ligands on adjacent complex building blocks drive the assembly and orientation of discrete building blocks into largely predictable topologies. Furthermore, whether the solids are prepared from solution or through liquid-assisted grinding, the structural outcome is the same, thus emphasizing the robustness of the synthetic protocol. The details of the molecular recognition events that take place in this series of compounds have been clearly delineated and rationalized in the context of calculated molecular electrostatic potential surfaces.
    Keywords: crystal engineeringhydrogen bondselectrostatic potentialsynthonscoordination compounds
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2017-11-15
    Description: Enantiomeric amino acids have specific physiological functions in complex biological systems. Systematic studies focusing on the solid-state properties of d-amino acids are, however, still limited. To shed light on this field, structural and spectroscopic studies of d-alanine using neutron powder diffraction, polarized Raman scattering and ab initio calculations of harmonic vibrational frequencies were carried out. Clear changes in the number of vibrational modes are observed as a function of temperature, which can be directly connected to variations of the N—D bond lengths. These results reveal dissimilarities in the structural properties of d-alanine compared with l-alanine.
    Keywords: chiralitystructure analysisconfigurational changedensity-functional-theory-based methodsphase transitionsintermolecular interactionsproperties of solidshydrogen bondingmaterials science
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2017-11-18
    Description: Synchrotron-based X-ray structural studies of ligand-bound enzymes are powerful tools to further our understanding of reaction mechanisms. For redox enzymes, it is necessary to study both the oxidized and reduced active sites to fully elucidate the reaction, an objective that is complicated by potential X-ray photoreduction. In the presence of the substrate, this can be exploited to construct a structural movie of the events associated with catalysis. Using the newly developed approach of serial femtosecond rotation crystallography (SF-ROX), an X-ray damage-free structure of the as-isolated copper nitrite reductase (CuNiR) was visualized. The sub-10 fs X-ray pulse length from the SACLA X-ray free-electron laser allowed diffraction data to be collected to 1.6 Å resolution in a `time-frozen' state. The extremely short duration of the X-ray pulses ensures the capture of data prior to the onset of radiation-induced changes, including radiolysis. Unexpectedly, an O2 ligand was identified bound to the T2Cu in a brand-new binding mode for a diatomic ligand in CuNiRs. The observation of O2 in a time-frozen structure of the as-isolated oxidized enzyme provides long-awaited clear-cut evidence for the mode of O2 binding in CuNiRs. This provides an insight into how CuNiR from Alcaligenes xylosoxidans can function as an oxidase, reducing O2 to H2O2, or as a superoxide dismutase (SOD) since it was shown to have ∼56% of the dismutase activity of the bovine SOD enzyme some two decades ago.
    Keywords: serial femtosecond rotation crystallographyO2 bindingcopper nitrite reductase
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2017-10-28
    Description: The limiting factor in protein crystallography is still the production of high-quality crystals. In this regard, the authors have recently introduced hexatungstotellurate(VI) (TEW) as a new crystallization additive, which proved to be successful within the liquid–liquid phase separation (LLPS) zone. Presented here are comparative crystal structure analyses revealing that protein–TEW binding not only induces and stabilizes crystal contacts, but also exhibits a significant impact on the solvent-driven crystallization entropy, which is the driving force for the crystallization process. Upon the formation of TEW-mediated protein–protein contacts, the release of water molecules from the hydration shells of both molecules, i.e. TEW and the protein, causes a reduced solvent-accessible surface area, leading to a significant gain in solvent entropy. Based on the crystal structures of aurone synthase (in the presence and absence of TEW), insights have also been provided into the formation of a metastable LLPS, which is caused by the formation of protein clusters, representing an ideal starting point in protein crystallization. The results strongly encourage the classification of TEW as a valuable crystallization additive.
    Keywords: polyoxotungstatecrystallization additivescrystal contactsliquid–liquid phase separationsolvent entropy
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2017-10-28
    Description: The design and synthesis of mechanically responsive materials is interesting because they are potential candidates to convert thermal energy into mechanical work. Reported in this paper are thermosalient effects in a series of halogen derivatives of salinazids. The chloro derivative, with higher electronegativity and a weaker inter-halogen bond strength (Cl...Cl) exhibits an excellent thermal response, whereas the response is weaker in the iodo derivative with stronger I...I halogen bonding. 3,5-Dichlorosalinazid (Compound-A) exists in three polymorphic forms, two room-temperature polymorphs (Forms I and II) and one high-temperature modification (Form III). The transformation of Form I to Form III upon heating at 328–333 K is a reversible thermosalient transition, whereas the transformation of Form II to Form III is irreversible and non-thermosalient. 3,5-Dibromo- (Compound-B) and 3-bromo-5-chloro- (Compound-C) salinazid are both dimorphic: the Form I to Form II transition in Compound-B is irreversible, whereas Compound-C shows a reversible thermosalient effect (362–365 K). In the case of 3,5-diiodosalinazid (Compound-D) and 3,5-difluorosalinazid (Compound-E), no phase transitions or thermal effects were observed. The thermosalient behaviour of these halosalinazid molecular crystals is understood from the anisotropy in the cell parameters (an increase in the a axis and a decrease in the b and c axes upon heating) and the sudden release of accumulated strain during the phase transition. The di-halogen salinazid derivatives (chlorine to iodine) show a decrease in thermal effects with an increase in halogen-bond strength. Interestingly, Compound-B shows solid-state photochromism in its polymorphs along with the thermosalient effect, wherein Form I is cyan and Form II is light orange.
