On the linkage between future Arctic sea ice retreat, the large-scale atmospheric circulation and temperature extremes over Europe

Untersuchung des Zusammenhangs zwischen zukünftigen Arktischen Meereisänderungen, der großskaligen atmosphärischen Zirkulation und Temperaturextremen über Europa

  • Extreme weather and climate events are one of the greatest dangers for present-day society. Therefore, it is important to provide reliable statements on what changes in extreme events can be expected along with future global climate change. However, the projected overall response to future climate change is generally a result of a complex interplay between individual physical mechanisms originated within the different climate subsystems. Hence, a profound understanding of these individual contributions is required in order to provide meaningful assessments of future changes in extreme events. One aspect of climate change is the recently observed phenomenon of Arctic Amplification and the related dramatic Arctic sea ice decline, which is expected to continue over the next decades. The question to what extent Arctic sea ice loss is able to affect atmospheric dynamics and extreme events over mid-latitudes has received a lot of attention over recent years and still remains a highly debated topic. In this respect, the objective ofExtreme weather and climate events are one of the greatest dangers for present-day society. Therefore, it is important to provide reliable statements on what changes in extreme events can be expected along with future global climate change. However, the projected overall response to future climate change is generally a result of a complex interplay between individual physical mechanisms originated within the different climate subsystems. Hence, a profound understanding of these individual contributions is required in order to provide meaningful assessments of future changes in extreme events. One aspect of climate change is the recently observed phenomenon of Arctic Amplification and the related dramatic Arctic sea ice decline, which is expected to continue over the next decades. The question to what extent Arctic sea ice loss is able to affect atmospheric dynamics and extreme events over mid-latitudes has received a lot of attention over recent years and still remains a highly debated topic. In this respect, the objective of this thesis is to contribute to a better understanding on the impact of future Arctic sea ice retreat on European temperature extremes and large-scale atmospheric dynamics. The outcomes are based on model data from the atmospheric general circulation model ECHAM6. Two different sea ice sensitivity simulations from the Polar Amplification Intercomparison Project are employed and contrasted to a present day reference experiment: one experiment with prescribed future sea ice loss over the entire Arctic, as well as another one with sea ice reductions only locally prescribed over the Barents-Kara Sea.% prescribed over the entire Arctic, as well as only locally over the Barent/Karasea with a present day reference experiment. The first part of the thesis focuses on how future Arctic sea ice reductions affect large-scale atmospheric dynamics over the Northern Hemisphere in terms of occurrence frequency changes of five preferred Euro-Atlantic circulation regimes. When compared to circulation regimes computed from ERA5 it shows that ECHAM6 is able to realistically simulate the regime structures. Both ECHAM6 sea ice sensitivity experiments exhibit similar regime frequency changes. Consistent with tendencies found in ERA5, a more frequent occurrence of a Scandinavian blocking pattern in midwinter is for instance detected under future sea ice conditions in the sensitivity experiments. Changes in occurrence frequencies of circulation regimes in summer season are however barely detected. After identifying suitable regime storylines for the occurrence of European temperature extremes in winter, the previously detected regime frequency changes are used to quantify dynamically and thermodynamically driven contributions to sea ice-induced changes in European winter temperature extremes. It is for instance shown how the preferred occurrence of a Scandinavian blocking regime under low sea ice conditions dynamically contributes to more frequent midwinter cold extreme occurrences over Central Europe. In addition, a reduced occurrence frequency of a Atlantic trough regime is linked to reduced winter warm extremes over Mid-Europe. Furthermore, it is demonstrated how the overall thermodynamical warming effect due to sea ice loss can result in less (more) frequent winter cold (warm) extremes, and consequently counteracts the dynamically induced changes. Compared to winter season, circulation regimes in summer are less suitable as storylines for the occurrence of summer heat extremes. Therefore, an approach based on circulation analogues is employed in order to quantify thermodyamically and dynamically driven contributions to sea ice-induced changes of summer heat extremes over three different European sectors. Reduced occurrences of blockings over Western Russia are detected in the ECHAM6 sea ice sensitivity experiments; however, arguing for dynamically and thermodynamically induced contributions to changes in summer heat extremes remains rather challenging.show moreshow less
