ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Coccolithophores, a globally distributed group of marine phytoplankton, showed diverse responses to ocean acidification (OA) and to combinations of OA with other environmental factors. While their growth can be enhanced and calcification be hindered by OA under constant indoor light, fluctuation of solar radiation with ultraviolet irradiances might offset such effects. In this study, when a calcifying and a non-calcifying strain of Emiliania huxleyi were grown at 2 CO2 concentrations (low CO2 [LC]: 395 µatm; high CO2 [HC]: 1000 µatm) under different levels of incident solar radiation in the presence of ultraviolet radiation (UVR), HC and increased levels of solar radiation acted synergistically to enhance the growth in the calcifying strain but not in the non-calcifying strain. HC enhanced the particulate organic carbon (POC) and nitrogen (PON) productions in both strains, and this effect was more obvious at high levels of solar radiation. While HC decreased calcification at low solar radiation levels, it did not cause a significant effect at high levels of solar radiation, implying that a sufficient supply of light energy can offset the impact of OA on the calcifying strain. Our data suggest that increased light exposure, which is predicted to happen with shoaling of the upper mixing layer due to progressive warming, could counteract the impact of OA on coccolithophores distributed within this layer.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-20
    Description: Growth rates of the cold-water corals (CWC) Madrepora oculata, Lophelia pertusa, Desmophyllum dianthus and Dendrophyllia cornigera were measured over 8 mo under controlled conditions (12°C in the dark, fed 5 times a week) by means of the buoyant weight technique. Additionally, linear growth rates were measured in M. oculata and L. pertusa for 2 and 1 yr, respectively. The weight measurements revealed growth rates, expressed as percent growth per day (mean ± SD), of 0.11 ± 0.04 for M. oculata, 0.02 ± 0.01 for L. pertusa, 0.06 ± 0.03 for D. dianthus and 0.04 ± 0.02 % d–1 for D. cornigera. Growth in M. oculata was significantly higher (p 〈 0.0001) than in the other 3 CWC species. For M. oculata and L. pertusa, also linear growth was recorded. These values (mean ± SD) were 0.014 ± 0.007 and 0.024 ± 0.018 mm d–1 for M. oculata and L. pertusa, respectively. This is the first study that compares the growth rates of 4 different CWC species under the same experimental conditions of water flow, temperature, salinity and food supply. These corals have different growth rates, both in terms of total weight increase and linear increase, and these growth rates can be related to interspecific physiological differences. Data on growth rates are essential to understand the population dynamics of CWC as well as the recovery capacity of these communities after disturbance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-26
    Description: Mucus, a complex composed primarily of carbohydrates, is released in similar quantities by scleractinian warm- and cold-water reef corals, and can function as an important carrier of organic material from corals to a range of consumers, microbes in particular. However, information about mucus chemical composition is rare for warm-water corals and non-existent for cold-water corals. This study therefore presents comparative carbohydrate composition analyses of mucus released by the dominant and cosmopolitan warm- and cold-water coral genera. Arabinose was the major mucus carbohydrate component for the genus Acropora, but was not found in cold-water coral mucus. Mucus derived from corals of the genus Fungia contained significantly more fucose than the mucus of all other coral genera. However, comparison of mucus carbohydrate composition for the warm- and cold-water corals in the present study and in the literature revealed no significant differences. This indicates use of similar carbohydrate components (with the exception of arabinose) during mucus synthesis by scleractinian corals, largely irrespective of zooxanthellate or azooxanthellate carbon supply mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 166 . pp. 231-236.
    Publication Date: 2017-07-06
    Description: The only known population of coelacanths, in the Comores, western Indian Ocean, is endangered by human predation. Historical catch data from Grande Comore reveal that annual catch rates increased steadily from 1954 until the 1970s. This trend was temporarily interrupted due to an international policy introducing motorized boats and promoting offshore fishing techniques. Coelacanths are only caught from traditional unmotorized outrigger canoes as an incidental by-catch of deep water line fishing. A complete survey of all motorized and unmotorized vessels in 1995 at Grande Comore in comparison to earlier years indicated that a recent decreased use of motors and increase of unmotorized canoe fishing has led to an increase in coelacanth catches. Conservation measures and strategies for reducing the fishing pressure exerted on coelacanths are discussed. The southwest coast of Grande Comore should be designated as a nature reserve and protected area where immediate protection measures should be taken, an opinion which is supported by Comorian authorities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: In the 1930s the wasting disease pathogen Labyrinthula zosterae is believed to have killed 90% of the temperate seagrass Zostera marina in the Atlantic Ocean. Despite the devastating impact of this disease the host–pathogen interaction is still poorly understood, and few field studies have investigated factors correlating with the prevalence and abundance of L. zosterae. This study measures wasting disease in natural populations of Z. marina, showing a strong correlation between the disease and both salinity and water depth. No infection was detected in Z. marina shoots from low salinity (13–25 PSU) meadows, whereas most shoots carried the disease in high salinity (25–29 PSU). Shallow (1 m) living Z. marina shoots were also more infected compared to shoots in deeper (5 m) meadows. In addition, infection and transplantation experiments showed that Z. marina shoots from low salinity meadows with low pathogen pressure were more susceptible to L. zosterae infection. The higher susceptibility could not be explained by lower content of inhibitory defense compounds in the shoots. Instead, extracts from all Z. marina shoots significantly reduced pathogen growth, suggesting that Z. marina contains inhibitory compounds that function as a constitutive defense. Overall, the results show that seagrass wasting disease is common in natural Z. marina populations in the study area and that it increases with salinity and decreases with depth. Our findings also suggest that low salinity areas can act as a refuge against seagrass wasting disease.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 85 . pp. 237-243.
    Publication Date: 2018-03-09
    Description: Burrowing activities of the only European fiddler crab, Uca tangeri, and its resulting influence on biotope in mudflats were investigated during 1989-1990 at Ria Formosa, Portugal. Individuals use the same burrow for ca 1 wk, then occupy another or dig a new one. Overall a burrow is inhabited for ca 3 mo by several individuals before it is abandoned. Vacated burrows decay within 2 to 3 wk. Burrow size and number vary with the season. Burrow density was highest in spring and early summer with ca 17 burrows m-2, and then decreased. Deepest burrows (up to 90 cm long) were found in winter, the shallowest (up to 40 cm long) in summer. Volume of the sediment moved by U. tangen varied monthly between 3000 and 6000 cm3 per m2 of mudflat. Water is only found in the lower third of the burrow. Burrow water contains less oxygen and more nitrate than the surrounding water of the Ria Formosa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The high biodiversity of coral reefs results in complex trophic webs where energy and nutrients are transferred between species through a multitude of pathways. Here, we hypothesize that reef sponges convert the dissolved organic matter released by benthic primary producers (e.g. corals) into particulate detritus that is transferred to sponge-associated detritivores via the sponge loop pathway. To test this hypothesis, we conducted stable isotope (13C and15N) tracer experiments to investigate the uptake and transfer of coral-derived organic matter from the sponges Mycale fistulifera and Negombata magnifica to 2 types of detritivores commonly associated with sponges: ophiuroids (Ophiothrix savignyi and Ophiocoma scolopendrina) and polychaetes (Polydorella smurovi). Findings revealed that the organic matter naturally released by the corals was indeed readily assimilated by both sponges and rapidly released again as sponge detritus. This detritus was subsequently consumed by the detritivores, demonstrating transfer of coral-derived organic matter from sponges to their associated fauna and confirming all steps of the sponge loop. Thus, sponges provide a trophic link between corals and higher trophic levels, thereby acting as key players within reef food webs.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 88 . pp. 181-184.
    Publication Date: 2018-03-21
    Description: Respiration and activity of eelpouts Zoarces viviparus L. were measured in an underwater respiration chamber in Kiel Bay (Germany) under short-term hypoxia. Respiration and swimming activity both declined almost continuously with decreasing oxygen saturation...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-08-10
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-16
    Description: Methane seeps in shallow waters in the northern Kattegat off the Danish coast form spectacular submarine landscapes - the 'bubbling reefs' - due to carbonate-cemented sandstone structures which are colonized by brightly coloured animals and plants. These structures may be 100 m2 in area and consist of pavements, complex formations of overlying slab-type layers, and pillars up to 4 m high. The carbonate cement (high-magnesium calcite, dolomite or aragonite) is 13C-depleted, indicating that it originated as a result of microbial methane oxidation. It is believed that the cementation occurred in the subsurface and that the rocks were exposed by subsequent erosion of the surrounding unconsolidated sediment. The formations are interspersed with gas vents that intermittently release gas, primarily methane, at up to 25 1 h-' The methane most likely originated from the microbial decomposition of plant material eposited during the Eemian and early Weichselian periods, i.e. l00 000 to 125 000 years B.P. Aerobic methane oxidation in the sediment was restricted Lo the upper 4 cm in muddy sand and to the upper 13 cm In coarse sand. Maximum aerobic methane oxidation rates ranged from 4.8 to 45.6 pm01 dm-3 d". The rock surfaces and epifauna around the seeps were also sites of methane-oxidizing activity. Integrated sulphate reduction rates for the upper 10 cm of muddy sand gave 4.2 to 26.6 mm01 m-2 d-' These rates are higher than those previously reported from similar water depths in the Kattegat but did not relate to the sediment methane content. Since gas venting occurs over several km2 of the sea floor in the Kattegat it is likely to make a significant local contribution to the cycling of elements in the sediment and the water column. The rocks support a diverse ecosystem ranging from bacteria to macroalgae and anthozoans. Many animals live within the rocks in holes bored by sponges, polychaetes and bivalves. Stable carbon isotope composition (6'") of tissues of invertebrates from the rocks were in the range -17 to -24 'A, indicating that methane-derived carbon makes little direct contribution to their nutrition. Within the sediments surrounding the seeps there is a poor metazoan fauna, in terms of abundance, diversity and biomass. This may be a result of toxicity due to hydrogen sulphide input from the gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 91 . pp. 303-311.
    Publication Date: 2018-03-15
    Description: During the Bremerhaven Workshop in the southern North Sea, REMOTS sediment profile lmages (SPI) were recorded in order to supplement the benthic component of the workshop and other environmentally relevant parameters investigated along a spatial gradient at an abandoned exploratory drilling site off the Dutch coast. The sampling stations were in accordance with the other studies, but due to bad weather conditions only a small proportion of the intended samples were taken. The profile data were supplemented by video recordings of the sediment surface features taken on a second cruise. The results presented here have important implications for the interpretation of other benthic and sediment samples, and may help to interpret some enigmat~cw orkshop data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 162 . pp. 279-286.
    Publication Date: 2018-05-08
    Description: VHF telemetry was used in November and December 1995 on 8 Humboldt penguins Spheniscus humboldti breeding at Pan de Azúcar Island (26°S, 70°W), Northern Chile, to determine at-sea behaviour of the birds. We obtained 2710 locations, 90% of which were within a radius of 20 km around the island. Mean travelling speed of the birds was 0.92 m s-1 and speed distribution showed peaks at 1.6 and 3 m s-1. Penguins travelling between foraging areas remained submerged for an average of 8.4 s between surfacings, whereas foraging dives lasted on average 61 s. The analysis of 79 complete foraging trips showed that tracks deviated from a straight course, and range (maximum distance from island) was only 0.37 times total horizontal distance swum. Birds did not forage synchronously or in the same foraging areas. However, foraging ranges were correlated between birds, indicating similar search strategies during periods of low food availability. The results obtained here via VHF telemetry agreed well with those of previous studies employing satellite transmitters and data loggers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 106 . pp. 199-202.
    Publication Date: 2018-06-15
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-02-28
    Description: Plgments are frequently used as biomarkers to study the fate of primary producers in the food web. We evaluated the effectiveness of pigment analysis in the giant aquatic isopod Saduna entomon, an important link in the food chain of the Baltic Sea. Specimens were collected on a transect across Puck Bay (Gulf of Gdansk, Poland) at stations comprising different sedimentary conditions and varying supply of micro- and macroalgal material. In laboratory experiments S. entomon was fed different kinds of prey. Different marker coinbinations were found in the intestlnal tissue, resulting from predation on herbivorous and carnivorous species. Analyses of field samples revealed that S. entomon, living in the sedlment surface, ingests freshly sedimented phytoplankton as well as plant detritus ß-carotene and the xanthophyll echinenone were found in the carapax and gonads, supporting the view that these substances are assimilated and servve as antioxidant protection of lipids and other macromolecules.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 98 . pp. 209-214.
    Publication Date: 2018-03-07
    Description: The individual marking of flying and flightless birds has a long history in ornithology. It is the only technique which is cheap, simple and effective, yielding results on bird migration, age-specific annual survival and recruitment. Consequently, hundreds of thousands of birds are annually ringed worldwide. Unfortunately, researchers all too often tend to neglect problems associated with rings and tags. In Antarctic penguins, flipper bands have been used extensively by a variety of nations, and banding is an integral part of the Council for the Conservation of Antarctic Marine Living Resources' (CCAMLR) monitoring programme (Standard method A4). This programme suggests that mortality in penguins wearing bands can be attributed to either (a) prey species availability, (b) predation, (c) weather conditions or (d) other. In this paper, we have attempted to quantify energetic costs associated with wearing a flipper band. For that purpose, freshly caught Adelie penguins (n = 7) were introduced, in Antarctica, into a 21 m long still-water tunnel, where their behaviour and energy consumption were determined via observation and gas respirometry. Birds were either immediately marked with a flipper band and tested in the tunnel for ca 2 h, and then taken out and tested again after removal of the band, or vice-versa. Flipper bands significantly (ANOVA, p = 0.006) increased the power input of Adelie penguins during swimming by 24 % over the speed range of 1.4 to 2.2 m S-', from 17 W kg-' to 21.1 W kg-' (n = 115 and 157 measurements, respectively). The implications of banding on foraging performance and sunival of penguins are discussed. Implantable passive transponders could help overcome such problems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 90 . pp. 39-43.
    Publication Date: 2018-03-09
    Description: The quality of the food, especially origin and size, of the only European fiddler crab, Uca tangeri (Eydoux, 1835), was studied over a 2 yr period. In experiments with fluorescent microparticles, all particles smaller than 250 pm were ingested regardless of thelr chemical composition. Comparisons of sediment, feeding pellets and faeces showed that U. tangeri feeds primarily on microalgae which are completely extracted from the sediment. It also consumes vascular macrophytes (Arthrocnemum spp.), macroalgae, detritus and fish carcasses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Inter Research
    In:  Diseases of Aquatic Organisms, 15 . pp. 81-86.