    Keywords: halogen bondshydrogen bondsmaterials sciencepolymorphismsalinazidcrystal engineeringmechanochemistrymolecular crystalsmaterials modelling
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2017-12-23
    Description: Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3−. Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (WI′) is observed next to the previously observed intermediate water WI, and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH− on CO2. This mechanism explains how the zinc-bound water (WZn) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first `physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.
    Keywords: carbonic anhydrase IIproton transferwater dynamicshigh-pressure cryocoolingactive-site solvent replenishment
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2017-12-23
    Description: Peroxiredoxins (Prxs) are ubiquitous cysteine-based peroxidase enzymes. Recently, a new type of Prx, VvPrx3, was identified in the pathogenic bacterium Vibrio vulnificus as being important for survival in macrophages. It employs only one catalytic cysteine residue to decompose peroxides. Here, crystal structures of VvPrx3 representing its reduced and oxidized states have been determined, together with an H2O2-bound structure, at high resolution. The crystal structure representing the reduced Prx3 showed a typical dimeric interface, called the A-type interface. However, VvPrx3 forms an oligomeric interface mediated by a disulfide bond between two catalytic cysteine residues from two adjacent dimers, which differs from the doughnut-like oligomers that appear in most Prxs. Subsequent biochemical studies showed that this disulfide bond was induced by treatment with nitric oxide (NO) as well as with peroxides. Consistently, NO treatment induced expression of the prx3 gene in V. vulnificus, and VvPrx3 was crucial for the survival of bacteria in the presence of NO. Taken together, the function and mechanism of VvPrx3 in scavenging peroxides and NO stress via oligomerization are proposed. These findings contribute to the understanding of the diverse functions of Prxs during pathogenic processes at the molecular level.
    Keywords: nitric oxideperoxiredoxinscrystal structureVibrio vulnificusprotein structureX-ray crystallography
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2017-12-23
    Description: Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs) have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.
    Keywords: serial crystallographyfree-electron lasersmembrane proteinstwo-dimensional crystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-10-28
    Keywords: Heusler materialsspin-gapless semiconductorsband structuresmagnetic propertiesmaterials modellingspintronic technologies
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2017-05-11
    Description: Halogen bonds have been identified in a series of ionic compounds involving bromonium and iodonium cations and several different anions, some also containing hypervalent atoms. The hypervalent bromine and iodine atoms in the examined compounds are found to have positive σ-holes on the extensions of their covalent bonds, while the hypervalent atoms in the anions have negative σ-holes. The positive σ-holes on the halogens of the studied halonium salts determine the linearity of the short contacts between the halogen and neutral or anionic electron donors, as usual in halogen bonds.
    Keywords: halogen bondσ-hole interactionshypervalent iodinehypervalent brominecrystal engineering
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-05-11
    Description: The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump–probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallography to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
    Keywords: X-ray lasersXFELsbiologystructuredynamics
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-05-25
    Description: Crystallogenesis is a longstanding topic that has transformed into a discipline that is mainly focused on the preparation of crystals for practising crystallographers. Although the idiosyncratic features of proteins have to be taken into account, the crystallization of proteins is governed by the same physics as the crystallization of inorganic materials. At present, a diversified panel of crystallization methods adapted to proteins has been validated, and although only a few methods are in current practice, the success rate of crystallization has increased constantly, leading to the determination of ∼105 X-ray structures. These structures reveal a huge repertoire of protein folds, but they only cover a restricted part of macromolecular diversity across the tree of life. In the future, crystals representative of missing structures or that will better document the structural dynamics and functional steps underlying biological processes need to be grown. For the pertinent choice of biologically relevant targets, computer-guided analysis of structural databases is needed. From another perspective, crystallization is a self-assembly process that can occur in the bulk of crowded fluids, with crystals being supramolecular assemblies. Life also uses self-assembly and supramolecular processes leading to transient, or less often stable, complexes. An integrated view of supramolecularity implies that proteins crystallizing either in vitro or in vivo or participating in cellular processes share common attributes, notably determinants and antideterminants that favour or disfavour their correct or incorrect associations. As a result, under in vivo conditions proteins show a balance between features that favour or disfavour association. If this balance is broken, disorders/diseases occur. Understanding crystallization under in vivo conditions is a challenge for the future. In this quest, the analysis of packing contacts and contacts within oligomers will be crucial in order to decipher the rules governing protein self-assembly and will guide the engineering of novel biomaterials. In a wider perspective, understanding such contacts will open the route towards supramolecular biology and generalized crystallogenesis.
    Keywords: crystal engineeringcrystallization predictorscrystallogenesiscrystallizabilitycrowdingdeterminant and antideterminantevolutionpackingself-assembly rulessupramolecularitysurface patchessymmetry and asymmetry
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2017-05-25
    Description: A cross-validation method is supplied to judge between various strategies in multipole refinement procedures. Its application enables straightforward detection of whether the refinement of additional parameters leads to an improvement in the model or an overfitting of the given data. For all tested data sets it was possible to prove that the multipole parameters of atoms in comparable chemical environments should be constrained to be identical. In an automated approach, this method additionally delivers parameter distributions of k different refinements. These distributions can be used for further error diagnostics, e.g. to detect erroneously defined parameters or incorrectly determined reflections. Visualization tools show the variation in the parameters. These different refinements also provide rough estimates for the standard deviation of topological parameters.
