ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (241,929)
  • American Institute of Physics (AIP)  (241,929)
Collection
Years
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 1480-1486 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The structure of a model colloidal suspension in the vicinity of a charged wall is studied in the framework of the Derjaguin–Landau–Verwey–Overbeek interaction potential and the hypernetted-chain approximation. Here we consider the case of dilute suspension of highly charged macroparticles interacting with weakly repulsive, neutral, and attractive walls. As the wall–particle electrostatic interactions become successively less repulsive, the formation of a monolayer of colloidal particles, strongly adsorbed onto the surface, is predicted by our results. This monolayer of electrostatically confined particles mimic the effect of an effective surface charge distribution adjacent to the wall which, together with the bare wall surface charge, induces on the other, nonconfined, colloidal particles the same local-concentration profile as that in front of a highly charged and repulsive wall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 1474-1479 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The small-angle x-ray scattering from fully and partially derivatized porous silicas has been studied. Power-law-scattering exponents of magnitude greater than 4 have been found in all cases. The magnitudes of the exponents increased with the alkyl chain length and with the degree of surface derivatization. In a preliminary model to explain these observations, a power-law-scattering exponent with magnitude greater than 4 is related to a "fuzzy'' pore boundary, in which the density varies continuously at the pore boundary instead of changing discontinuously from a value of zero in the empty pore to the essentially constant density characteristic of the bulk silica, as is usually assumed in analyses of the small-angle scattering from porous silicas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7656-7661 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Canonical Monte Carlo results are presented for mixtures of primitive model electrolytes with a common ion. Both symmetric mixtures, where the ions differ only in size, and charge asymmetric mixtures were studied for ionic strengths ranging from 0.003 to 1.0 M. The hypernetted chain (HNC) equation theory and the simple "exponential'' (EXP) approximation are both applied to the same electrolyte models. The electrolyte mixing coefficients w0 and w1 were calculated from osmotic coefficients. Comparison with Monte Carlo data indicates that the HNC equation yields accurate predictions for the zeroth mixing coefficient w0, while the simple EXP approximation yields qualitatively correct results. The Monte Carlo results for the first mixing coefficient, w1, are not precise enough to allow a quantitative comparison with other theories. However, a strong concentration dependence of w1 for dilute solutions, found previously for the nonprimitive models in the HNC approximation, is confirmed by the Monte Carlo results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7662-7671 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new model electron–ammonia pseudopotential parameterized to ab initio quantum chemistry calculations on small lithium ammonia clusters, Li(NH3)n(n=1,4), is studied in a variety of environments. For Li(NH3)n clusters, n=16,32,64,128 the valence electron of the lithium is found to exist in a surface state far from the cation which is localized near the center of mass of the cluster. No bulk states were stabilized. Cluster anions (NH3)−n were also studied and the electron centroid-cluster center of mass probability distribution for (NH3)−64 calculated using umbrella sampling. In the present model, there is apparently no barrier to the dissociation of the surface states. No bulk states were found. This set of results appears to disagree with experiments which have been interpreted to indicate bulk states for cluster anions and the clusters containing lithium. Bulk properties of both a single excess electron and the lithium atom in solution are also reported. The solvation energy agrees well with experiment but the spectrum of the excess electron remains somewhat blue shifted as in earlier calculations. However, the valence electron of the lithium atom is found to spontaneously dissociate; a property not reproduced in previous work.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7683-7695 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The geometrical structures of M+(Ar)n ions, with n=1–14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M+=Co+ and V+ possess radial shells with small (ca. 4–8) first-shell coordination number. The inclusion of an ion-induced-dipole–ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co+(Ar)n and V+(Ar)n predicted structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 3011-3017 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Quantum chemical calculations are presented which predict that in the ground state of di-π-cyclooctatetraene cerium (cerocene) the Ce ion is almost entirely in a 4f1 configuration corresponding to Ce3⊕(C8H1.5(large-closed-square)8)2. The 4f electron forms with an electron of the ligand e2u highest-occupied molecular orbital a 4f1e32u singlet in close analogy to a Kondo ion in a metal. Due to coupling of the 4f1e32u with the 4f0e42u configuration, the latter corresponding to Ce4⊕(C8H2≤8)2, the splitting between the ground state singlet and the first excited triplet is of the order 0.5 eV. The self-consistent-field and multiconfiguration self-consistent-field parts of the calculations are done by employing recently developed pseudopotentials for cerium using basis sets of up to 626 basis functions. The correlation energy is accounted for by means of various correlation-energy density functionals and also by limited coupled electron-pair approximation calculations. Similar results are found in both cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7672-7682 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Dynamic light scattering (depolarized Rayleigh and polarized Rayleigh–Brillouin) and quasielastic