    Publication Date: 2018-03-23
    Description: In April 1990, 488 marine fish, belonging to 30 species from central Philippine waters, were investigated macroscopically for the occurrence of parasites in their flesh and for anisakid nematodes in their body cavity. Twenty-four fish were found to be infected by 1 of 4 different types of parasites. Unidentified Microspora were found in 4 host species from different families. Plerocercoids of the trypanorhynchid cestode Otobothrium penetrans occurred in the flesh of hemirhamphids and belonids only. Adult nematodes of the genus Philometra were found in the garfish Tylosurus crocodilus. The only parasite found which might be transferable to warm-blooded animals was the L-III stage of Anisakis sp. from the body cavity and the muscle of Muraenesox cinereus. The risk of human infections by parasites through consumption of raw marine fish in the central Philippines therefore is considered to be low.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 106 . pp. 1-9.
    Publication Date: 2018-04-09
    Description: Prey availability is one of the factors determining the distribution of seabirds at sea. Northern fulmars Fulmarus glaclalis and black-legged kittiwakes Rissa tridactyla were the most regular and frequent ship-followers across the central and northern North Sea during 2 surveys with a fishery research vessel in May-June and July-August 1992. Sixteen other species occurred less often and/or in lower numbers. Birds consumed 84 % of experimentally discarded roundfish and 8 % of discarded flatfish. On average, northern gannets Morus bassanus took the largest individuals of most fish specles, black-legged kittywakes the smallest The average size choices of herring gulls Larus argentatus, lesser black-backed gulls Larus fuscus and northern fulmars lay between these 2 extremes. The choice of fish lengths by birds vaned with different fish species. Northern gannet was the most successful species in consuming discards. Northern fulmars success rates decreased with the presence of larger ship-followers but were never high. Black-headed gull Larus ridibundus and common gull Larus canus were less successful than the more frequent typical ship-following species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 123 . pp. 149-153.
    Publication Date: 2018-06-15
    Description: The tissue of 31 demosponge and 7 hexachnelhd species was analyzed for its composition of organic and lnorganic matter With one excephon (Hahclona cf gausaana) inorganic matter i e n~ostly the siliceous skeleton, accounted for most of the dry weight, varying between about 60 and 95%dry wt There were no general trends in the ratio of organic to inorganic matter within sponge orders or genera, and within one species, the ratio could vary between stations For one of the hexactinellids Bathydorus spmosus, several size classes were analyzed and there was no systematic change in the organic inorganic matter ratio w t h specimen size For some species the results from the Weddell Sea sponges are in good agreement with earlier data from McMurdo Sound The low organic matter content in Weddell Sea sponges mphes that sponge biomasses are much lower than hitherto assumed on the basis of then high abundances and large sizes In consequence Antarctic sponges despite their ubiquitousness, may only channel a m n o r fractlon of the general bentho-pelagic flow of matter and energy and their maln role in the ecosystem is likely structural rather than dynamic
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-15
    Description: During 5 consecutive summer seasons (1990 to 1994) both Aureliaaurita medusa and mesozooplankton abundances were investigated at 2 stations in the Kiel Bight (western Baltic Sea). Stocks of medusae varied considerably between the years, with median abundance of 1 and 0.3 ind. 100 m-3 in 1990 and 1991, 3 and 4 ind. 100 m-3 in 1992 and 1994, but 9 ind. 100 m-3 in 1993. Significant differences in the mesozooplankton stock and community composition were observed in 1993 when compared with the year of rather low Aurelia abundance (1991). Total zooplankton and copepod numbers both exhibited an inverse relationship with the abundance of medusae and were thus considerably lower in 1993 than in 1991. However, not all copepod species were affected by A. aurita. Pseudo- and Paracalanus spp. and Oithonasimilis showed dramatically reduced stocks in the bloom year when compared with the medusa-poor situation, but no significant changes were found for Centropageshamatus and Acartia spp. Also other zooplankton groups with the exception of bivalve larvae were reduced by the medusae. The differential response of zooplankton to varying abundance of medusae led to a shift in the trophic structure of the zooplankton community. Fine-filter feeders and raptorial feeders were much more important in years when medusae occurred in low densities, whereas coarse-filter feeders dominated in the opposite situation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 86 . pp. 297-300.
    Publication Date: 2019-02-12
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-06-27
    Description: Particulate (POM) and dissolved organic matter (DOM) released by the cold water corals Lophelia pertusa (L.) and Madrepora oculata (L.) was collected, analysed and quantitatively compared to that released by warm water reef-building corals. Particulate nitrogen (PN) and particulate organic carbon (POC) release rates of L. pertusa were 0.14 ± 0.07 mg N m–2 h–1 and 1.43 ± 1.22 mg C m–2 h–1, respectively, which is in the lower range of POM release rates measured for warm water corals, while dissolved organic carbon (DOC) release was 47 ± 19 mg C m–2 h–1. The resulting high DOC:POC ratio indicates that most cold water coral-derived organic matter immediately dissolved in the water column. Cold water corals, similar to their warm water counterparts, produced large amounts of nitrogen-rich coral mucus with C:N ratios of 5 to 7 for Lophelia- and 7 to 9 for Madrepora-derived mucus. A 7-fold increase in the oxygen consumption rates in cold water coral mucus-amended seawater containing the natural microbial assemblage indicates that this organic matter provided an attractive food source for pelagic microbes. In situ investigations at Røst Reef, Norway, showed that microbial activity in the seawater closest to the reef was 10 times higher than in the overlying water column. This suggests that cold water corals can stimulate microbial activity in the direct reef vicinity by the release of easily degradable and nutrient-rich organic matter, which may thereby function as a vector for carbon and nutrient cycling via the microbial loop in cold water coral reef systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-03-16
    Description: Occurrence of stomach wall granulomas in European smelt was studled at 6 locations along the German North Sea coast. Identification of larval nematodes inhabiting these granulomas is provided for the first time. Three species, isolated by pepsin-HC1 digestion, are involved: Hysterothylacium cf. cornutum, Cosmocephalus obvelatus and Paracuaria tridentata. 72% of all stomachs examined were affected. The ratio of number of granulomas to number of the 3 larval species free in the mesentery was 1:1.3. Differences in prevalences and intensities were significant among all locations. Granuloma abundance was highest in samples from the Elbe estuary decreasing in the other locations relative to their distance from the Elbe. There was no relationship between the number of larvae encapsulated on the stomach wall and the number of larval P decipjens in the musculature (r = 0.3). Host condition factor could not be related to number of granulomas. Smelt appaears to be an important transmitter of spiruroid nematode larvae to marine birds in this region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-03-22
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-15
    Description: From the Gulf of Aden along a transect to the central-northern Red Sea the abundance and taxonomic composition of metazoan plankton was studied during the southwest monsoon period (summer 1987). Samples were taken with 0.055 mm mesh nets down to a maximum depth of 1050 m. In the epipelagic zone, a distinct decrease in total plankton abundance was observed from south to north, which was much more pronounced in biomass (by a factor of up to 10) as compared to numbers (by a factor of 2). This could partly be explained by differences in the taxonomic and/or size composition of the planktonic fauna. Among non-calanoid copepods, 40 out of 75 species or taxa investigated decreased in abundance from south to north. Sixteen of these species were completely absent in the central-northern area. Nineteen species or taxa, however, showed the opposite feature of a higher abundance in the central-northern Red Sea. The stations were grouped according to similarities in the taxonomic composition of non-calanoid copepods in the epipelagic zone. The following 3 geographical regions could be separated: (1) Gulf of Aden and Strait of Bab al Mandab; (2) southern Red Sea; and (3) central-northern Red Sea. In the meso- and bathypelagic zones, regional differences were not evident. The results are discussed in relation to hydrographic conditions during summer 1987.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-15
    Description: A spring investigation of the phytoplankton in the western Alboran Sea (Mediterranean) was undertaken using chlorophyll and carotenoid biomarkers to characterize the community in the water column and in drifting sediment traps set at 100 and 200 m. During 2 drifter experiments, calm and sunny conditions induced a progressive thermal stratification that reduced pigment sedimentation into deeper water and confined the phytoplankton to the surface layer, resulting in an increase in chlorophyll biomass. 19'-Hexanoyloxyfucoxanthin (prymnesiophytes) and chlorophyll b (chlorophytes, prasinophytes, prochlorophytes) were the major accessory pigments, while fucoxanthin, alloxanthin and peridinin indicated the presence of diatoms, cryptophytes and dinoflagellates, respectively. The proportional contribution of each algal group to the chlorophyll a (chl a) biomass, as derived from multiple regression analysis, revealed that prymnesiophytes, cryptophytes and the green algal group collectively accounted for at least 75% in the upper 100 m, emphasizing the importance of the nanophytoplankton. Phaeopigments, dominated by phaeophorbide a2, were the main pigments observed in sediment traps, although chl a, fucoxanthin and 19'-hexanoyloxyfucoxanthin were detected in smaller concentrations as well as traces of chlorophyll b (chl b). In deep water, fucoxanthin and 19'-hexanoyloxyfucoxanthin were the only accessory pigments present while total phaeopigment/chl a molar ratios 〉1 reflected the active transformation of fine phytogenic material at depth. High particulate organic carbon (POC)/chl a ratios (〉100 in surface water; 〉1000 in deep water) suggested that phytoplankton was a relatively small component of the total carbon biomass down the water column. Using simple budget calculations, we determined that 58 to 65% of the chl a produced in the upper 100 m accumulated in the water column over both experiments. During Expt 1, 29% of the chl a sedimented out, mostly as phaeopigment, at 100 m (24%), and 6% was degraded to colourless residues in the water column. In contrast, only 12% of the chl a sedimented in Expt 2, while 20% was degraded to colourless residues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-02-08
    Description: Nitrogen fixation is a key source of nitrogen in the Baltic Sea which counteracts nitrogen loss processes in the deep anoxic basins. Laboratory and field studies have indicated that single-strain nitrogen-fixing (diazotrophic) cyanobacteria from the Baltic Sea are sensitive to ocean acidification and warming, two drivers of marked future change in the marine environment. Here, we enclosed a natural plankton community in twelve indoor mesocosms (volume ~1400 L) and manipulated pCO2 to yield six CO2 treatments with two different temperature treatments (16.6°C and 22.4°C, pCO2 range = 360 – 2030 μatm). We followed the filamentous, heterocystous diazotrophic cyanobacteria community (Nostocales, primarily Nodularia spumigena) over four weeks. Our results indicate that heterocystous diazotrophic cyanobacteria may become less competitive in natural plankton communities under ocean acidification. Elevated CO2 had a negative impact on Nodularia sp. biomass, which was exacerbated by warming. Our results imply that Nodularia sp. may contribute less to new nitrogen inputs in the Baltic Sea in future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-07-06
    Description: Five hormone-treated female Japanese silver eels Anguilla japonica were tagged with ultrasonic transmitters and released by submersible in the West Pacific at seamounts of the West Mariana Ridge, their supposed spawning grounds. Four eels were tracked for 60 to 423 min in the vicinity of the seamounts. They did not settle at the seamounts but swam at a mean speed of 0.37 m s-1 into open water above deep ground. Their mean swimming depth ranged from 81 to 172 m. Experiments suggest that pre-matured A. japonica migrate to their spawning grounds in temperate warm water and at shallow depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: Nitrification, the step-wise oxidation of ammonium to nitrite and nitrate, is important in the marine environment because it produces nitrate, the most abundant marine dissolved inorganic nitrogen (DIN) component and N-source for phytoplankton and microbes. This study focused on the second step of nitrification, which is carried out by a distinct group of organisms, nitrite-oxidizing bacteria (NOB). The growth of NOB is characterized by nitrite oxidation kinetics, which we investigated for 4 pure cultures of marine NOB (Nitrospina watsonii 347, Nitrospira sp. Ecomares 2.1, Nitrococcus mobilis 231, and Nitrobacter sp. 311). We further compared the kinetics to those of non-marine species because substrate concentrations in marine environments are comparatively low, which likely influences kinetics and highlights the importance of this study. We also determined the isotope effect during nitrite oxidation of a pure culture of Nitrospina (Nitrospina watsonii 347) belonging to one of the most abundant marine NOB genera, and for a Nitrospira strain (Nitrospira sp. Ecomares 2.1). The enzyme kinetics of nitrite oxidation, described by Michaelis-Menten kinetics, of 4 marine genera are rather narrow and fall in the low end of half-saturation constant (Km) values reported so far, which span over 3 orders of magnitude between 9 and 〉1000 µM NO2-. Nitrospina has the lowest Km (19 µM NO2-), followed by Nitrobacter (28 µM NO2-), Nitrospira (54 µM NO2-), and Nitrococcus (120 µM NO2-). The isotope effects during nitrite oxidation by Nitrospina watsonii 347 and Nitrospira sp. Ecomares 2.1 were 9.7 ± 0.8 and 10.2 ± 0.9‰, respectively. This confirms the inverse isotope effect of NOB described in other studies; however, it is at the lower end of reported isotope effects. We speculate that differences in isotope effects reflect distinct nitrite oxidoreductase (NXR) enzyme orientations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-03-05
    Description: Organic material entering the oceanic mesopelagic zone may either reenter the euphotic zone or settle into deeper waters. Therefore it is important to know about mechanisms and efficiency of substrate conversion in this water layer. Bacterial biomass, bacteria secondary production (BSP). extra­cellular peptidase activity (EPA) and particulate organic nitrogen (PON) were measured in vertical pro­files of the North Atlantic (46° N 18° W; 57° N 23° W) during the Joint Global Ocean Flux Study (JGOFS) cruise in May 1989. The magnitude of these parameters decreased differently with depth. The strong­est decreases were observed for bacterial production (3H-thymidine incorporation) and peptide turn­over (using the substrate analog leucine-methylcoumarinylamide). Bacterial biomass and peptidase potential activity were not reduced as much in the mesopelagic zone. Peptidase potential per unit cell biomass of mesopelagic bacteria was 2 to 3 times higher than that of bacteria in surface water. Nevertheless bacterial growth at depth was slow, due to slow actual hydrolysis. Values of theoretical PON hydrolysis were calculated from PON measurements and protein hydrolysis rates. These corre­sponded well to bacterial production rates, and the degree of correspondence increased from a factor of 0.63 (PON hydrolysis/ESP) in the mixed surface layer to 0.87 in the mesopelagic zone. Thus we hypothesized an effective coupling between particle hydrolysis and uptake of hydrolysate by bacteria, which depletes the deeper water of easily degradable substrates as hydrolysates usually are. The low enzymatic PON turnover rate of 0.04 d- 1 in the subeuphotic zone suggests that residence time of parti­cles within a depth stratum may be important for its contribution to export. storage and recycling of organic matter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-03-07
    Description: Laboratory experiments were carried out to investigate the effect of protozoan, copepod and combined grazing on Phaeocystis biomass. Phaeocystis cf. globosa single cells were offered to 3 different protozoan species, to the calanoid copepod Temora longicornis, as well as to mixtures of both grazer types. The heterotrophic dinoflagellate Oxyrrhis marina and the oligotrich ciliate Strombidinopsis acuminatum ingested Phaeocystis at much higher rates than did the copepod. Nevertheless, protozoan growth and ingestion rates were submaximal, indicating Phaeocystis to be suboptimal food. The oligotrich ciliate Strombidium elegans did not feed on Phaeocystis. In grazing experiments with mixtures of both predator types, the decline of Phaeocystis single cells could be explained by protozoan grazing alone, implying no grazing by the copepods on Phaeocystis. Instead, copepods ingested the protozoans at high rates. Predation on 0. marina and S. acuminatum by T. longicornis resulted in a reduction of the total grazing pressure on Phaeocystis of 21 and 67 % respectively. We conclude that mesozooplankton predation on herbivorous ciliates and heterotrophic dinoflagellates, which consumed Phaeocystis cells, can considerably reduce the overall grazing pressure and may enhance Phaeocystis bloomng.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 105 . pp. 291-299.