    Keywords: charge densitycross-validationerror detectionRfreerefinement strategies
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2017-05-25
    Description: Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
    Keywords: serial millisecond crystallographysynchrotron radiationAdvanced Photon Sourcehigh-viscosity injector
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2017-05-25
    Description: This topical review summarizes the theoretical and experimental findings obtained over the last 20 years on the subject of growth-induced polarity formation driven by a Markov chain process. When entering the growing surface of a molecular crystal, an inorganic–organic composite or a natural tissue, the building blocks may undergo 180° orientational disorder. Driven by configurational entropy, faulted orientations can promote the conversion of a growing non-polar seed into an object showing polar domains. Similarly, orientational disorder at the interface may change a polar seed into a two-domain state. Analytical theory and Monte Carlo simulations were used to model polarity formation. Scanning pyroelectric, piezoresponse force and phase-sensitive second-harmonic microscopies are methods for investigating the spatial distribution of polarity. Summarizing results from different types of materials, a general principle is provided for obtaining growth-induced polar domains: a non-zero difference in the probabilities for 180° orientational misalignments of building blocks, together with uni-directional growth, along with Markov chain theory, can produce objects showing polar domains.
    Keywords: stochastic polarity formationmolecular crystalsbiomimetic materialsnatural tissuesMarkov chain processes
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2017-05-25
    Description: Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nanostructured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all lithographically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.
    Keywords: grazing-incidence small-angle X-ray scatteringGISAXSbeam footprintlithographic inspectiongratings
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-05-25
    Description: X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.
    Keywords: X-ray scatteringSAXSimage healinginpaintingdata completion
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-27
    Keywords: structural sciencematerialscomputational methodseditorial
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-27
    Keywords: perovskiteferroelectricpowder neutron diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-27
    Keywords: polymorphismintermolecular interactionsthermosalient effectdynamic crystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2017-05-06
    Description: Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices afford very stable adjustable streams suitable for time-resolved measurements.
    Keywords: high-throughput serial crystallographyroom-temperature crystallographymicrocrystal injectionXFELhigh-viscosity extrusion
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2017-03-09
    Description: The perovskite Li0.2Na0.8NbO3 is shown, by powder neutron diffraction, to display a unique sequence of phase transitions at elevated temperature. The ambient temperature polar phase (rhombohedral, space group R3c) transforms via a first-order transition to a polar tetragonal phase (space group P42mc) in the region 150–300°C; these two phases correspond to Glazer tilt systems a−a−a− and a+a+c−, respectively. At 500°C a ferroelectric–paraelectric transition takes place from P42mc to P42/nmc, retaining the a+a+c− tilt. Transformation to a single-tilt system, a0a0c+ (space group P4/mbm), occurs at 750°C, with the final transition to the aristotype cubic phase at 850°C. The P42mc and P42/nmc phases have each been seen only once and twice each, respectively, in perovskite crystallography, in each case in compositions prepared at high pressure.
    Keywords: perovskiteferroelectricpowder neutron diffraction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2017-03-09
    Description: Denisovite is a rare mineral occurring as aggregates of fibres typically 200–500 nm diameter. It was confirmed as a new mineral in 1984, but important facts about its chemical formula, lattice parameters, symmetry and structure have remained incompletely known since then. Recently obtained results from studies using microprobe analysis, X-ray powder diffraction (XRPD), electron crystallography, modelling and Rietveld refinement will be reported. The electron crystallography methods include transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-angle annular dark-field imaging (HAADF), high-resolution transmission electron microscopy (HRTEM), precession electron diffraction (PED) and electron diffraction tomography (EDT). A structural model of denisovite was developed from HAADF images and later completed on the basis of quasi-kinematic EDT data by ab initio structure solution using direct methods and least-squares refinement. The model was confirmed by Rietveld refinement. The lattice parameters are a = 31.024 (1), b = 19.554 (1) and c = 7.1441 (5) Å, β = 95.99 (3)°, V = 4310.1 (5) Å3 and space group P12/a1. The structure consists of three topologically distinct dreier silicate chains, viz. two xonotlite-like dreier double chains, [Si6O17]10−, and a tubular loop-branched dreier triple chain, [Si12O30]12−. The silicate chains occur between three walls of edge-sharing (Ca,Na) octahedra. The chains of silicate tetrahedra and the octahedra walls extend parallel to the z axis and form a layer parallel to (100). Water molecules and K+ cations are located at the centre of the tubular silicate chain. The latter also occupy positions close to the centres of eight-membered rings in the silicate chains. The silicate chains are geometrically constrained by neighbouring octahedra walls and present an ambiguity with respect to their z position along these walls, with displacements between neighbouring layers being either Δz = c/4 or −c/4. Such behaviour is typical for polytypic sequences and leads to disorder along [100]. In fact, the diffraction pattern does not show any sharp reflections with l odd, but continuous diffuse streaks parallel to a* instead. Only reflections with l even are sharp. The diffuse scattering is caused by (100) nanolamellae separated by stacking faults and twin boundaries. The structure can be described according to the order–disorder (OD) theory as a stacking of layers parallel to (100).