neutron scattering are employed to study the dynamics of the glass-forming liquid di-2-ethylhexyl phthalate (DOP) (Tg=184 K). The depolarized Rayleigh scattering measurements were made in the temperature range from 303 to 433 K, the polarized Rayleigh–Brillouin measurements in the range from 263 to 433 K, and the quasielastic neutron-scattering measurements in the range from 37 to 312 K and in the Q range from 0.33 to 1.84 A(ring)−1. The orientation times for DOP, obtained from a single Lorentzian fit to the experimental depolarized spectra at high T, are in good agreement with recent dielectric data for the primary (α) relaxation. However, at lower T, the viscosity increases more strongly than the orientation times and the Stokes–Einstein–Debye equation which can adequately describe the dynamics in the high-T range is insufficient at temperatures close to Tg. The relaxation time obtained from the Rayleigh–Brillouin experiment is about 1 order of magnitude faster than the orientation times. In the neutron-scattering experiment we find a strong decrease of the elastic intensity and a corresponding increase of the quasielastic intensity around Tg.The data analysis with respect to the dynamics (from a two Lorentzian fit) revealed the existence of three processes affecting the high-frequency range: (i) a "fast'' (τ2∼10 ps) Q-independent motion with weak T dependence (E2=1.54 kcal/mol), (ii) a "slow'' Q-dependent motion, and (iii) a flat background increasing with T and Q. The fast process is discussed in terms of a very localized motion of the phenyl group (β relaxation) and, as such, as a precursor of the the primary (α) relaxation. The relaxation time of this process (τ2) was found to compare nicely with the time τmax from the Rayleigh–Brillouin (RB) experiment suggesting that the latter is caused by fast localized motions. The slow process is discussed in terms of the jump-diffusion model. The activation energy associated with the jump-diffusion times is 6.1 kcal/mol and it is associated with large-scale diffusional motion of the DOP molecule. The relaxation times obtained from this process are compared with the relaxation times obtained from the depolarized and dielectric techniques for the primary relaxation. Finally, the background can be identified with fast local motions and/or low-frequency excitations relaxing outside the energy window of our experiment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 7710-7727 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We consider the effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of "bimolecular'' combination processes L+L' →(L+L') and "unimolecular'' fragmentations L→L'+(L−L'). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size (L¯) evaluated as a function of the Peclet number P, i.e., the dimensionless ratio of flow rate γ(overdot) and rotational diffusion coefficient Dr. For sufficiently dilute solutions, we find only a weak dependence of L¯ on P. In the semidilute regime, however, an apparent divergence in L¯ at P(approximately-equal-to)1 suggests a flow-induced first-order gelation phenomenon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4219-4229 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An efficient implementation of microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fissions in SiH2 and Si2H6 using recently constructed global potential-energy surfaces. Comparison is made with results of trajectory calculations performed on the same potential-energy surfaces. The predictions of the statistical theory agree well with and provide an upper bound to the trajectory derived rate constants for SiH2→SiH+H. In the case of Si2H6, agreement between the statistical theory and trajectory results for Si–Si and Si–H bond fission is poor with differences as large as a factor of 72. Moreover, at the lower energies studied, the statistical calculations predict considerably slower rates of bond fission than those calculated from trajectories. These results indicate that the statistical assumptions inherent in the transition-state theory method are not valid for disilane in spite of the fact that many of the mode-to-mode rate constants for intramolecular energy transfer in this molecule are large relative to the Si–Si and Si–H bond fission rates. There are indications that such behavior may be widespread among large, polyatomic molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 4205-4218 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present differential cross section (DCS) measurements for scattering of HF by Ar. These crossed-beam experiments employ rotational state sensitivity, allowing determination of the DCS as a function of the scattered HF rotational state. The initial HF rotational distribution is generated by nozzle expansion, without further state selection. Its composition is mostly J=0 and J=1, with small admixtures for J〉1. The DCS for each final state J' is measured using a stabilized cw HF chemical laser, in conjunction with a rotatable liquid He-cooled bolometer. Measurable signals are obtained for scattering into 0≤J'≤5, where J'=6 is the thermodynamic limit for our collision energy of 120 meV. The measured DCS's show a strong forward peak, largely from elastic scattering. In addition, the DCS's evolve from a broad shoulder in the θ≈25°–40° region for J'=0—through a flattening of the wide-angle scattering for J'=2 and J'=3—to an increase in the scattering beyond ∼40° for J'=4. The DCS for scattering into J'=5 also shows increased intensity at wide scattering angles, but its onset is delayed until ∼70°. These features are shown to be independent of the laboratory → center-of-mass kinematic transformation. The wide-angle scattering into J'=4 and J'=5 corresponds to transferring up to 40% and 60%, respectively, of the available kinetic energy into HF rotation. Since the center-of-mass scattering angles are up to ∼110°, we interpret the observed features for J'=4–5 in terms of rotational rainbow scattering from the hard core of the HF+Ar potential energy surface. The origin of the shoulder for J'=0 scattering is less clear, but it may arise from the strongly anisotropic nature of the HF+Ar van der Waals attraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...