    Publication Date: 2018-06-18
    Description: The degradatlon of phytodetritus In the deep sea was studied in sediment samples of the NE Atlantic In spring and summer 1992 using I4C-labelled algal cells (Anacystis sp , Cyanophyceae) fed to the benthic population in ship-board experiments and measuring the liberation of labelled I4CO2 over time. The mineralization process showed a 2-step behaviour with an initial rapic rate whhich later slowed down, indicating the initial attack of easily degradable material of the complex food and the later utilization of less labile matter. The profile of degradation activity with sedimend depth showed no clear vertical gradient in March, but in August the activity in the top horizon increased by a factor of 6.1 to 7.8, which was coherent with increased bacterial numbers or biomass (factor of 1.3 to 1.7), respectively, and might be caused by the seasonal input of phytodetritus to the deep-sea bottom. The degradation measured was positively influenced by elevated incubation pressure mostly in summer, indicating that the summer stimulation of microbial activity in 1992 was based on the metabolic activation of the indigenous benthic community while surface-derived organisms attached to sedimented particles were of lesser importance whith respect to consumption of phytodetritus. Several aspects on quality of phytodetritus for nutrition of the deep-sea benthos, seasonality of detritus degradation, and influence of pressure on microbial activity are discussed
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-09-23
    Description: Previous studies have suggested that phytoplankton play an important role in the biogeochemical cycling of iodine, due to the appearance of iodide in the euphotic zone. Changes in the speciation of iodine over the course of the growth cycle were examined in culture media for a variety of phytoplankton taxa (diatoms, dinoflagellates and prymnesiophytes). All species tested showed the apparent ability to reduce iodate to iodide, though production rates varied considerably between species (0.01 to 0.26 nmol l–1 µg–1 chl a d–1), with Eucampia antarctica the least and Pseudo-nitzschia turgiduloides the most efficient iodide producers. Production was found to be species specific and was not related to biomass (indicated by e.g. cell size, cell volume, or chl a content). In all species, except for the mixotrophic dinoflagellate Scrippsiella trochoidea, iodide production commenced in the stationary growth phase and peaked in the senescent phase of the algae, indicating that iodide production is connected to cell senescence. This suggests that iodate reduction results from increased cell permeability, which we hypothesize is due to subsequent reactions of iodate with reduced sulphur species exuded from the cell. A shift from senescence back to the exponential growth phase resulted in a decline in iodide and indicated that phytoplankton-mediated oxidation of iodide to iodate was likely to be occurring. Iodide production could not be observed in healthy cells kept in the dark for short periods. Bacterial processes appeared to play only a minor role in the reduction of iodate to iodide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-09-23
    Description: Effects of elevated temperature on the formation and subsequent degradation of diatom aggregates were studied in a laboratory experiment with a natural plankton community from the Kiel Fjord (Baltic Sea). Aggregates were derived from diatom blooms that developed in indoor mesocosms at 2.5 and 8.5 degrees C, corresponding to the 1993 to 2002 mean winter in situ temperature of the Western Baltic Sea and the projected sea surface temperature during winter in 2100, respectively. Formation and degradation of diatom aggregates at these 2 temperatures in the dark were promoted with roller tanks over a period of 11 d. Comparison of the 2 temperature settings revealed an enhanced aggregation potential of diatom cells at elevated temperature, which was likely induced by an increased concentration of transparent exopolymer particles (TEP). The enhanced aggregation potential led to a significantly higher proportion of particulate organic matter in aggregates at 8.5 degrees C. Moreover, the elevated temperature favoured the growth of bacteria, bacterial biomass production, and the activities of sugar- and protein-degrading extracellular enzymes in aggregates. Stimulating effects of rising temperature on growth and metabolism of the bacterial community resulted in an earlier onset of aggregate degradation and silica dissolution. Remineralization of carbon in aggregates at elevated temperature was partially compensated by the formation of carbon-rich TEP during dark incubation. Hence, our results suggest that increasing temperature will affect both formation and degradation of diatom aggregates. We conclude that the vertical export of organic matter through aggregates may change in the future, depending on the magnitude and vertical depth penetration of warming in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-12-31
    Description: Sensitivity of marine crustaceans to anthropogenic CO2 emissions and the associated acidification of the oceans may be less than that of other, especially lower, invertebrates. However, effects on critical transition phases or carry-over effects between life stages have not comprehensively been explored. Here we report the impact of elevated seawater PCO2 values (3100 µatm) on Hyas araneus during the last 2 weeks of their embryonic development (pre-hatching phase) and during development while in the consecutive zoea I and zoea II larval stages (post-hatching phase). We measured oxygen consumption, dry weight, developmental time and mortality in zoea I to assess changes in performance. Feeding rates and survival under starvation were investigated at different temperatures to detect differences in thermal sensitivities of zoea I and zoea II larvae depending on pre-hatch history. When embryos were pre-exposed to elevated PCO2 during maternal care, mortality increased about 60% under continued CO2 exposure during the zoea I phase. The larvae that moulted into zoea II, displayed a developmental delay by about 20 days compared to larvae exposed to control PCO2 during embryonic and zoeal phases. Elevated PCO2 caused a reduction in zoea I dry weight and feeding rates, while survival of the starved larvae was not affected by the seawater CO2 concentration. In conclusion, CO2 effects on egg masses under maternal care carried over to the first larval stages of crustaceans and reduced their survival and development to levels below those previously reported in studies exclusively focussing on acute PCO2 effects on the larval stages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-23
    Description: Global climate change involves an increase in oceanic CO2 concentrations as well as thermal stratification of the water column, thereby reducing nutrient supply from deep to surface waters. Changes in inorganic carbon (C) or nitrogen (N) availability have been shown to affect marine primary production, yet little is known about their interactive effects. To test for these effects, we conducted continuous culture experiments under N limitation and exposed the bloomforming dinoflagellate species Scrippsiella trochoidea and Alexandrium fundyense (formerly A. tamarense) to CO2 partial pressures (pCO(2)) ranging between 250 and 1000 mu atm. Ratios of particulate organic carbon (POC) to organic nitrogen (PON) were elevated under N limitation, but also showed a decreasing trend with increasing pCO(2). PON production rates were highest and affinities for dissolved inorganic N were lowest under elevated pCO(2), and our data thus demonstrate a CO2-dependent trade-off in N assimilation. In A. fundyense, quotas of paralytic shellfish poisoning toxins were lowered under N limitation, but the offset to those obtained under N-replete conditions became smaller with increasing pCO(2). Consequently, cellular toxicity under N limitation was highest under elevated pCO(2). All in all, our observations imply reduced N stress under elevated pCO(2), which we attribute to a reallocation of energy from C to N assimilation as a consequence of lowered costs in C acquisition. Such interactive effects of ocean acidification and nutrient limitation may favor species with adjustable carbon concentrating mechanisms and have consequences for their competitive success in a future ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: Previous bioassays conducted in the oligotrophic Atlantic Ocean identified availability of inorganic nitrogen (N) as the proximate limiting nutrient control of primary production, but additionally displayed a synergistic growth effect of combined N and phosphorus (P) addition. To classify conditions of nutrient limitation of coastal phytoplankton in the tropical ocean, we performed an 11 d nutrient-enrichment experiment with a natural phytoplankton community from shelf waters off northwest Africa in shipboard mesocosms. We used pigment and gene fingerprinting in combination with flow cytometry for classification and quantification of the taxon-specific photoautotrophic response to differences in nutrient supply. The developing primary bloom was dominated by diatoms and was significantly higher in the treatments receiving initial N addition. The combined supply of N and P did not induce a further increase in phytoplankton abundance compared to high N addition alone. A secondary bloom during the course of the experiment again displayed higher primary producer standing stock in the N-fertilized treatments. Bacterial abundance correlated positively with phytoplankton biomass. Dominance of the photoautotrophic assemblage by N-limited diatoms in conjunction with a probable absence of any P-limited phytoplankton species prevented an additive effect of combined N and P addition on total phytoplankton biomass. Furthermore, after nutrient exhaustion, dinitrogen (N-2)-fixing cyanobacteria succeeded the bloom-forming diatoms. Shelf waters in the tropical eastern Atlantic may thus support growth of diazotrophic cyanobacteria such as Trichodesmium sp. subsequent to upwelling pulses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 512 . pp. 89-98.
    Publication Date: 2018-06-25
    Description: In complex ecosystem models, relationships between species include a large number of direct interactions and indirect effects. In order to unveil some simple and better understandable relationships, it is useful to study the asymmetry of inter-specific effects. We present a simple approach for this based on stochastic food web simulations from previous studies. We refer to the Prince William Sound (Gulf of Alaska) marine ecosystem model for illustration. Real data were used to parameterize a dynamical food web model. Through simulations and sensitivity analysis, we determined the strength of the effects between all species. We calculated the asymmetry between the mutual effects species have on each other, and selected the top 5% most asymmetrical interactions. The set of these highly asymmetrical relationships is illustrated by a separate graph in which we calculated the positional importance of the species and correlated this to other independent properties such as population size and trophic position. Results suggest that halibut is the key species dominating this system of asymmetrical interactions, but sablefish and adult arrowtooth flounder also seem to be of high importance. Nearshore demersals display the highest number of connections in the graph of asymmetrical links, suggesting that this trophic group regulates the dynamics of many species in the food web. This approach identifies key interactions and most asymmetrical relationships, potentially increasing the efficiency of management efforts and aiding conservation efforts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 519 . pp. 103-113.
    Publication Date: 2020-01-21
    Description: The combined effects of warming and overwintering copepod densities on the spring succession of Baltic Sea plankton were investigated using indoor mesocosms. Three zooplankton (1.5, 4 and 10 copepods L-1) and two temperature levels called ∆0°C and ∆6°C (0°C and 6°C above the present day temperature scenario for Kiel Bight) were chosen. Both, the timing and the duration of the protozooplankton (PZP) bloom were significantly affected by temperature, but not by copepod density. In contrast, the bloom intensity of PZP was highly affected by the factors temperature and copepod density and its interaction. This suggests that at elevated temperature conditions PZP grows faster but, at the same time, are subject to higher top-down control by copepods. At low temperatures and low copepod densities, PZP in turn fully escaped from copepod predation. Further changes in the overwintering copepod densities resulted in a strong ciliate suppression of which small-sized ciliates (〈30 µm) were especially vulnerable to copepod predation while other PZP size classes remained unaffected. In conclusion, the results presented point at a pivotal regulating role of overwintering copepods under future warming condition. Further, warming was shown to cause a distinct match between phytoplankton and PZP thus strengthening trophic pathways through PZP. Our findings are discussed in the context of the ‘trophic link-sink’ debate by considering potential alterations in the flux of matter and energy up the food web.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 173 . pp. 127-137.
    Publication Date: 2018-05-08
    Description: The stable carbon isotope composition (δ13C) of particulate organic carbon (POC) was measured in 3 size fractions (POCtotal, POC〉20 µm, POC〈20 µm) during a phytoplankton spring bloom dominated by the diatom Skeletonema costatum in Lindåspollene, a land-locked fjord in southern Norway. In addition to standard parameters for characterizing the phytoplankton bloom (chlorophyll, nutrient, and POC concentrations, and species composition), simultaneous measurements of δ13C of dissolved inorganic carbon (DIC), total alkalinity and DIC concentration were obtained to determine temporal trends in dissolved carbon dioxide concentration and in carbon isotope fractionation (ε p) of the POC size fractions. The carbon isotope composition of the 〉20 µm size fraction, which was dominated by diatoms, was ca 2o/oo heavier than that of the 〈20 µm fraction, which was mainly composed of flagellates. δ13C of both size fractions increased by about 3o/oo over the course of the bloom. A 5o/oo increase in δ13C-PO Ctotal during the bloom resulted partly from a shift in the phytoplankton community from a flagellate- to a diatom-dominated one. Carbon isotope fractionation of all fractions decreased with declining CO2(aq) concentration (14 to 〉6 µmol l-1). A positive correlation between ε p and [CO2(aq)] in the diatom size fraction was obtained for the period of exponential growth. Deviation from this correlation occurred after the peak in cell density and chlorphyll a (chl a) concentration, when POC still continued to increase, and may be related to changing phytoplankton growth rates or to possible effects of nutrient (nitrate) limitation on ε p. Comparison of these results with those of previous field studies shows that, while an inverse relationship is consistently observed between ε p and the ratio of instantaneous growth rate and CO2 concentration {µi/[CO2(aq)]}, considerable scatter exists in this relationship. While this scatter may have partly resulted from inconsistencies between the different studies in estimating phytoplankton growth rate, it could also reflect that factors other than growth rate and CO2 concentration significantly contribute to determining isotope fractionation by marine phytoplankton in the natural environment
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 96 . pp. 281-289.