    Keywords: denisovitemineralsfibrous materialsnanocrystalline materialselectron crystallographyelectron diffraction tomographyX-ray powder diffractionmodularitydisorderpolytypismOD approachcomplexityframework-structured solidsinorganic materialsnanostructurenanoscience
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-03-09
    Description: Cocrystals of acemetacin drug (ACM) with nicotinamide (NAM), p-aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM–NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form. The carboxylic acid group of ACM forms theacid–amide dimer three-point synthon R32(9)R22(8)R32(9) with three different syn amides (VLM, 2HP and caprolactam). The conformations of the ACM molecule observed in the crystal structures differ mainly in the mutual orientation of chlorobenzene fragment and the neighboring methyl group, being anti (type I) or syn (type II). ACM hydrate, ACM—NAM, ACM–NAM-hydrate and the piperazine salt of ACM exhibit the type I conformation, whereas ACM polymorphs and other cocrystals adopt the ACM type II conformation. Hydrogen-bond interactions in all the crystal structures were quantified by calculating their molecular electrostatic potential (MEP) surfaces. Hirshfeld surface analysis of the cocrystal surfaces shows that about 50% of the contribution is due to a combination of strong and weak O...H, N...H, Cl...H and C...H interactions. The physicochemical properties of these cocrystals are under study.
    Keywords: crystal engineeringco-crystalsmolecular crystals
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2017-05-03
    Description: This topical review provides a brief overview of recent developments in NMR crystallography and related NMR approaches to studying the properties of molecular and ionic solids. Areas of complementarity with diffraction-based methods are underscored. These include the study of disordered systems, of dynamic systems, and other selected examples where NMR can provide unique insights. Highlights from the literature as well as recent work from my own group are discussed.
    Keywords: Nuclear magnetic resonancesolid-state NMRNMR crystallographydynamicsnoncovalent interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-05-03
    Description: Rapid communication at the chemical synapse depends on the action of ion channels residing in the postsynaptic membrane. The channels open transiently upon the binding of a neurotransmitter released from the presynaptic nerve terminal, eliciting an electrical response. Membrane lipids also play a vital but poorly understood role in this process of synaptic transmission. The present study examines the lipid distribution around nicotinic acetylcholine (ACh) receptors in tubular vesicles made from postsynaptic membranes of the Torpedo ray, taking advantage of the recent advances in cryo-EM. A segregated distribution of lipid molecules is found in the outer leaflet of the bilayer. Apparent cholesterol-rich patches are located in specific annular regions next to the transmembrane helices and also in a more extended `microdomain' between the apposed δ subunits of neighbouring receptors. The particular lipid distribution can be interpreted straightforwardly in relation to the gating movements revealed by an earlier time-resolved cryo-EM study, in which the membranes were exposed briefly to ACh. The results suggest that in addition to stabilizing the protein, cholesterol may play a mechanical role by conferring local rigidity to the membrane so that there is productive coupling between the extracellular and membrane domains, leading to opening of the channel.
    Keywords: nicotinic acetylcholine receptorcholesterollipid microdomaincryo-EMhelical image reconstruction
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-12
    Description: Multiple possibilities for the coordination of fac-[Re(CO)3(H2O)3]+ to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value (f′′ of 12.1 electrons) at its LI absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu Kα X-ray wavelength (1.5418 Å) the f′′ for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f′′ was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.
    Keywords: rheniumtechnetiumradiopharmaceutical agentsfragment-based designtwo X-ray wavelengths
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2017-02-10
    Description: This study aims to assess the possibility of improving H2 and CH4 binding affinity to the aromatic walls of a designed new Metal–Organic Framework (MOF) through simultaneous dispersive interactions. It is suggested here that desirable H2 and CH4 storage media at low pressures require narrow uniform pores associated with large surface area, a trade-off that is challenging to achieve.
    Keywords: tailored pore geometrymetal–organic frameworksMOFshydrogen storagedispersive interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-04-19
    Description: Evolutionary pressure on residue interactions, intramolecular or intermolecular, that are important for protein structure or function can lead to covariance between the two positions. Recent methodological advances allow much more accurate contact predictions to be derived from this evolutionary covariance signal. The practical application of contact predictions has largely been confined to structural bioinformatics, yet, as this work seeks to demonstrate, the data can be of enormous value to the structural biologist working in X-ray crystallography, cryo-EM or NMR. Integrative structural bioinformatics packages such as Rosetta can already exploit contact predictions in a variety of ways. The contribution of contact predictions begins at construct design, where structural domains may need to be expressed separately and contact predictions can help to predict domain limits. Structure solution by molecular replacement (MR) benefits from contact predictions in diverse ways: in difficult cases, more accurate search models can be constructed using ab initio modelling when predictions are available, while intermolecular contact predictions can allow the construction of larger, oligomeric search models. Furthermore, MR using supersecondary motifs or large-scale screens against the PDB can exploit information, such as the parallel or antiparallel nature of any β-strand pairing in the target, that can be inferred from contact predictions. Contact information will be particularly valuable in the determination of lower resolution structures by helping to assign sequence register. In large complexes, contact information may allow the identity of a protein responsible for a certain region of density to be determined and then assist in the orientation of an available model within that density. In NMR, predicted contacts can provide long-range information to extend the upper size limit of the technique in a manner analogous but complementary to experimental methods. Finally, predicted contacts can distinguish between biologically relevant interfaces and mere lattice contacts in a final crystal structure, and have potential in the identification of functionally important regions and in foreseeing the consequences of mutations.
    Keywords: evolutionary covariancepredicted contactsNMR distance restraintsX-ray crystallographystructural bioinformatics
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2017-04-11
    Description: Powerful synergies are available from the combination of multiple methods to study proteins in the crystalline form. Spectroscopies which probe the same region of the crystal from which X-ray crystal structures are determined can give insights into redox, ligand and spin states to complement the information gained from the electron-density maps. The correct assignment of crystal structures to the correct protein redox and ligand states is essential to avoid the misinterpretation of structural data. This is a particular concern for haem proteins, which can occupy a wide range of redox states and are exquisitely sensitive to becoming reduced by solvated electrons generated from interactions of X-rays with water molecules in the crystal. Here, single-crystal spectroscopic fingerprinting has been applied to investigate the laser photoreduction of ferric haem in cytochrome c′. Furthermore, in situ X-ray-driven generation of haem intermediates in crystals of the dye-decolourizing-type peroxidase A (DtpA) from Streptomyces lividans is described.