    Publication Date: 2018-05-07
    Description: While marine snow aggregates were devoid of Phaeocystis in 1989, a large fraction of the Phaeocystis biomass was associated with aggregates two years later. This discrepancy corresponds to a significant difference in aggregate size between the two years studied, interpreted to be a consequence of different levels of turbulent mixing. Phaeocystis colonies remained freely suspended during 1989 when aggregates were small, and adhered loosely to the large aggregates observed forming during 1991. Overall, the aggregation potential of Phaeocystis was low in comparison to diatoms. Independent of the degree of aggregation, sedimentation was the dominant loss factor of Phaeocystis biomass from the upper layer
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 19 . pp. 139-148.
    Publication Date: 2016-05-26
    Description: Phosphatase (P-ase) activity was determined together with other extracellular enzyme activities, bacterial abundance and production rates during the 2 SW Monsoon process studies of the German JGOFS Arabian Sea Program. Water samples were collected along the cruise tracks from the equator to the upwelling region at the shelf edge off Oman. Depth profiles of P-ase activity were strikingly different from those of the other enzymes. While values of aminopeptidase and β-glucosidase generally decreased below the euphotic zone, P-ase increased by factors of 1 to 7. The relation between peptidase- and P-ase activity was from 4 to 21 at the surface and from 3 to 5 at 800 m depth. Because P-ase production (dissolved and cell-bound) in deep waters is mainly dependent on bacteria, P-ase activities per bacterial cell were calculated: these were, on average, 37 times higher at 800 m than at the surface. We also observed a positive correlation of P-ase activity with phosphate concentrations in the depth profiles below the euphotic zone, while this relationship was much more variable in the mixed surface layer. These observations suggest that C-limited bacteria in the deep strata did not primarily focus on the phosphate generated by their P-ase activity but on the organic C compounds which were simultaneously produced and which could probably not be taken up prior to the hydrolytic detachment of phosphate. It is hypothesised that a considerable part of the measured P-ase activity was dissolved (though it might have originated from bacteria). These enzymes may be important for the slow, but steady regeneration of phosphate and organic C in mesopelagic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 133 . pp. 275-285.
    Publication Date: 2018-05-08
    Description: A predictive model of carbon isotope fractionation (sigma p) and abundance (delta13C phyto) is presented under circumstances where photosynthesis is strictly based on CO2(aq) that passively diffuses into marine phytoplankton cells. Similar to other recent models, the one presented here is based on a formulation where the expression of intracellular enzymatic isotope fractionation relative to that imposed by CO2(aq) transport is scaled by the ratio of intracellular to external [CO2(aq)], ci/ce. Unlike previous models, an explicit calculation of ci is made that is dependent on ce as well as cell radius, cell growth rate, cell membrane permeability to CO2(aq), temperature, and, to a limited extent, pH and salinity. This allows direct scaling of ci/ce to each of these factors, and thus a direct prediction of sigma p and delta13C phyto responses to changes in each of these variables. These responses are described, and, where possible, compared to recent experimental and previous modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-05-08
    Description: Stomach contents of 17 sperm whales Physeter macrocephalus stranded in Scotland and Denmark during 1990-96 were analysed. All were sub-adult or adult males and stranded between November and March. They had presumably entered the North Sea during their southward migration from feeding grounds in Arctic waters. Other studies indicate that the majority of the whales were apparently healthy. The diet of these whales was found to consist almost entirely of cephalopods, principally squid of the genus Gonatus (hereafter 'Gonatus', but probably G. fabricii, an oceanic species characteristic of Arctic waters). The other prey species identified were also mostly oceanic cephalopods: the squids Histioteuthis bonnellii, Teuthowenia megalops and Todarodes sagittatus and the octopus Haliphron atlanticus. Although these results are consistent with other recent studies in the area based on single stranded whales, they differ from results of work on whales caught during commercial whaling operations in Icelandic waters (1960s to 1980s) in that little evidence of predation on fish was found in the present study. Remains of single individuals of the veined squid Loligo forbesi, the northern octopus Eledone cirrhosa and the saithe Pollachius virens provided the only possible evidence of feeding in the North Sea. We infer that sperm whales do not enter the North Sea to feed. The timing, and large and uniform sizes of the Gonatus species eaten (most had mantle lengths in the range 195 to 245 mm), as estimated from measurements of the lower beaks, and the seasonality of the strandings is consistent with the whales having fed on mature squid, possibly spawning concentrations--as has recently been reported for bottlenose whales. Assuming that the diet recorded in this study was representative of sperm whales during the feeding season, as much as 500000 t of Gonatus could be removed by sperm whales in Norwegian waters each year and up to 3 times that figure from the eastern North Atlantic as a whole. Evidence from other studies indicates that Gonatus is an important food resource for a wide range of marine predators in Arctic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 273 . pp. 251-267.
    Publication Date: 2018-05-30
    Description: Latitudinal declines of species richness from the tropics to the poles represent a general spatial pattern of diversity on land. For the marine realm, the generality of this pattern has frequently been questioned. Here, I use a database with nearly 600 published gradients (198 of which were marine) to assess whether there is a marine latitudinal diversity gradient of similar average strength and slope as that for terrestrial organisms. Using meta-analysis techniques, I also tested which characteristics of organisms or habitats affected gradient strength and slope. The overall strength and slope of the gradient for marine organisms was significantly negative and of similar magnitude compared to gradients for terrestrial organisms. Marine gradients were on average stronger as well as steeper than freshwater gradients. Latitudinal gradients were clearly a regional phenomenon, with stronger gradients and steeper slopes for diversity assessed on regional than on local scales. The gradient parameters differed also between oceans and between different habitats, with steeper gradients related to the pelagial rather than the benthos. There were on the other hand no significant differences between hemispheres and between different gradient ranges, although such differences have often been presumed. The most important organismal characteristic related to gradient structure was body mass, with significant gradients related to large organisms. A significant increase in gradient strength with increasing trophic level was observed. The meta-analysis also revealed strongest gradients for nekton and mobile epifauna, whereas the gradients were weak for sessile epifauna and for infauna. In conclusion, marine biota reveal a similar overall decline in diversity with latitude to that observed in terrestrial realms, but the strength and slope of the gradient are clearly subject to regional, habitat and organismal features.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 185 . pp. 293-296.
    Publication Date: 2018-05-08
    Description: Interpretation of diving profiles of aquatic animals would be considerably enhanced by additional behavioural information. A new sensor is presented here which records animal movements. This sensor was tested on a captive loggerhead turtle Caretta caretta which showed similar activity patterns to free-living green turtles Chelonia mydas. A computer program with user-selectable options was developed to analyse the data consistently and rapidly. Using our sensor we calculated the total resting time, which differed by less than 5% from the real resting time when the sampling interval was 2 s. The method was additionally tested for different sampling intervals to find out its applicability for field studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-05-09
    Description: Grazing experiments were conducted with natural mesozooplankton from Kiel Bight, Germany, using radioactive labelled phytoplankton cultures and seston size fractions. The results of experiments using phytoplankton cultures indicated that bivalve veligers performed highest clearance of particles within a size range of 4.7 to 6.3 µm, whereas optimum particle size for copepods was 15 µm. The results of experiments using labelled natural seston size fractions identified bivalve veligers and appendicularians as those responsible for the removal of particles within the smallest size class (〈2 µm). Seston size fractions larger than 5 µm were mainly cleared by copepods and nauplii. As particle size increased, the contribution of copepod clearance to total zooplankton clearance within size classes increased from 57% (〈5 µm size class) to more than 81% (30 to 100 µm size class). When the nauplii clearance rates were included, the total copepod clearance accounted for 90 to 97.6% of the total volume cleared of particles bigger than 10 µm. Despite low abundances of bivalve veligers and appendicularians in Kiel Bight at the time of the experiment, we calculated that approximately 10 and 8.5%, respectively, of the carbon ingested by total mesozooplankton was due to veliger and appendicularian grazing. The importance of bivalve veligers might be seen in their grazing on seston particles that escape predation by copepods and on the amount of energy that is therefore directed from the water column to the benthos when larvae settle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 376 .
    Publication Date: 2018-06-01
    Description: Models of multiple potentially limiting nutrients currently employ either multiplicative or threshold formulations, neither of which has a sound mechanistic explanation. Despite experimental evidence that lack of P severely constrains N assimilation, this mechanism has not been considered for constructing models of multi-nutrient limitation. We construct a phytoplankton optimal growth model linking C, chlorophyll (Chl), N, and P through a limitation chain in which P limits N assimilation, N limits photosynthesis and photosynthesis limits growth. The resulting formulation possesses characteristics of both multiplicative and threshold approaches and provides a mechanistic foundation for modelling multi-nutrient and light limitation of phytoplankton growth. The model compares well with experimental observations for a variety of unicellular phytoplankton species. It is suggested that the widely held view that N and P limitation act independently of each other is based on an invalid interpretation of experimental observations and that the transition from N to P limitation occurs over a wide range of colimitation rather than a sharply-defined transition point. If the species considered in this study are representative for marine phytoplankton, our model results indicate that most phytoplankton are colimited by N and P when inorganic N and P are simultaneously exhausted in the surface ocean. The model suggests that the close match between marine inorganic (Redfield) and phytoplankton N:P ratios results from optimal nutrient utilisation but does not indicate optimality of Redfield N:P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 401 . pp. 77-85.
    Publication Date: 2018-06-19
    Description: Traditionally, consumer–prey interactions have been considered as purely negative, but herbivores may have positive effects on plants and their productivity. Grazing may enhance prey biomass-specific productivity by directly or indirectly reducing the competition for light, nutrients, and space. We studied the effect of 4 common mesograzers, the isopod Idotea baltica, the amphipod Gammarus oceanicus, and the gastropods Littorina littorea and Rissoa membranacea on epiphytes in an eelgrass Zostera marina L. system. Eelgrass was grown in laboratory mesocosms for a set of experiments manipulating mesograzer species identity, mesograzer density and nutrient concentration. We measured epiphyte biomass-specific productivity via incorporation of radioactive carbon. Herbivore effects on epiphyte photosynthetic capacity were strongly positive for R. membranacea, moderately positive for L. littorea and I. baltica and zero for G. oceanicus under low nutrient supply. Both gastropods increased the nitrogen content of epiphytes, especially the small R. membranacea, and enhanced epiphyte growth. The crustacean species did not increase epiphyte nutrient content, but I. baltica probably enhanced epiphyte productivity by removing the overstory of algal cells, and thus reducing competition for light, nutrients, and space. The positive effect of the 2 gastropod species disappeared under higher nutrient supply, implying the importance of nutrient limitation for this interaction. The positive effect of I. baltica remained at moderate grazer densities despite the higher nutrient concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-09-06
    Description: The recent introduction of Gracilaria vermiculophylla (Rhodophyta) to the Kiel Fjord area was a reason for concern, since this red macroalga performs best under mesohaline conditions and thus appears well adapted to thrive and spread in the Baltic Sea environment, A systematic survey on a coastal range of 500 km in 2006 and 2007 indicated considerable Multiplication and spreading of G. vermiculophylla within Kiel Fjord, but provided little evidence of long-distance transport. Nonetheless, flow-through growth experiments conducted at a range of salinities under ambient light showed that G. vermiculophylla should be able to grow in most of the Baltic Sea. Growth declined only below a salinity of 5.5. High water temperatures in summer seem to reduce resistance against low salinity. Growth of G, vermiculophylla in the SW Baltic is limited by light and is only possible during summer and above a depth of 3 m. Drifting fragments are dispersed by currents. Either they sink to deeper waters, where they degrade, or they accumulate in shallow and sheltered waters, where they form perennial mats. These overgrow not only soft bottom sediments, but also stones, which are an important habitat to Fucus vesiculosus, the main native perennial alga in the Baltic Sea. As compared to F. vesiculosus, G. vermiculophylla seems to represent a preferred refuge for mesograzers and other invertebrates, particularly in winter. Nonetheless, feeding trials showed that potential grazers avoided G. vermiculophylla relative to F vesiculosus. Daily biomass uptake by grazers associated with G. vermiculophylla in nature did not exceed 2 g kg(-1) and is 〈11% of average daily net growth (18.5 g kg(-1)) in the first 2 m below sea level. Consequently, feeding may not be sufficient to control the spread of G. vermiculophylla in the SW Baltic. Our study suggests that absence of feeding enemies and adaptation to brackish water may allow G. vermiculophylla to invade most shallow coastal waters of the inner Baltic Sea despite light limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 408 . pp. 47-53.
    Publication Date: 2019-09-23
    Description: Previous studies on trait-mediated trophic interactions in marine ecosystems were restricted to pair-wise interactions between one species of meso-herbivore and plant, though multi-grazer interactions are more common in nature. We investigated whether the feeding of one consumer, either the periwinkle Littorina littorea or the isopod Idotea baltica, affected consumption by the other consumer via anti-herbivory defence induction in the brown seaweed Fucus vesiculosus. To test the generality of our findings, we ran similar experiments with seaweed/grazer populations in the North and Baltic Seas (NE Atlantic). Grazer-specificity in induction strength was assessed by using the same species of grazer for induction and consumption. ‘Indirect’ induction effects were assessed by using different species of grazers for induction and consumption. Palatability assays were run with live algae and with reconstituted food to distinguish between different mechanisms of resistance. Grazing by herbivores induced a chemical defence in F. vesiculosus. In the North Sea population, the induced defences were only effective against I. baltica, regardless of inducer identity. The sensitive responses of I. baltica to the induced defences were also detected in the reconstituted food assays using Baltic Sea organisms. Thus, marine meso-grazers may be affected by previous feeding through the same or a different species of consumer by modified prey traits, such as induced chemical defences. Furthermore, the magnitude of the effect in the induced defences can be determined by species-specific sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-19
    Description: How multiple stressors influence fish stock dynamics is a crucial question in ecology in general and in fisheries science in particular. Using time-series covering a 30 yr period, we show that the body growth of the central Baltic Sea herring Clupea harengus, both in terms of condition and weight-at-age (WAA), has shifted from being mainly driven by hydro-climatic forces to an inter-specific density-dependent control. The shift in the mechanisms of regulation of herring growth is triggered by the abundance of sprat, the main food competitor for herring. Abundances of sprat above the threshold of ~18 × 1010 ind. decouple herring growth from hydro-climatic factors (i.e. salinity), and become the main driver of herring growth variations. At high sprat densities, herring growth is considerably lower than at low sprat levels, regardless of the salinity conditions, indicative of hysteresis in the response of herring growth to salinity changes. The threshold dynamic accurately explains the changes in herring growth during the past 3 decades and in turn contributes to elucidate the parallel drastic drop in herring spawning stock biomass. Studying the interplay between different stressors can provide fundamental information for the management of exploited resources. The management of the central Baltic herring stock should be adaptive and take into consideration the dual response of herring growth to hydro-climatic forces and food-web structure for a sound ecosystem approach to fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 373 . pp. 303-309.