    Keywords: X-ray photoreductionlaser photoreduction of haemhaemin crystallo optical spectroscopy
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2017-04-11
    Description: S-Adenosyl-l-homocysteine hydrolase (SAHase) from the symbiotic bacterium Bradyrhizobium elkanii (BeSAHase) was crystallized in four ligand complexes with (i) mixed adenosine (Ado) and cordycepin (Cord; 3′-deoxyadenosine), (ii) adenine (Ade), (iii) Ado and (iv) mixed 2′-deoxyadenosine (2′-dAdo) and Ade. The crystal structures were solved at resolutions of 1.84, 1.95, 1.95 and 1.54 Å, respectively. Only the Ade complex crystallized with a dimer in the asymmetric unit, while all of the other complexes formed a crystallographically independent tetrameric assembly. In the Ado/Cord complex, adenosine is found in three subunits while the fourth subunit has cordycepin bound in the active site. In the Ade and Ado complexes only these ligand molecules are present in the active sites. The 2′-dAdo/Ade complex has Ade bound in two subunits and 2′-dAdo bound in the other two subunits. The BeSAHase fold adopted a closed conformation in the complexes with Ado, Ade and 2′-dAdo, and a semi-open conformation when cordycepin occupied the active site. An SAHase-specific molecular gate, consisting of residues His342 and Phe343, behaves differently in the different complexes, but there is no simple correlation with the ligand type. Additional small-angle X-ray scattering (SAXS) experiments confirm the tetrameric state of the protein in solution. The main conclusions from this work are (i) that the SAHase subunit does not simply oscillate between two discrete conformational open/closed states in correlation with the absence/presence of a ligand in the active site, but can also assume an intermediate form for some ligands; (ii) that the shut/open state of the molecular gate in the access channel to the active site is not correlated in a simple way with the open/closed subunit conformation or empty/occupied status of the active site, but that a variety of states are possible even for the same ligand; (iii) that a cation (typically sodium) coordinated in an intersubunit loop rigidifies a molecular hinge and thus stabilizes the closed conformation; (iv) that BeSAHase in solution is a tetramer, consistent with the model derived from crystallography.
    Keywords: SAHSAMSAHase adenosineadenine2′-deoxyadenosine3′-deoxyadenosinecordycepinhomocysteinenicotinamide adenine dinucleotideNADmolecular gate
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2017-03-28
    Description: Polymorphs of the dichloro derivative of N-salicylideneaniline exhibit mechanical responses such as jumping (Forms I and III) and exploding (Form II) in its three polymorphs. The molecules are connected via the amide N—H...O dimer synthon and C—Cl...O halogen bond in the three crystal structures. A fourth high-temperature Form IV was confirmed by variable-temperature single-crystal X-ray diffraction at 180°C. The behaviour of jumping exhibited by the polymorphic crystals of Forms I and III is due to the layered sheet morphology and the transmission of thermal stress in a single direction, compared with the corrugated sheet structure of Form II such that heat dissipation is more isotropic causing blasting. The role of weak C—Cl...O interactions in the thermal response of molecular crystals is discussed.
    Keywords: polymorphismhalogen bondingmaterials sciencecrystal engineeringintermolecular interactionsmechanochemistrycrystal designhydrogen bonding
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2017-04-08
    Description: This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized Omono River virus particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure. Diffraction patterns were recorded on two area detectors. The statistical nature of the measurements from many individual particles provided information about the intensity profile of the X-ray beam, phase variations in the wavefront and the size distribution of the injected particles. The results point to a wider than expected size distribution (from ∼35 to ∼300 nm in diameter). This is likely to be owing to nonvolatile contaminants from larger droplets during aerosolization and droplet evaporation. The results suggest that the concentration of nonvolatile contaminants and the ratio between the volumes of the initial droplet and the sample particles is critical in such studies. The maximum beam intensity in the focus was found to be 1.9 × 1012 photons per µm2 per pulse. The full-width of the focus at half-maximum was estimated to be 500 nm (assuming 20% beamline transmission), and this width is larger than expected. Under these conditions, the diffraction signal from a sample-sized particle remained above the average background to a resolution of 4.25 nm. The results suggest that reducing the size of the initial droplets during aerosolization is necessary to bring small particles into the scope of detailed structural studies with X-ray lasers.
    Keywords: X-ray diffractionfree-electron laserflash X-ray imagingdiffraction before destructionvirusOmono River virusOmRV
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2017-01-11
    Description: The X-ray constrained wavefunction (XC-WF) method proposed by Jayatilaka [Jayatilaka & Grimwood (2001), Acta Cryst. A57, 76–86] has attracted much attention because it represents a possible third way of theoretically studying the electronic structure of atoms and molecules, combining features of the more popular wavefunction- and DFT-based approaches. In its original formulation, the XC-WF technique extracts statistically plausible wavefunctions from experimental X-ray diffraction data of molecular crystals. A weight is used to constrain the pure Hartree–Fock solution to the observed X-ray structure factors. Despite the wavefunction being a single Slater determinant, it is generally assumed that its flexibility could guarantee the capture, better than any other experimental model, of electron correlation effects, absent in the Hartree–Fock Hamiltonian but present in the structure factors measured experimentally. However, although the approach has been known for long time, careful testing of this fundamental hypothesis is still missing. Since a formal demonstration is impossible, the validation can only be done heuristically and, to accomplish this task, X-ray constrained Hartree–Fock calculations have been performed using structure factor amplitudes computed at a very high correlation level (coupled cluster) for selected molecules in isolation, in order to avoid the perturbations due to intermolecular interactions. The results show that a single-determinant XC-WF is able to capture the electron correlation effects only partially. The largest amount of electron correlation is extracted when: (i) a large external weight is used (much larger than what has normally been used in XC-WF calculations using experimental data); and (ii) the high-order reflections, which carry less information on the electron correlation, are down-weighted (or even excluded), otherwise they would bias the fitting towards the unconstrained Hartree–Fock wavefunction.
    Keywords: electron correlationelectron densityX-ray diffractionX-ray constrained wavefunctionsconstrained Hartree–Fock wavefunctionsdensity functional theory
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2017-01-21
    Description: Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.
    Keywords: human chromosomescell nucleichromosome imagingX-ray ptychographyplunge freezing
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-15
    Description: Classical structural biology approaches allow structural characterization of biological macromolecules in vitro, far from their physiological context. Nowadays, thanks to the wealth of structural data available and to technological and methodological advances, the interest of the research community is gradually shifting from pure structural determination towards the study of functional aspects of biomolecules. Therefore, a cellular structural approach is ideally needed to characterize biological molecules, such as proteins, in their native cellular environment and the functional processes that they are involved in. In-cell NMR is a new application of high-resolution nuclear magnetic resonance spectroscopy that allows structural and dynamical features of proteins and other macromolecules to be analyzed directly in living cells. Owing to its challenging nature, this methodology has shown slow, but steady, development over the past 15 years. To date, several in-cell NMR approaches have been successfully applied to both bacterial and eukaryotic cells, including several human cell lines, and important structural and functional aspects have been elucidated. In this topical review, the major advances of in-cell NMR are summarized, with a special focus on recent developments in eukaryotic and mammalian cells.
    Keywords: in-cell NMRnuclear magnetic resonancecellular structural biologycellular environmentprotein interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2017-02-15
    Description: Motional averaging has been proven to be significant in predicting the chemical shifts in ab initio solid-state NMR calculations, and the applicability of motional averaging with molecular dynamics has been shown to depend on the accuracy of the molecular mechanical force field. The performance of a fully automatically generated tailor-made force field (TMFF) for the dynamic aspects of NMR crystallography is evaluated and compared with existing benchmarks, including static dispersion-corrected density functional theory calculations and the COMPASS force field. The crystal structure of free base cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more attention to anisotropic chemical shifts and development of the method of solid-state NMR calculations.
    Keywords: molecular dynamicsdensity functional theorycrystal structure predictionNMR crystallographycocaine free base
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-24
    Keywords: in-cell NMRnuclear magnetic resonancecellular structural biologycellular environmentprotein interactions
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-24
    Keywords: serial crystallographysynchrotronsX-ray laserseditorial
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-02-24
    Description: Receptor tyrosine kinases (RTKs) are key transmembrane environmental sensors that are capable of transmitting extracellular information into phenotypic responses, including cell proliferation, survival and metabolism. Advances in mass spectrometry (MS)-based phosphoproteomics have been instrumental in providing the foundations of much of our current understanding of RTK signalling networks and activation dynamics. Furthermore, new insights relating to the deregulation of RTKs in disease, for instance receptor co-activation and kinome reprogramming, have largely been identified using phosphoproteomic-based strategies. This review outlines the current approaches employed in phosphoproteomic workflows, including phosphopeptide enrichment and MS data-acquisition methods. Here, recent advances in the application of MS-based phosphoproteomics to bridge critical gaps in our knowledge of RTK signalling are focused on. The current limitations of the technology are discussed and emerging areas such as computational modelling, high-throughput phosphoproteomic workflows and next-generation single-cell approaches to further our understanding in new areas of RTK biology are highlighted.
    Keywords: receptor tyrosine kinasemass spectrometryphosphoproteomicssignal transductioncancer
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2017-10-21
    Description: Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. The advantages of this technique should allow structural studies of fibrous systems in biology that are inaccessible using existing techniques.
    Keywords: serial crystallographycoherent X-ray diffractive imaging (CXDI)single particlesmolecular orientation determinationcrystalline fibrilsamyloid
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-10-21
    Keywords: crystal engineeringcrystal propertiescrystal structureseditorial
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2017-12-16
    Description: Determining vacancy in complex crystals or nanostructures represents an outstanding crystallographic problem that has a large impact on technology, especially for semiconductors, where vacancies introduce defect levels and modify the electronic structure. However, vacancy is hard to locate and its structure is difficult to probe experimentally. Reported here are atomic vacancies in the InAs/GaSb strained-layer superlattice (SLS) determined by atomic-resolution strain mapping at picometre precision. It is shown that cation and anion vacancies in the InAs/GaSb SLS give rise to local lattice relaxations, especially the nearest atoms, which can be detected using a statistical method and confirmed by simulation. The ability to map vacancy defect-induced strain and identify its location represents significant progress in the study of vacancy defects in compound semiconductors.