    Publication Date: 2019-09-23
    Description: Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO(2)). During a 6 wk period, juvenile S. officinalis maintained calcification under similar to 4000 and similar to 6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4%, body mass daily and increased the mass of their calcified cuttlebone by over 500 %. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-01
    Description: Generalist and opportunistic marine predators use flexible foraging behaviour to exploit prey bases that change in diversity and spatial and temporal distributions, Behavioural flexibility is constrained by characteristics Such as individual cognitive and physical capabilities, age, reproductive condition and central place foraging. To assess flexibility in the foraging tactics of a marine bird, we investigated the diets and foraging behaviour of the largest seabird predator in the North Atlantic Ocean. Northern gannets Sula bassana exploit abroad spectrum of pelagic prey that range in mass by more than 2 orders of magnitude, We investigated their foraging activity at their largest. offshore colony in the western Atlantic Ocean during 1998 to 2002, when they preyed primarily on shoals of spawning and post-spawning capelin Mallotus villosus, a small forage fish (similar to 15 g), and also on a much larger pelagic fish, post-smolt Atlantic salmon Salmo salar (similar to 200 g). Inter-annual dietary variation is associated with gannet and prey fish distributions. Landings of capelin at the colony by gannets were correlated with returns of larger foraging flocks from inshore, whereas landings of Atlantic salmon were associated with smaller flocks returning from offshore. Maximum foraging trip distances ranged from 20 to 200 km and averaged 57 +/- 12 (SE) km, consistent with distances to inshore capelin aggregations. When capelin abundance was low (in 2002), more gannets foraged offshore, preyed on large pelagic fishes (mostly Atlantic salmon) and exhibited the greatest dietary diversity. Though the Outbound portions of foraging trips were more sinuous than inbound routes, individual gannets exhibited general fidelity to foraging sites. These large avian predators used flexible foraging tactics to adjust to changing prey conditions and generate longer-term strategies to Lake advantage of diverse trophic interactions over a range of ocean ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 391 . pp. 257-265.
    Publication Date: 2018-06-01
    Description: Individual migratory schedules and wintering areas of northern gannets Morus bassanus were studied over 2 consecutive winters by deploying geolocation data loggers on breeding adults from the Bass Rock, UK. Northern gannets attended the breeding colony on Bass Rock until between 24 September and 16 October (median: 5 October). Afterwards, individual birds engaged in different migratory behaviour. Of the 22 birds tracked until at least December, 18% wintered in the North Sea and the English Channel, 27% in the Bay of Biscay and the Celtic Sea, 9% in the Mediterranean Sea and 45% off West Africa. Individual winter home ranges as measured by the 75% kernel density contours varied between 8 100 and 308 500 km(2) (mean = 134 000 km(2)). Several northern gannets migrated northwards from Bass Rock after leaving the colony for a stay of a few days to a few weeks, independent of whether they migrated to Africa or other southern areas later. Birds wintering off West Africa migrated to their wintering areas mostly within 3 to 5 wk, usually starting between early and late October. Most of these birds stayed off West Africa for a period of about 3 mo, where they remained in a relatively restricted area. Return migration was initiated between the end of January and mid-February, and took about as long as autumn migration. We conclude that individual gannets display very variable migratory behaviours, with discrete winter home ranges, and we infer that the migration habits of gannets may be changing in response to human impacts on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-01
    Description: We examined the influence of both season and hydrographic and meteorological factors on seabird abundance in the southern North Sea. Seabirds were counted from ships in a study area of 27.8 x 32.8 km on 407 d from 1990 to 2007. Two hydrographic and 5 meteorological parameters were taken from archived data. The relationships between bird abundance and abiotic parameters were investigated by generalised additive models for 3 distinct seasons. The species in the study area exhibited different seasonal patterns. While some species were present year-round, others occurred only at certain periods. Despite these substantial changes in abundances, the nature of the interactions between bird abundances and abiotic parameters did not vary much between seasons. All 5 meteorological and 2 hydrographic parameters significantly influenced the abundance of seabird species, though to a different degree. The single factors that most often had a significant influence in the single models were wind field, sea surface temperature anomaly, sea surface salinity anomaly and air pressure change. The quantitative composition of the seabird community differed significantly between onshore wind and offshore wind conditions. It is assumed that hydrographic parameters are relevant for the birds by determining their foraging habitats and that atmospheric parameters influence flight conditions during foraging and migration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-05-28
    Description: Filamentous sulfur-oxidizing bacteria and geochemical parameters of sediments at the Makran accretionary wedge in the northeastern Arabian Sea off Pakistan were studied. The upper continental slope between 350 and 850 m water depth, which is in the center of the oxygen-minimum zone, is characterized by numerous sites of small-scale seeps of methane- and sulfide-charged porewater. White bacterial mats with diameters 〈1 m were discovered at the surface of these sites using a photo-TV sled. Seep sediments, as well as non-seep sediments, in the vicinity were characterized by the occurrence of the bacterium Thioploca in near-surface layers between 0 and 13 cm depth. Thioploca bundles were up to 20 mm in length and contained up to 20 filaments of varying diameters, between 3 and 75 µm. Up to 169 ind. cm-2 were counted. Maximum numbers occurred in the top 9 cm of sediment, which contained very low concentrations of soluble sulfide (〈0.2 µM) and high amounts of elemental sulfur (up to 10 µmol cm-3). Moderate sulfate reduction activity (between 20 and 190 nmol cm-3 d-1) was detected in the top 10 cm of these sediments, resulting in a gradual downcore decrease of sulfate concentrations. CO2 fixation rates had distinct maxima at the sediment surface and declined to background values below 5 cm depth. The nutritional implications of the distinct morphology of Thioploca and of the geochemical setting are discussed and compared to other sites containing Thioploca communities.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 35 . pp. 153-162.
    Publication Date: 2016-05-26
    Description: Four in situ experiments were conducted to examine the potential top-down and bottom-up control of epibenthic ciliate communities. The experiments were run in the littoral of Lake Erken and at a brackish water site on the island of Väddö on the Baltic coast of Sweden, during the spring of 2000. The experimental manipulations were the presence/absence of the natural macrozoobenthos grazer community, cross-classified with the presence/absence of additional nutrients. Epibenthic ciliates responded to both manipulation of grazers and resources, but the response was group specific. Total ciliate abundance decreased when macrozoobenthos (largely chironomids, gastropods, trichopteran larvae, isopods and amphipods) were removed, thus excluding a direct predation effect of the macrozoobenthos community on ciliates. Total ciliate biomass, but not abundance, tended to increase in the presence of additional nutrients; an effect weakly dependent on season and site. The disparity between effects of nutrients on biomass and abundance was due to effects on heterotrichs, a group of large but relatively rare algivorous ciliates. The manipulations altered the ciliate community composition, and between lakes there were differences in species richness and diversity and experiments. However, neither the removal of macrozoobenthos nor the addition of nutrients changed species richness or diversity. This runs counter to work with other taxonomic groups, which shows maximal diversity at an intermediate level of resources or predation. This can only be partially explained by the lack of direct predation effects and the open nature of the experimental system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 380 . pp. 33-41.
    Publication Date: 2018-06-01
    Description: Ecological stoichiometry can be a powerful tool to understand food web consequences of altered biogeochemical cycles as well as consequences of biodiversity loss on biogeochemistry and has proved to be a suitable framework to predict effects of consumers on the nutrient content of their prey. However, predictions from ecological stoichiometry have mainly been tested using single consumer species, whereas in most natural ecosystems several consumer species coexist. We conducted 2 outdoor mesocosm experiments with marine rock pool communities to test whether species richness and species combination of benthic invertebrates affected the nutrient content of periphyton. We independently manipulated 12 different consumer combinations ranging from 0 to 6 (2004) or 0 to 4 (2005) grazer species and measured the biomass and nutrient content of the algae. Grazers included 3 gastropods and 3 crustaceans. In 2005, we additionally analyzed animal nutrient content and N excretion rate. Algal biomass and C:N ratios decreased in the presence of grazers in both years, indicating that the remaining algae had higher internal N content. Also, both biomass (2004 and 2005) and C:N ratios (only 2004) decreased even further when grazer richness increased. In 2004, significant net diversity effects of grazer richness on periphyton C:N ratios indicated that periphyton N content under multispecies grazing could not be predicted from the effect of single species. In 2005, significant net diversity effects on C:N ratios were rare, but periphyton C:N ratios consistently decreased with increasing grazer excretion rate, indicating that higher nitrogen regeneration by grazers led to higher N incorporation by algae. The effects of species richness were mainly affected by the presence of one efficient grazer, the gastropod Littorina littorea. Our experiments indicate that non-additive intraguild interactions may qualitatively alter the stoichiometric effects of multispecies consumer assemblages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-11-14
    Description: A total of 354 adult European smelts Osmerus eperlanus (L.) were tested for their ability to survive the screen system of the cooling water inflow of a power plant. With increasing number of musculature parasitic third-stage larvae of Pseudoterranova decipiens, the survival rate of O. eperlanus decreased while the total number of externally visible injuries as well as the number of seriously injured specimens increased. The results indicate that even a single specimen of P. decipiens influences resistance and stamina and affects overall mortality of 7 to 20 cm long smelts. The initial effect of the parasites is to reduce swimming speed of infested fish, which leads to more frequent contact of these fish with the fine meshed screen of the cooling water inlet before they are removed by the automatic cleaning system. If the separated fishes are returned to the main stream, it becomes apparent that the cooling water inflow selectively reduces the number of living parasitised smelt in the area. Thus, the number of parasitic third-stage P. decipiens larvae in the local smelt population which are able to complete their life-cycle is also reduced. P. decipiens makes infested smelt more susceptible to negative anthropogenic influences such as cooling water intake or trawl fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-05-08
    Description: Spatial and temporal variability in environmental factors can exert major influences on survival and growth of living organisms. However, in many key areas of fisheries science (e.g. growth, survival and recruitment determination), environmental heterogeneity is usually ignored because of insufficient environmental or fisheries data or lack of evidence that such heterogeneity impacts response variables. For the eastern Baltic Sea (ICES Subdivisions 25 to 32), we evaluated spatial and temporal differences in conditions affecting the survival of cod Gadus morhua L. eggs at survival on four distinct spawning sites within the assessment area. We intercalibrated ways of quantifying the volume of water ('reproductive volume') at each site where salinity, oxygen and temperature conditions permitted successful egg development. We have developed and compared a time series (1952 to 1996) of reproductive volumes among the areas to identify spatial differences. The results of 2 independent volume-estimation methods are comparable, indicating that highly significant differences exist among the sites, and that the westernmost spawning ground, Bornholm Basin, has on average the highest reproductive volume and the lowest variability among the 4 sites. These findings may be useful in evaluating how spatial and temporal variability in environmental conditions affect egg hatching success and possibly recruitment in the Baltic stock.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 355 . pp. 1-7.
    Publication Date: 2019-09-23
    Description: Effects of global warming on marine ecosystems are far less understood than they are in terrestrial environments. Macrophyte-based coastal ecosystems are particularly vulnerable to global warming, because they often lack species redundancy. We tested whether summer heat waves have negative effects on an ecologically important ecosystem engineer, the eelgrass Zostera marina L., and whether high genotypic diversity may provide resilience in the face of climatic extremes. In a mesocosm experiment, we manipulated genotypic diversity of eelgrass patches fully crossed with water temperature (control vs. temperature stress) over 5 mo. We found a strong negative effect of warming and a positive effect of genotypic diversity on shoot densities of eelgrass. These results suggest that eelgrass meadows and associated ecosystem services will be negatively affected by predicted increases in summer temperature extremes. Genotypic diversity may provide critical response diversity for maintaining seagrass ecosystem functioning, and for adaptation to environmental change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-05-28
    Description: Natural marine bacteria populations collected from nearshore waters produce different types of siderophores depending on the degree of iron limitation. These siderophores can facilitate iron uptake in the marine diatom Phaeodactylum tricornutum. Water samples from 15 stations along the Italian coast of the northwest Adriatic Sea were collected and filter fractionated (3.0, 0.8 and 0.2 µm). Siderophore production in the fractions was determined using cross-feeding experiments with siderophore-auxotrophic bacteria. At most stations sampled, bacteria collected in the 3.0 and 0.8 µm filters produced siderophores which stimulated growth in Morganella morganii, the indicator strain for α-keto/ α-hydroxy acids. The results suggest that MGF (ŒMorganella-Growth Factor¹) production is common among filamentous and appendaged bacteria or strains associated with particles. Natural bacteria populations grown in iron-deficient media stimulated growth of all the indicator strains in the cross-feeding tests. Examples of known MGF which supply iron to M. morganii were tested for their ability to act as iron source for the marine diatom P. tricornutum. Iron uptake from 55Fe-MGFs was measured in P. tricornutum cells grown in Fe-sufficient and Fe-deficient media. Unchelated iron (55FeCl3 ) and 55FeEDTA were used as controls. The uptake of iron from the 55Fe-MGF and 55FeCl3 by Fe-deficient cells was higher (109 to 150 pgFe mg-1) than from 55FeEDTA (34 pgFe mg-1). Similarly, Fe-sufficient P. tricornutum took up iron from the 55Fe-MGF and 55FeCl3 to the same extent (~50 pgFe mg-1) while minimal uptake (8 pgFe mg-1) was measured from FeEDTA. In growth experiments where iron-deficient diatom cells were incubated in media containing different sources of iron, e.g. FeCl3, Fe-MGF and FeEDTA, a greater increase in number was observed in cells supplied with Fe-MGF. Further experiments also show that the uptake of Fe from MGF was enhanced by light and that a reduction step was involved in the uptake process. MGF also promoted the uptake of colloidal ferrihydrites. This study gives further evidence that siderophores produced by bacteria can be utilized by phytoplankton as an iron source. We therefore suggest that these substances play an important role in increasing the availability of iron to phytoplankton in coastal waters and thus are major factors defining the chemistry of iron in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 258 . pp. 233-241.