    Keywords: atomic vacanciesdefectsproperties of solidsstrained-layer superlatticescompound semiconductors
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2017-12-16
    Description: Lead zirconate titanate (PZT) is one of the most widely studied piezoelectric materials, mainly because of its `mysterious' relationship between the so-called morphotropic phase boundary (MPB) and its strong piezoelectric coupling factor. Using results from a pair distribution function analysis, this paper examines how the complex local structure in PZT affects the long-range average structure across the MPB. A monoclinic MC type structure is discovered in PZT. A first-order transformation between the monoclinic MA and MC components in both the average and local structures explains the sudden change in piezoelectric effect around these compositions. The role of polarization rotation in the enhancement of the piezoelectric properties is discussed with respect to the composition of PZT. The structure–property relationship that is revealed by this study explains the unique properties of PZT, and may be applicable in the design of new MPB-type functional materials.
    Keywords: PZTmorphotropic phase boundarylocal structurepolarization rotation
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-07-01
    Keywords: editorialcrystallography
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2017-07-01
    Keywords: acetylcholine receptorcholesterollipid microdomaincryo-EMhelical image reconstructionmembrane proteins
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2017-07-01
    Description: The development of structure-guided drug discovery is a story of knowledge exchange where new ideas originate from all parts of the research ecosystem. Dorothy Crowfoot Hodgkin obtained insulin from Boots Pure Drug Company in the 1930s and insulin crystallization was optimized in the company Novo in the 1950s, allowing the structure to be determined at Oxford University. The structure of renin was developed in academia, on this occasion in London, in response to a need to develop antihypertensives in pharma. The idea of a dimeric aspartic protease came from an international academic team and was discovered in HIV; it eventually led to new HIV antivirals being developed in industry. Structure-guided fragment-based discovery was developed in large pharma and biotechs, but has been exploited in academia for the development of new inhibitors targeting protein–protein interactions and also antimicrobials to combat mycobacterial infections such as tuberculosis. These observations provide a strong argument against the so-called `linear model', where ideas flow only in one direction from academic institutions to industry. Structure-guided drug discovery is a story of applications of protein crystallography and knowledge exhange between academia and industry that has led to new drug approvals for cancer and other common medical conditions by the Food and Drug Administration in the USA, as well as hope for the treatment of rare genetic diseases and infectious diseases that are a particular challenge in the developing world.
    Keywords: protein structureprotein crystallographyfragment-based structure-guided drug discoverydiseasecancer
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2017-07-05
    Description: Spin reorientation is a magnetic phase transition in which rotation of the magnetization vector with respect to the crystallographic axes occurs upon a change in the temperature or magnetic field. For example, SmFeO3 shows a magnetization rotation from the c axis above 480 K to the a axis below 450 K, known as the Γ4 → Γ2 transition. This work reports the successful synthesis of the new single-crystal perovskite SmFe0.75Mn0.25O3 and finds interesting spin reorientations above and below room temperature. In addition to the spin reorientation of the Γ4 → Γ2 magnetic phase transition observed at around TSR2 = 382 K, a new spin reorientation, Γ2 → Γ1, was seen at around TSR1 = 212 K due to Mn doping, which could not be observed in the parent rare earth perovskite compound. This unexpected spin configuration has complete antiferromagnetic order without any canting-induced weak ferromagnetic moment, resulting in zero magnetization in the low-temperature regime. M–T and M–H measurements have been made to study the temperature and magnetic-field dependence of the observed spin reorientation transitions.
    Keywords: spin reorientation transitionsrare earth perovskitesmagnetic phase transitionsMn doping
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2017-07-11
    Description: Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.
    Keywords: pair distribution functionsamorphous organic thin filmstransmission X-ray scatteringindomethacin
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2017-07-11
    Description: Small-angle X-ray scattering (SAXS) often includes an unwanted background, which increases the required measurement time to resolve the sample structure. This is undesirable in all experiments, and may make measurement of dynamic or radiation-sensitive samples impossible. Here, we demonstrate a new technique, applicable when the scattering signal is background-dominated, which reduces the requisite exposure time. Our method consists of exploiting coherent interference between a sample with a designed strongly scattering `amplifier'. A modified angular correlation function is used to extract the symmetry of the interference term; that is, the scattering arising from the interference between the amplifier and the sample. This enables reconstruction of the sample's symmetry, despite the sample scattering itself being well below the intensity of background scattering. Thus, coherent amplification is used to generate a strong scattering term (well above background), from which sample scattering is inferred. We validate this method using lithographically defined test samples.
    Keywords: coherent amplificationsmall-angle X-ray scatteringmeso-structures
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2017-06-22
    Description: Heusler alloys crystallize in a close-packed cubic structure, having a four-atom basis forming a face-centred cubic lattice. By selecting different composite elements, Heusler alloys provide a large family of members for frontier research of spintronics and magnetic materials and devices. In this paper, the structural, electronic and magnetic properties of a novel quaternary Heusler alloy, PdMnTiAl, have been investigated using a first-principles computational materials calculation. It was found that the stable ordered structure is a non-magnetic Y-type1, in good agreement with the Slater–Pauling rule. From the band structure and the density of states, it is predicted that this Y-type1 configuration is a new gapless semi-metal material. Furthermore, it was discovered that the Pd–Mn swap-disordered structure is more stable than the Y-type1 structure. The present work provides a guide for experiments to synthesize and characterize this Heusler alloy.