    Publication Date: 2018-05-30
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-01
    Description: The effects of towed fishing gear on benthic fauna are under intense scrutiny and evidence is growing that trawling may significantly affect benthic communities in the North Sea. Most studies explore the current fauna or compare today’s situation with that of 2 or 3 decades ago, when North Sea-wide information on benthos and fishing became available. However, in the North Sea, extensive mechanised trawling began more than a century ago. This study compared historical and recent records in order to explore potential long-term links between changes in the epibenthos and fishing. Based on reconstructed species lists from museum specimens, we compared epibenthos data from 1902 to 1912 with those from 1982 to 1985 and 2000. We analysed changes in average taxonomic distinctness (AvTD), a biodiversity indicator, and changes in biogeographical species distributions. Landings data were collated for round- and flatfish caught in the northern, central and southern North Sea from 1906 to 2000 as proxies for total otter and beam trawl effort, respectively. These indicate that the southern and much of the central North Sea were fished intensively throughout the 20th century, whilst the northern North Sea was less exploited, especially in earlier decades; exploitation intensified markedly from the 1960s onwards. For epibenthos, the mean AvTD decreased significantly from the 1980s to 2000, when it was below expected values in 4 ICES rectangles, 3 of these located in heavily trawled areas. Biogeographical changes from the beginning to the end of the century occurred in 27 of 48 taxa. In 14 taxa, spatial presence was reduced by 50% or more, most notably in the southern and central North Sea; often these were long-lived, slow-growing species with vulnerable shells or tests. By contrast, 12 taxa doubled their spatial presence throughout the North Sea. Most biogeographical changes had happened by the 1980s. Given that other important environmental changes, including eutrophication and climate change, have gained importance mainly from the 1980s onwards, we have concluded that the changes in epibenthos observed since the beginning of the 20th century have resulted primarily from intensified fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 211 . pp. 261-274.
    Publication Date: 2015-02-09
    Description: Marine angiosperms, or seagrasses, continue to be a major focus of marine biologists because of their important ecological role in many coastal ecosystems. Seagrass population biology could benefit from a population genetic perspective because genetic data enable the extraction of useful demographic information such as isolation and gene flow between demes. Moreover, population genetic processes may contribute to the growing ecological risks of local population extinction. Progress in seagrass genetics is partly driven by novel genetic markers which detect variation at the DNA level and overcome the limited polymorphism of allozymes. Key results of studies in the past decade, mostly using RAPD and microsatellites, were (1) considerable genetic and genotypic (clonal) diversity is present in several species in contrast to earlier notions of low polymorphism detected at allozyme loci, and (2) genetic differentiation among populations seems to be the rule despite earlier reports of genetic uniformity. Pronounced genetic structure was detected between populations of 4 species examined thus far (Posidonia oceanica, P. australis, Zostera marina, Thalassia testudinum). The FST estimates varied widely and ranged from 0.01 to 0.623 across studies and species. Genetic differentiation at a systematic range of scales was only studied in eelgrass Zostera marina, where it was positively correlated with geographic distance. The high polymorphism of RAPD or microsatellite markers will allow the augmention of indirect estimates of gene flow by methods detecting individual immigration events through paternity analysis or assignment tests. Important conservation related issues such as the level of inbreeding and the effective population size have also been obtained from genetic marker data, but results are too scarce at the moment to allow generalizations. In Zostera marina and Posidonia australis, several population genetic attributes such as clonal diversity, mating system and effective population size varied among populations within species, highlighting that there is no Œtypical¹ population. An important gap in our knowledge is whether the effects of natural population fragmentation and patchiness enhance the genetic isolation of populations due to anthropogenic disturbances. It is also unclear whether genetic differentiation displayed at marker loci are correlated with fitness-related plant traits, and whether genetic or genotypic diversity is important for medium- to long-term meadow persistence. An assessment of the genetic and genotypic diversity at marker loci should be combined with experiments on the ecological plasticity and reaction norms of genotypes composing the populations in question. This way, the role of genetic diversity for seagrass population maintenance and growth in the face of changing environmental conditions can be evaluated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-01-01
    Description: Snow crabs Chionoecetes opilio are quite productive at suitable temperatures, but can also be abundant in water cold enough to depress settlement of larvae, growth, and reproduction. In much of the northern Bering Sea, bottom water temperatures are below -1°C for most or all of the year. Crab pelagic larvae prefer to settle at temperatures above 0°C, so we found high densities of juveniles only where intruding warm currents deposited larvae in localized areas. After settlement, maturing crabs appeared to exhibit ontogenetic migration toward deeper, warmer water. Cold temperatures excluded key predators, but decreased fecundity by restricting females to small body size (with associated small clutches) and to breeding every 2 yr. Migration to warmer water may allow females to breed annually and to encounter more adult males needed to fertilize subsequent clutches. Because older males also emigrate, remaining adolescent males probably inseminate newly maturing females. Without localized intrusion of warmer currents, snow crabs might not persist at high densities in such cold waters. However, they are currently very abundant, and export many pelagic larvae and adults.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-08-27
    Description: The epibacterial chemical defense of the marine sponge Suberites domuncula was explored by screening sponge extract, sponge primmorph (3-D aggregates containing proliferating cells) extract and sponge-associated as well as primmorph-associated bacteria for antibacterial activity. 16S rDNA sequencing revealed that the antimicrobially active bacteria belonged to the a- and γ-subdivisions of Proteobacteria ( α-Proteobacterium MBIC 3368, Idiomarina sp. and Pseudomonas sp., respectively). Moreover, a recombinant perforin-like protein was cloned from S. domuncula that displayed strong antibacterial activity. Based on these observations, it is proposed that the sponge may be provided with a direct (by producing antibacterial metabolites) as well as an indirect (with the help of associated bacteria) epibacterial defense.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-09-22
    Description: The relationship between physical properties of the water column and spatial patchiness of phytoplankton spring bloom development on the Greenland shelf edge and in the Irminger Sea was investigated using data collected during a spring cruise (April and May 2002). The observations confirm a strong relationship between the onset and stage of bloom development and the stratification induced by freshwater input to the surface layer in the shelf region. Interestingly, at the shelf, in the region influenced by melting of the seasonal ice-cover, the vertical distribution of chlorophyll a showed a subsurface maximum at ca. 25 m depth at several stations. Since nutrients were not exhausted at these stations, such a pattern does not conform to the general picture of a spring bloom. In contrast, in the open ocean part of the Irminger Sea pre-bloom conditions and a retarded development of the phytoplankton population were observed with low, more uniform distribution of chlorophyll a. The nitrate drawdown was estimated at between 16.5 and 270 µm m–2 (mean 108.6 ± 82.2 µm m–2) and the new primary production was estimated to be between 1.3 and 21.4 g C m–2 (8.6 ± 6.5 g C m–2), corresponding to 0.42 g C m–2 d–1. The phytoplankton community in the melting ice zone consisted of Phaeocystis sp., small flagellates (〈 4 µm) and picoplankton, while diatoms were less abundant. Phaeocystis sp. contributed up to 15 g C m–2 to the carbon biomass (70% of total carbon measured), whereas the contribution of diatoms and flagellates to carbon biomass was relatively low, with up to 1.2 g C m–2 (5.7%) and up to 2.5 g C m–2 (11.7%), respectively. On the shelf the bloom starts at the very beginning of stabilisation (elevated N2 values) which results solely from the release of meltwater. The locally restricted water stability leads to a patchy phytoplankton distribution in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 49-64.
    Publication Date: 2020-08-28
    Description: Many ecosystems are facing biodiversity loss and environmental change due to anthropogenic activities, with these impacts occurring within the context of natural disturbance. Understanding ecosystem functioning and the response of communities to these impacts is necessary in order to evaluate the effects of future environmental change. The aim of this study was to determine the consequences of the loss of key species on the structure and function of intertidal communities in a context of nutrient enrichment, so as to ascertain the resistance of these communities when disturbance and stresses are compounded. Subarctic rocky intertidal communities in Quebec were subjected to an orthogonal factorial field experiment with 3 stress factors (macroalgae canopy loss, grazer exclusion, and nutrient enrichment), each with 2 disturbance levels. Simple and interactive effects of these factors were followed for 4 mo, and responses in structure (% cover and biomass) and productivity were evaluated. The communities that were not subjected to canopy loss showed greater resistance and very limited effects from enrichment and grazer reduction. The loss of canopy altered the community structure (e.g. reduction in richness and biomass) and functioning (reduced productivity), probably due to increased temperatures and desiccation. This lack of resistance was amplified through the addition of a stress. The application of multiple stresses within field experiments allows for a better understanding of the mechanisms affecting community structure and ecosystem functioning under situations of increased natural and anthropogenic stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 334 . pp. 47-61.
    Publication Date: 2015-09-22
    Description: Physical and chemical properties of the water column, along with meteorological conditions were examined for their relationship with phytoplankton biomass in the Irminger Sea during late autumn and early winter. Data were collected during 2 cruises to the region in November and December 2001 and November 2002. Phytoplankton biomass was approximated by (chl a) concentrations within the water column. When examined during autumn and winter alone, the Irminger Sea was suitably described as one biogeochemical region responding to varying meteorological forcing. Hydrographic differences within the region were not observed to have a significant effect on phytoplankton growth during this period. Strong correlations with latitude were seen in chl a concentrations, physical conditions (including mixed layer depth) and meteorological forcing (including net heat flux). Variability in autumn/winter phytoplankton growth conditions appears to be driven by light limitation modulated by meteorological forcing. The temporal and spatial scales of locations sampled in 2001 represent a progression in the physical and biological conditions from late autumn to early winter. Along this ‘virtual transect’, a baseline value of approximately 0.1 mg m–3 is seen in the mean chl a concentrations within the mixed layer. We postulate that convection provides a mechanism for reduction of net losses of phytoplankton, by helping to keep phytoplankton within the mixed layer. Under such conditions, a deeper and therefore more accurate estimation of the critical depth would be valid. Evidence of the extended maintenance of phytoplankton within the mixed layer is presented in the form of the relative dominances of different phytoplankton groups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 251-272.
    Publication Date: 2015-10-02
    Description: There is growing evidence that average global phytoplankton concentrations have been changing over the past century, yet published trajectories of change are highly divergent. Here, we review and analyze 115 published phytoplankton trend estimates originating from a wide variety of sampling instruments to explore the underlying patterns and ecological implications of phytoplankton change over the period of oceanographic measurement (1889 to 2010). We found that published estimates of phytoplankton change were much less variable when estimated over longer time series and consistent spatial scales and from the same sampling instruments. Average phytoplankton concentrations tended to increase over time in near-shore waters and over more recent time periods and declined in the open oceans and over longer time periods. Most published evidence suggests changes in temperature and nutrient supply rates as leading causes of these phytoplankton trends. In near-shore waters, altered coastal runoff and increased nutrient flux from land may primarily explain widespread increases in phytoplankton there. Conversely, in the open oceans, increasing surface temperatures are strengthening water column stratification, reducing nutrient flux from deeper waters and negatively influencing phytoplankton. Phytoplankton change is further affected by biological processes, such as changes in grazing regimes and nutrient cycling, but these effects are less well studied at large scales. The possible ecosystem consequences of observed phytoplankton changes include altered species composition and abundance across multiple trophic levels, effects on fisheries yield, and changing patterns of export production. We conclude that there is evidence for substantial changes in phytoplankton concentration over the past century, but the magnitude of these changes remains uncertain at a global scale; standardized long-term measurements of phytoplankton abundance over time can substantially reduce this uncertainty
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 534 . pp. 121-134.
    Publication Date: 2015-10-02
    Description: Benthic infauna in marine sediments have well-documented effects on biogeochemical cycling, from individual to ecosystem scales, including stimulation of nitrification and nitrogen removal via denitrification. However, the effects of burrowing depth and irrigation patterns on nitrogen cycling have not been as well described. Here we examined the effects of lugworm behavior on sediment nitrogen cycling using a reaction-transport model parameterized with literature and laboratory data. Feeding pocket depth and pumping characteristics (flow rate and pattern) were varied, and rates of nitrification, denitrification, and benthic exchange fluxes were computed. As expected, more intense burrow irrigation stimulated denitrification and coupled nitrification-denitrification. At high pumping rates and low sediment oxygen consumption rates (~10-6 mol m-3 s-1), simulation results showed a decrease in rates of nitrification and denitrification with decreasing burrow depth due to incomplete consumption of injected oxidants. Model results also suggest that discontinuous irrigation leads to temporal variability in sediment nitrogen cycling, but that the time-averaged rates do not depend on the irrigation pattern. We identify (1) the poorly constrained chemical composition of lumen fluid injected into sediments and (2) the response of microbial activity/distribution to oscillating redox conditions as critical knowledge gaps affecting estimates of sediment nitrogen removal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2016-01-11
    Description: We applied a 2-step clustering algorithm and Bayesian stable isotope mixing model to examine intraspecific differences in the contribution of prey sources to the diet and foraging habitat of harbor seals Phoca vitulina in the Salish Sea, USA. We analyzed stable isotopes of carbon and nitrogen collected from 32 seals and 248 prey samples representing 18 of 25 of the most common seal prey items identified in seal scat. Stable isotope analyses identified significant harbor seal sex- and size-based differences in diet and foraging habitat use. In comparison to males, female harbor seals had a higher contribution of prey items that were more 13C-enriched. This result may indicate that females derived more of their δ13C value from nearshore versus offshore food webs, an explanation supported by movement data on this population. However, large seals of both sexes displayed a greater offshore signal in their diet, indicating that seal mass effects on foraging habitat use were somewhat independent of sex. Our work contributes to understanding trophic linkages between these generalist consumers and their prey. The foraging differences that we detected between male and female harbor seals present complex challenges for fisheries management and for the design of marine reserves. Many marine reserves in the Pacific Northwest are located in close proximity to seal haul-out sites. By lowering the energetic costs of foraging of females, these reserves may ultimately have the unintended effect of increasing individual fitness, population growth rate, and influencing future predator-induced mortality on endangered species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-05-07
    Description: Sediment cores of 20 cm diameter contaning the natural benthic fauna were subjected to low oxygen conditions in a laboratory microcosm system. After several days of oxic conditions ('oxic stage') the oxygen content of the water was reduced to 25% saturation for 15 d ('hypoxic stage'), followed by a 'reoxygenation stage'. Effective solute transport rates were calculated using measurements with the conservative tracer ion bromide. Profiles of oxygen and ΣCO2 were measured and molecular diffusive as well as effective fluxes, account mg for effective solute exchange, were calculated. The overall response of the benthic community was to compensate for low oxygen content of the overlying water by increased pumping activity. On average, effective diffusion coefficients (Den} were 3 times higher in hypoxia than under oxic conditions. D eff reached 1.5 x 10^-4 cm2 s^-1, a value 30 times that of molecular diffusion. During hypoxia we observed low molecular diffusive O2 flux, higher effective O2 flux, as well as an increase in ΣCO2 within the sediment. We interpret this as a shift of transport away from diffusion within the bulk sediment interstices (oxic conditions) to the advective transport pathways along burrows during hypoxia. This facilitates fast transport of oxygen and bromide along burrows and contrasts with the slower transport of CO2 from the interstices governed by molecular diffusion. In this transient situation calulations based on gradients result in an unrealistic molar ratio of fluxes(CO2/O2)as high as 11.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-21
    Description: Biological dinitrogen (N2) fixation is the primary input of fixed nitrogen (N) into the marine biosphere, making it an essential process contributing to the biological functions of all organisms. Because biologically available N often limits marine productivity, microbial processes leading to its loss and gain (e.g. denitrification and N2 fixation, respectively) play an important role in global biogeochemical cycles. Bioturbation is known to influence benthic N cycling, most often reported as enhancement of denitrification and a subsequent loss of N2 from the system. N2 fixation has rarely been addressed in bioturbation studies. Instead, sedimentary N2 fixation typically has been considered important in relatively rare, localized habitats such as rhizosphere and phototrophic microbial mat environments. However, the potential for N2 fixation in marine sediments may be more widespread. We show here that nitrogenase activity can be very high (up to 5 nmol C2H4 cm–3 h–1) in coastal sediments bioturbated by the ghost shrimp Neotrypaea californiensis and at depths below 5 cm. Integrated subsurface N2-fixation rates were greater than those previously found for un-vegetated estuarine sediments and were comparable to rates from photosynthetic microbial mats and rhizospheres. Inhibition experiments and genetic analysis showed that this activity was mainly linked to sulfate reduction. Sulfate-reducing bacteria (SRB) are widespread and abundant in marine sediments, with many possessing the genetic capacity to fix N2. Our results show that N2 fixation by SRB in bioturbated sediments may be an important process leading to new N input into marine sediments. Given the ubiquity of bioturbation and of SRB in marine sediments, this overlooked benthic N2 fixation may play an important role in marine N and carbon (C) cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-07-27
    Description: The focus of this study was the 11.55 m long sediment core 303700-7, which was retrieved from the Gdansk Basin during a cruise of RV ‘Poseidon’ within the frame of the Russian–German Project GISEB. The core was analysed for grain size, elemental chemical composition, organic carbon and palynological spectra. The age control was based on palynostratigraphy and 7 radiocarbon datings of bulk sedimentary organic matter. These data provide a high-resolution record of climatic and marine palaeoenvironments in the Gdansk Basin for the last ca. 13 kyr, from the Bølling to late Holocene time. Sedimentation rates were estimated to vary between 0.37 and 1.62 mm yr–1. Major variations in palaeosalinity were estimated from bromine concentrations in the sediment. This method allows the first quantitative reconstruction of palaeosalinity changes in the Baltic Sea, especially profound during the Littorina and Postlittorina periods (middle to late Holocene). In addition, grain size data indicated several Littorina transgressive–regressive stages and a few episodes of increased near-bottom current activity. Our results from the Gdansk Basin are consistent with palaeoceanographic data from other deep basins of the Baltic Sea and provide new insights into the regional Holocene history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 519 . pp. 129-140.
    Publication Date: 2020-01-21
    Description: Within mono-specific meadows of clonal plants, genotypic diversity may functionally replace species diversity. Little is known about the variability in performance and plasticity of different genotypes towards anthropogenically induced stressors. In this field experiment we compared light-limitation stress responses and recovery of different eelgrass Zostera marina genotypes to assess the variability in phenotypic plasticity and gene expression between different genotypes. Replicated monoculture plots of 4 genotypes were subjected to a simulated turbidity period of 4 wk using shading screens, and their performance during light limitation and 4 wk of recovery was compared to non-shaded controls. In addition to growth and biomass, we investigated storage carbohydrates and quantified the expression of genes involved in carbohydrate metabolism, photosynthesis and control of oxidative stress. Plants showed remarkable plasticity in their stress responses and all phenotypic variables recovered to the control level within 4 wk. Depletion and subsequent restoration of sucrose levels differed among genotypes. In terms of gene expression, no consistent patterns were observed. Our study confirms that stress responses and recovery processes can vary substantially between genotypes and the results emphasize the importance of preserving regional genotypic diversity for immediate positive diversity effects and for adaptive evolution in response to global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-14
    Description: We report on a novel sponge disease, hereafter termed 'sponge white patch' (SWP), affecting the Caribbean sponge species Amphimedon compressa. SWP is characterized by distinctive white patches of variable size that are found irregularly on the branches of diseased sponges. Nearly 20% of the population of A. compressa at Dry Rocks Reef, Florida, USA, showed symptoms of SWP at the time of investigation (November 2007-July 2010). Approximately 21% of the biomass of SWP individuals was bleached, as determined by volume displacement. Scanning electron microscopy analysis showed severe degradation of bleached tissues. Transmission electron microscopy of the same tissues revealed the presence of a spongin-boring bacterial morphotype that had previously been implicated in sponge disease (Webster et al. 2002; Mar Ecol Prog Ser 232:305-309). This particular morphotype was identified in 8 of 9 diseased A. compressa individuals investigated in this study. A close relative of the aforementioned disease-causing alphaproteobacterium was also isolated from bleached tissues of A. compressa. However, whether the spongin-boring bacteria are true pathogens or merely opportunistic colonizers remains to be investigated. Molecular fingerprinting by denaturing gradient gel electrophoresis (DGGE) demonstrated a distinct shift from the microbiota of healthy A. compressa to a heterogeneous mixture of environmental bacteria, including several phylotypes previously implicated in sponge stress or coral disease. Nevertheless, tissue transplantation experiments conducted in the field failed to demonstrate infectivity from diseased to healthy sponges, leaving the cause of SWP in A. compressa to be identified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-08-27
    Description: Nematodes of the family Stilbonematinae are known for their highly specific association with ectosymbiotic bacteria. These worms are members of the meiofauna in marine, sulfide-rich sediments, where they migrate around the redox boundary layer. In this study, bacterial ectosymbionts of 2 species of marine nematodes, Stilbonema sp. and Laxus oneistus, were shown to be capable of the respiratory reduction of nitrate and nitrite (denitrification). The use of these alternative electron acceptors to oxygen by the bacteria allows the animals to migrate into the deeper, anoxic sediments, where they can exploit the sulfide-rich patches of the deeper sediment layers. The accumulation of thiols (sulfide, thiosulfate, sulfate and glutathione) in body tissues of the worms was determined following incubation in the presence of various electron donors (sulfide, thiosulfate) and acceptors (nitrate). In their chemoautotrophic metabolic potential, the ectosymbionts of the 2 nematode species were found to resemble the phylogenetically related, intracellular symbionts of macrofaunal hosts of deep-sea hydrothermal vents and other sulfide-rich habitats.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 94 . pp. 35-41.
    Publication Date: 2015-08-31
    Description: Chemoautotrophic bacteria live symbiotically in gills of Lucinoma aequizonata, an infaunal clam inhabiting an oxygen-poor environment. These intracellular symbionts respire nitrate, i.e. they use nitrate instead of oxygen as a terminal electron acceptor in the respiratory chain. Nitrate is only reduced to nitrite and not further to nitrogen gas. Nitrate is respired by the symbionts under fully aerobic conditions at the same rate as under anaerobic conditions. The bacterial symbionts contain a nitrate reductase that is associated with the membrane-containing fraction of the symbiont cell and that is sensitive to respiratory inhibitors; both features are consistent with the respiratory role of this enzyme. A review of nitrate reductase in chemoautotrophic syrnbionts suggests that nitrate respiration may be common among these symbioses. Symbiont nitrate reductase may be an ecologically important factor permitting the survival of animal hosts in oxygen-poor environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 33 . pp. 239-245.
    Publication Date: 2015-08-27
    Description: There is mounting molecular evidence that bacteria belonging to the phylum Planctomycetes are abundant in marine sponges including members of the genus Aplysina. In an attempt to culture planctomycete bacteria from Aplysina sponges, 116 bacterial strains were isolated on selective oligotrophic media. Screening of the strain collection by fluorescence in situ hybridization with the planctomycete-specific probe Pla46 yielded 3 positive candidates. Nearly complete sequencing of the respective 16S rRNA genes revealed that the isolates were affiliated with 2 distinct clusters of the genus Pirellula: 1 isolate was obtained from a Mediterranean sponge, 1 from a Caribbean sponge and a third from Caribbean seawater. To our knowledge this is the first report of cultured Planctomycetes from marine sponges. The isolates grew slowly on oligotrophic media and failed to grow on nutrient-rich media. Pirellula sp. Strain 797 was pink-pigmented while the other 2 isolates, 16 and 81, were non-pigmented. Transmission electron microscopy revealed a pear- or droplet-shaped cell morphology that is characteristic of the genus Pirellula. The application of strain-specific oligonucleotide probes to sponge tissue cryosections showed that the isolates contribute only a minor fraction to the total microbial community that is associated with Aplysina spp. sponges
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 532 . pp. 29-40.