    Keywords: quaternary Heusler alloyelectronic propertiesmagnetic propertiesswap disorder
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2017-01-21
    Description: The host–guest structures of elements at high pressure discovered a decade ago still leave many open questions due to the lack of precise models based on full exploitation of the diffraction data. This concerns in particular Ba IV, which is stable in the range 12–45 GPa. With the example of phase Ba IVb, which is characterized here for the first time, a systematic analysis is presented of possible host–guest structure models based on high-quality single-crystal diffraction data obtained with synchrotron radiation at six different pressures between 16.5 and 19.6 GPa. It is shown that a new incommensurately modulated (IM) structure model better fits the experimental data. Unlike the composite models which are commonly reported for the Ba IV phases, the IM model reveals a density wave and its pressure-dependent evolution. The crucial role played by the selected model in the interpretation of structure evolution under pressure is discussed. The findings give a new experimental basis for a better understanding of the nature of host–guest structures.
    Keywords: high-pressure barium phasesincommensurately modulated structuresBa IVbatomic density waveshost–guest structures
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2017-01-21
    Description: The crystal contacts of several families of hydrocarbon compounds substituted with one or several types of oxygenated chemical groups were analyzed statistically using the Hirshfeld surface methodology. The propensity of contacts to occur between two chemical types is described with the contact enrichment descriptor. The systematic large enrichment ratios of some interactions like the O—H...O hydrogen bonds suggests that these contacts are a driving force in the crystal packing formation. The same statement holds for the weaker C—H...O hydrogen bonds in ethers, esters and ketones, in the absence of polar H atoms. The over-represented contacts in crystals of oxygenated hydrocarbons are generally of two types: electrostatic attractions (hydrogen bonds) and hydrophobic interactions. While Cl...O interactions are generally avoided, in a minority of chloro-oxygenated hydrocarbons, significant halogen bonding does occur. General tendencies can often be derived for many contact types, but outlier compounds are instructive as they display peculiar or rare features. The methodology also allows the detection of outliers which can be structures with errors. For instance, a significant number of hydroxylated molecules displaying over-represented non-favorable oxygen–oxygen contacts turned out to have wrongly oriented hydroxyl groups. Beyond crystal packings with a single molecule in the asymmetric unit, the behavior of water in monohydrate compounds and of crystals with Z′ = 2 (dimers) are also investigated. It was found in several cases that, in the presence of several oxygenated chemical groups, cross-interactions between different chemical groups (e.g. water/alcohols; alcohols/phenols) are often favored in the crystal packings. While some trends in accordance with common chemical principles are retrieved, some unexpected results can however appear. For example, in crystals of alcohol–phenol compounds, the strong O—H...O hydrogen bonds between two phenol groups turn out to be extremely rare, while cross contacts between phenols and alcohols have enriched occurrences.
    Keywords: hydrogen bondshalogen bondingsynthonscrystal engineeringenrichment of contactsstatistical analysisHirshfeld surface
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2016-07-22
    Description: Published diffuse X-ray scattering from the high-Tc superconductor HgBa2CuO4+δ has been reexamined with a view to developing a model that more satisfactorily accounts for the observed patterns. The present work agrees with the previous conclusion that the doping oxygen atoms form long and isolated interstitial chains that run in both tetragonal directions. However, a distinctly different model is proposed for the accompanying displacement patterns of the atoms surrounding these linear defects. In this new model it is proposed that it is the correlated shifts of the Ba atoms along the length of the defect chains that are the primary source of the observed scattering, and that the variations of intensity in the generated diffuse streaks of scattering originate from lateral shifts of both Hg and Ba atoms away from defects. The new model yields diffraction patterns that are in much more convincing agreement with the observations than the original model.
    Keywords: high-Tc superconductorsHgBa2CuO4+δdiffuse X-ray scatteringimproved model
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2016-07-22
    Description: Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO2 and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki) for both of the drugs against hCA II is similar (∼10 nM). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.
    Keywords: human carbonic anhydraseacetazolamidemethazolamideneutron structuredrug binding
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2016-07-29
    Description: A tyrosyl radical, as part of the amino acid chain of bovine liver catalase, supports dynamic proton spin polarization (DNP). Finding the position of the tyrosyl radical within the macromolecule relies on the accumulation of proton polarization close to it, which is readily observed by polarized neutron scattering. The nuclear scattering amplitude due to the polarization of protons less than 10 Å distant from the tyrosyl radical is ten times larger than the amplitude of magnetic neutron scattering from an unpaired polarized electron of the same radical. The direction of DNP was inverted every 5 s, and the initial evolution of the intensity of polarized neutron scattering after each inversion was used to identify those tyrosines which have assumed a radical state. Three radical sites, all of them close to the molecular centre and the haem, appear to be equally possible. Among these is tyr-369, the radical state of which had previously been proven by electron paramagnetic resonance.
    Keywords: polarized neutron scatteringdynamic nuclear polarizationmagnetic nuclear spin diffusion barriertyrosyl in catalase
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2016-03-30
    Description: The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo–Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.
    Keywords: X-ray topographyspace materials sciencemicrogravitysemiconductor single crystalsgrowth striationsdefectsphysical modellingthermogravitational convection
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2016-03-30
    Description: Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H...π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group R\bar 3 with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn's moon Titan's lakes, an evaporite material.
    Keywords: co-crystalsmolecular crystallographysynchrotron powder diffractionTitanevaporite
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2016-06-28
    Keywords: structural sciencematerialseditorial
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2016-06-28
    Keywords: serial crystallographycatalysisenzyme mechanismdenitrificationradiation damageradiolysissynchrotron radiation
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    International Union of Crystallography (IUCr)
    In: IUCrJ
    Publication Date: 2016-06-28
    Keywords: quasicrystalssuperspace crystallographystructure analysisphasonsX-ray diffuse scattering
    Electronic ISSN: 2052-2525
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...