    Publication Date: 2021-04-23
    Description: Heme is the iron-containing prosthetic group of hemoproteins, and is thus required for photosynthesis, respiration and nitrate reduction in marine phytoplankton. Here we report concentrations of heme b in Southern Ocean phytoplankton and contrast our findings with those in coastal species. The concentration of particulate heme b (pmol l-1) observed at the end of the exponential growth phase was related to the concentration of dissolved iron in the culture media. Small Southern Ocean phytoplankton species (〈6 μm in diameter) had heme b quotas 〈1 μmol mol-1 carbon, the lowest yet reported for marine phytoplankton. Heme b was also depleted in these species with respect to chlorophyll a. We calculated the amount of carbon accumulated per mole of heme b per second in our cultures (heme growth efficiency, HGE) and found that small Southern Ocean species can maintain growth rates, even while heme b content is reduced. Small Southern Ocean phytoplankton can thus produce more particulate carbon than larger Southern Ocean or small coastal species at equivalent iron concentrations. Combining primary productivity and heme b concentrations reported for the open ocean, we found that HGE in natural populations was within the range of our laboratory culture results. HGE was also observed to be higher at open ocean stations characterized by low iron concentrations. Our results suggest that low heme b quotas do not necessarily result in reduced growth and that marine phytoplankton can optimize iron use by manipulating the intracellular hemoprotein pool
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-04-12
    Description: We investigated the impacts of predicted ocean acidification and future warming on the quantity and nutritional quality of a natural phytoplankton autumn bloom in a mesocosm experiment. Since the effects of CO2-enrichment and temperature have usually been studied independently, we were also interested in the interactive effects of both aspects of climate change. Therefore, we used a factorial design with 2 temperature and 2 acidification levels in a mesocosm experiment with a Baltic Sea phytoplankton community. Our results show a significant time-dependent influence of warming on phytoplankton carbon, chlorophyll a, and particulate organic carbon. Phytoplankton carbon, for instance, decreased by more than half with increasing temperature at bloom time. Additionally, elemental carbon to phosphorus ratios (C:P) increased significantly, by approximately 5 to 8%, due to warming. Impacts of CO2 or synergetic effects of warming and acidification could not be detected. We suggest that stronger grazing pressure induced by temperature was responsible for the significant decline in phytoplankton biomass. Our results suggest that the biological effects of warming on Baltic Sea phytoplankton are considerable and will likely have fundamental consequences for trophic transfer in the pelagic food web
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-07-03
    Description: Sprat Sprattus sprattus larvae were used as model organisms to evaluate whether larval lipids reflect in situ feeding conditions and can thus identify match-mismatch situations. In detail, we determined larval lipid content, growth rates based on RNA:DNA ratios, and fatty acid (FA) composition during the spawning season in the Central Baltic Sea, and evaluated these in light of feeding, mortality and recruitment (which were determined in parallel within the project ‘GLOBEC Germany’). Based on the opposing trend of RNA:DNA and lipid content, as well as on previous observations, we hypothesized that lipid content and current feeding conditions are largely uncoupled in the early life stages of sprat due to reduced lipid anabolism. However, lipids still provide information in several ways: (1) segmented generalised linear models proved to be a suitable tool for identifying phases of lipid catabolism during development, with the slope reflecting size-specific environmental starvation pressure. This method detected a previously identified mismatch situation with suitable prey in the early spawning season, which increased mortality of larger larvae. (2) Estimated starvation resistance, a proxy that accounts for temperature- and size-dependent metabolism, reflected the likelihood of near future starvation of individual larvae. (3) Principal component analyses on FAs identified monthly differences in diet composition. Biomarkers indicated a dinoflagellate and/or microbial loop based carbon flux to the larvae. (4) Regression analyses revealed lower docosahexaenoic acid (DHA) levels in spring, but no obvious effect on growth. Food quality was generally high, and its impact on larval survival was less evident than that of prey size suitability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-06-12
    Description: Bacteria were isolated seasonally from the Mediterranean sponges Chondrilla nucula and Petrosia ficiformis and screened for antibacterial activities. Selected isolates were taxonomically identified by 16S rRNA gene sequencing. A total of 416 different bacterial strains were isolated, 60 (14.4%) of which displayed variable degrees of antimicrobial activity. Of the bioactive strains, 58.3% were able to inhibit Staphylococcus aureus, 6.7% were active against Bacillus subtilis, 11.7% against both Enterococcus faecalis and Escherichia coli, 38.3% against Pseudoalteromonas atlantica and 33.3% against Pseudomonas elongata. 16S rRNA gene sequence analysis showed that 2 isolates, 1 from seawater samples and 1 from P. ficiformis, were most closely related to Bacillus subtilis (99% similarity) and that another isolate from P. ficiformis was most closely related to a previously described sponge-associated Alphaproteobacterium NW001 (98% similarity). Two isolates from C. nucula were most closely related to Brachybacterium paraconglomeratum (99% similarity) and Shewanella algae (89% similarity). The high percentage of bioactive isolates derived from the 2 sponges suggests that marine microorganisms, whether animal-associated or planktonic, are promising sources for drug discovery.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-09-18
    Description: An RMT 25 opening/closing net was used to sample the nekton comunity at 2 stations in the ice free zone (IFZ) of the Scotia Sea (Stn 1 approximately 10 nautical miles south of the Antarctic Polar Front, Stn 2 on the edge of the South Georgia Shelf Break to the northwest of the island) Oblique hauls sampled 200 m depth layers to 1000 m during both day and night. Total and individual volumes of each species in each 200 m layer were measured by displacement The data were used to generate biomass and numerical spectra for day and night at each station for the whole water column to 1000 m. At both stations the relationship between log10 biomass density (B/A) and log10 individual body mass (M) were strongly positive. Slopes of the biomass spectra were not significantly different among the day and night stations and an overall regression showed that biomass density scaled as M061. Analysis of biomass spectra revealed that although the species composition and biomass density vaned between the 2 stations, energy turnover in the nekton community in the 2 areas was similarly dominated by animals of larger size. Considering energy turnover in terms of taxonomic groups revealed that Stn 1 turnover was dominated by tunicates (salps) followed by fish and cnidarians and at Stn 2 turnover was dominated by crustaceans followed similarly by fish and cnidarians. Use of biomass spectra in this case study was shown to enhance insight into the comparative function of 2 pelaglc systems obtained using a conventional taxonomc approach The analysis of biomass spectra in the absence of taxonomic data would have had limited value as it would not have emphasised the major difference between the 2 stations: the domination by tunicates, an energetic dead end, at Stn 1 and crustaceans, which are available to predators, at Stn 2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-19
    Description: We examined the simultaneous effect of climate warming and light availability on the phytoplankton spring bloom using 1400 l (1 m depth) indoor mesocosms. The timing of the spring bloom was advanced both by warming and higher light intensity, but the influence of temperature on the phytoplankton community was stronger than the light effect. Warming affected phytoplankton directly and indirectly via enhanced grazing pressure at higher temperatures. Warming resulted in markedly lower phytoplankton biomass and a shift towards smaller cell sizes. It also led to changes in the community structure of phytoplankton and zooplankton. Among phytoplankton, large-celled diatoms were most negatively affected by warming. Overwintering zooplankton species (Oithona, Pseudocalanus) remained dominant in the cold treatments, while they were replaced by late spring or summer species (Acartia, Centropages, Temora) in the warmed treatments. Our results show that understanding food web interactions might be very important to the study of the effects of climate warming on pelagic ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-21
    Description: We assessed the effects of light limitation and temperature shift on palatability and induced antiherbivore defense in the brown alga Fucus vesiculosus L. Incubation for 2 wk at light intensities above the compensation point of photosynthesis and in the absence of grazers increased the palatability of F. vesiculosus and its subsequent consumption by the omnivorous isopod Idotea baltica Pallas. This effect correlated with an increased C:N ratio and mannitol content in the algal tissue, presumably due to increased photosynthetic carbon fixation. Mannitol, the primary product of photosynthesis in F. vesiculosus, proved to be a feeding cue for I. baltica, and depletion of the mannitol pool may therefore account for the reduced palatability during light limitation. At light intensities above the compensation point of photosynthesis, F. vesiculosus responded with decreasing palatability when it was exposed to I. baltica grazing. Irrespective of the preceding light regime, such defense induction was prevented during incubation under light limitation. Thus, under low light, defense induction is not only inhibited, but also less necessary due to the relative absence of feeding cues. Upward or downward shifts in water temperature by approximately 10°C also inhibited inducible defense in F. vesiculosus. However, such shifts did not affect algal growth and were therefore the consequence of an impairment of specific defense-related components rather than of resource limitation, unless compensatory growth was given priority over defense.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-22
    Description: The synergistic effects of fishing, climate and internal dynamics on population fluctuations are poorly understood due to the complexity of these interactions. In this paper, we combine time series analysis and simulations to investigate the long-term dynamics of an overexploited population in the Mediterranean Sea, and its link with both fishing-induced demographic changes and hydroclimatic variability. We show that the cyclicity of the catch per unit of effort (CPUE) of European hake Merluccius merluccius (EH) vanished in the 1980s, while the correlation between the CPUE and a local environmental index increased. Using simulations, we then show that the cyclicity observed in the EH biomass before the 1980s can have an internal origin, while that its disappearance could be due to the fishing-induced erosion of the age structure. Our results suggest that fishing can trigger a switch from internally generated to externally forced population fluctuations, the latter being characterised by an increasing dependency of the population on recruitment and ultimately on environmental variability. Hydroclimatic modifications occurring in the Mediterranean in the early 1980s could have enhanced these changes by leading to a mismatch between early life stages of EH and favorable environmental conditions. Our conclusions underline the key effect of the interaction between exploitation and climate on the dynamics of EH and its important consequences for management and conservation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-14
    Description: Biological dinitrogen (N2) fixation is the primary input of fixed nitrogen (N) into the marine biosphere, making it an essential process contributing to the biological functions of all organisms. Because biologically available N often limits marine productivity, microbial processes leading to its loss and gain (e.g. denitrification and N2 fixation, respectively) play an important role in global biogeochemical cycles. Bioturbation is known to influence benthic N cycling, most often reported as enhancement of denitrification and a subsequent loss of N2 from the system. N2 fixation has rarely been addressed in bioturbation studies. Instead, sedimentary N2 fixation typically has been considered important in relatively rare, localized habitats such as rhizosphere and phototrophic microbial mat environments. However, the potential for N2 fixation in marine sediments may be more widespread. We show here that nitrogenase activity can be very high (up to 5 nmol C2H4 cm–3 h–1) in coastal sediments bioturbated by the ghost shrimp Neotrypaea californiensis and at depths below 5 cm. Integrated subsurface N2-fixation rates were greater than those previously found for un-vegetated estuarine sediments and were comparable to rates from photosynthetic microbial mats and rhizospheres. Inhibition experiments and genetic analysis showed that this activity was mainly linked to sulfate reduction. Sulfatereducing bacteria (SRB) are widespread and abundant in marine sediments, with many possessing the genetic capacity to fix N2. Our results show that N2 fixation by SRB in bioturbated sediments may be an important process leading to new N input into marine sediments. Given the ubiquity of bioturbation and of SRB in marine sediments, this overlooked benthic N2 fixation may play an important role in marine N and carbon (C) cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-09-14
    Description: The warming trend for the entire globe (1850 to 2005) is 0.04°C decade–1. A specific warming period started around 1980 and continues until the present. This warming also occurred in the Baltic Sea catchment, which lies between maritime temperate and continental subarctic climate zones. A detailed study of climate variability and the associated impact on the Baltic Sea area for the period 1958 to 2009 revealed that the recent changes in the warming trend are associated with changes in large-scale atmospheric circulation over the North Atlantic. The number and pathways of deep cyclones changed considerably in line with an eastward shift of the North Atlantic Oscillation centers of action. There is a seasonal shift of strong wind events from autumn to winter and early spring. Since the late 1980s, the winter season (DJFM, i.e. December to March) of the Baltic Sea area has tended to be warmer, with less ice coverage and warmer sea surface temperatures, especially pronounced in the northern parts of the Baltic Sea. There is a tendency for increased cloud cover and precipitation in regions that are exposed to westerlies and less cloud coverage at the leeward side of the Scandinavian Mountains and over the Baltic Sea Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2016-05-26
    Description: The role of tetrathionate in the sulfur cycle of Baltic Sea sediments was investigated in different habitats and under a variety of environmental conditions. Sediment profiles were recorded with regard to numbers of thiosulfate oxidizing bacteria, concentrations of sulfur compounds, and potential rates of thiosulfate oxidation. Products of thiosulfate oxidation were quantified in incubated sediment samples and in pure cultures. Evidence was found that tetrathionate is formed within these sediments, that sulfur oxidizing bacteria are present in considerable numbers, that these bacteria are of major importance in the oxidation of reduced sulfur compounds in their habitat, and that tetrathionate is an important oxidation product of these bacteria. Thiosulfate is oxidized by bacteria isolated from these sediments to varying proportions of tetrathionate, sulfate, and also elemental sulfur. In highly sulfidic sediments and in the presence of large amounts of organic matter, tetrathionate was present in sediment horizons in which thiosulfate and elemental sulfur also accumulated. A tetrathionate cycle is proposed to be active in natural marine and brackish water sediments in which, due to combined bacterial action and chemical reactions, a net oxidation of sulfide to elemental sulfur occurs in the presence of catalytic amounts of thiosulfate and tetrathionate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 155 . pp. 67-76.
    Publication Date: 2018-05-08
    Description: The effect of variable CO2 concentrations on the elemental composition (C:N:P) of marine diatoms was investigated in 2 strains of Skeletonema costatum (Grev.) Cleve. Five or 6 concentrations of dissolved molecular carbon dioxide [CO2 (aq)], ranging from 0.5 to 39 µmol l-1, were applied in dilute batch cultures. In both strains, elemental ratios were clearly dependent on [CO2 (aq)]. With decreasing CO2 concentrations, a decline in C:P and N:P and an increase in C:N was observed. The close correlation between C:P or N:P and [CO2 (aq)] corresponded to a ca 45 to 65% decrease in elemental ratios from highest (〉=30 µmol l-1) to lowest (ca 1 µmol l-1) CO2 concentrations. C:N at low [CO2 (aq)] was up to 24% higher than at high [CO2 (aq)]. To date, the elemental composition of marine phytoplankton has been considered to be independent of CO2 availability. If dependency of the C:N:P ratio on [CO2 (aq)] proves to be a general phenomenon in marine phytoplankton, changes in the elemental composition may be expected in response to the currently observed increase in partial pressure of atmospheric CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 81 . pp. 51-63.
    Publication Date: 2015-10-07
    Description: ATP content and metabolic activity of benthic foraminifera were determined from deepsea sediments of the Norwegian-Greenland Sea. Metabolic activity was analysed by measurements of Electron Transport System (ETS] activity and heat production. This, combined with live observations, revealed 2 survival strategies. Ruperlina stabilis, an obligate suspension feeder, is adapted to conditions in which it receives a steady input of particles throughout the year, enabling it to maintain a relatively high ATP content (153 f 23 ng ATP ind.-l) with a reduced ATP turnover rate (0.008 S-'). In contrast Cribrostomoides subglobosum, Pyrgo rotalaria and Rhabdammina abyssorum undergo large (up to 10-fold) fluctuations in seasonal values of ATP and heat production, but retain a high, relatively constant ATP turnover rate (i.e. seconds). Such a rapid turnover allows these foraminifera to take quick advantage of sudden nutrient inputs; this state of readiness, however, is maintained at the cost of the protoplasm, which benthic foraminifera are apparently capable of metabolizing in times of starvation. C. subglobosum and P rotalaria responded to several sedimentation events with an increase in ETS activ~tys;i ngle cells sometimes showed extremely high ATP values (50- to 100-fold increase), reflecting an individual physiological response to food input to the deep-sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 483 . pp. 221-229.
    Publication Date: 2018-06-25
    Description: During the past few decades, the green crab Carcinus maenas, a native to Europe, has invaded the North American Pacific coast. In this new habitat, C. maenas encounters North American periwinkles of the genus Littorina that differ from European Littorina spp. in size, shape and shell strength. We hypothesize that the ability to handle prey never encountered previously is a prerequisite for successful invasion of novel habitats. In a first approach to testing our hypothesis, we compared European (native) to Canadian (invaded) C. maenas in feeding trials with Littorina spp. from Europe as well as Canada. Canadian crabs had significantly larger crusher claws than European crabs of the same size. Prey handling by Baltic crabs, but not by North Sea crabs, significantly depended on shell morphometry and strength of European periwinkles. By contrast, neither European nor Canadian crabs were affected by shell characteristics of the relatively soft-shelled Canadian periwinkles. Baltic and Canadian crabs did not differ in terms of handling time for, and handling success of, different periwinkle species, but North Sea crabs needed more time for, and were less successful in, crushing periwinkles. We conclude that C. maenas exhibits plasticity in both claw morphometry and feeding behaviour that enables this predator to handle novel prey organisms, and contributes to its success as an invader.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-19
    Description: We examined the RNA and DNA concentration of field-caught scallops Chlamys islandica, maintained in suspended cultures at 15 and 30 m depth, and scallops from a wild population at 50 to 60 m in Kobbefjord, southwest Greenland. General relations between RNA and DNA concentrations and individual shell height were established, and we found that the RNA:DNA ratio (RD) worked well as a standardisation of the RNA concentration independent of size and sex. During an experimental period of 14 mo, we observed a pronounced seasonal pattern in RD and mass growth, and differences between depths. Even though the period with high levels of RD reflected the growth season relatively well, RD was a poor predictor of individual mass growth rates of C. islandica. However, we found a non-linear response in RD to increased food concentrations resulting in RD being up- and down-regulated at the beginning and end of the productive summer season, respectively. These results indicate that short-term dynamics in the actual mass growth rate might be controlled through regulation of ribosome activity rather than ribosome number (RNA concentration). This adaption would allow scallops to up-regulate protein synthesis more rapidly, thereby ensuring efficient utilisation of the intense peaks in food availability in coastal areas in the Arctic. Therefore, we suggest that RD in C. islandica reflects the growth potential rather than the actual growth rate. Still, the amount of unexplained variance in RD is considerable and not independent over time, suggesting the existence of unresolved mechanisms or relationships.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...