  • Wetter- und Klimaextreme stellen eine der größten Gefahren für die heutige Gesellschaft dar. Daher ist es essentiell verlässliche Aussagen darüber zu treffen, welche Änderungen solcher Extremereignisse im Zuge des zukünftigen globalen Klimawandels zu erwarten sind. Die projizierten Klimaänderungen, welche mit dem zukünftigen Klimawandel einhergehen, sind jedoch im Allgemeinen das Ergebnis komplexer Wechselwirkungen von verschiedenen physikalischen und dynamischen Prozessen in den verschiedenen Subsystemen des Klimasystems. Daher ist ein tiefgreifendes Verständnis dieser einzelnen Prozesse erforderlich, um aussagekräftige Einschätzungen für die Zukunft abgeben zu können. Ein Aspekt des globalen Klimawandels über die letzten Dekaden ist das Phänomen der arktischen Verstärkung und der damit verbundene dramatische Rückgang des Arktischen Meereises, welcher sich voraussichtlich in den nächsten Jahrzehnten auch fortsetzen wird. Die Frage, inwieweit der Rückgang des arktischen Meereises die atmosphärische Dynamik sowie Wetter- undWetter- und Klimaextreme stellen eine der größten Gefahren für die heutige Gesellschaft dar. Daher ist es essentiell verlässliche Aussagen darüber zu treffen, welche Änderungen solcher Extremereignisse im Zuge des zukünftigen globalen Klimawandels zu erwarten sind. Die projizierten Klimaänderungen, welche mit dem zukünftigen Klimawandel einhergehen, sind jedoch im Allgemeinen das Ergebnis komplexer Wechselwirkungen von verschiedenen physikalischen und dynamischen Prozessen in den verschiedenen Subsystemen des Klimasystems. Daher ist ein tiefgreifendes Verständnis dieser einzelnen Prozesse erforderlich, um aussagekräftige Einschätzungen für die Zukunft abgeben zu können. Ein Aspekt des globalen Klimawandels über die letzten Dekaden ist das Phänomen der arktischen Verstärkung und der damit verbundene dramatische Rückgang des Arktischen Meereises, welcher sich voraussichtlich in den nächsten Jahrzehnten auch fortsetzen wird. Die Frage, inwieweit der Rückgang des arktischen Meereises die atmosphärische Dynamik sowie Wetter- und Klimaextreme über den mittleren Breiten beeinflussen kann, wurde in den letzten Jahren von einer Vielzahl von Studien adressiert, bleibt jedoch bis zum heutigen Tage ein kontrovers diskutiertes Thema. Aus diesem Grund zielt die vorliegende Arbeit darauf ab einen Beitrag zu einem besseren Verständnis der Auswirkungen des zukünftigen arktischen Meereisrückgangs auf europäische Temperaturextreme, sowie auf Änderungen der relevanten großräumigen atmosphärischen Zirkulationsbedingungen zu leisten. Die Ergebnisse dieser Arbeit basieren auf Modelldaten des atmosphärischen Zirkulationsmodells ECHAM6. Zwei unterschiedliche Meereissensitivitätsexperimente aus dem Polar Amplification Intercomparison Project werden analysiert: ein Experiment mit vorgeschriebener zukünftiger Meereisreduktion über der gesamten Arktis, sowie ein Weiteres, in dem jediglich das Meereis über der Barents- und Karasee verringert wird. Beide Experimente werden einer Referenzsimulation gegenübergestellt, welche gegenwärtige Meereisbedingungen repräsentiert. Zunächst wird analysiert, inwieweit der zukünftige arktische Meereisrückgang Einfluss auf die großräumige atmosphärische Zirkulation über der nördlichen Hemisphäre hat. Dazu werden im Rahmen dieser Arbeit die Häufigkeitsänderungen von fünf bevorzugten atmosphärischen Zirkulationsregimen bestimmt. Beide Sensitivitätsexperimente zeigen diesbezüglich ähnliche Änderungen in den Auftrittswahrscheinlichkeiten der Regime. In Übereinstimmung mit Ergebnissen, welche auf der ERA5-Reanalyse basieren, zeigt sich beispielsweise ein häufigeres Auftreten eines skandinavischen Blockierungsmusters im Mittwinter unter reduzierten Meereisbedingungen. Änderungen in der Auftrittswahrscheinlichkeit verschiedener Zirkulationsregime in der Sommersaison werden hingegen kaum detektiert. Anschließend werden jene Regime identifiziert, welche mit einem häufigerem Auftreten von winterlichen Temperaturextremen über Europa in Verbindung gebracht werden können. In Kombination mit den zuvor erfassten meereisbedingten Änderungen in den Auftrittswahrscheinlichkeiten der Regime werden dann dynamisch und thermodynamisch induzierte Beiträge zu meereisbedingten Änderungen europäischer Temperaturextreme quantifiziert. Es zeigt sich beispielsweise, dass das bevorzugte Auftreten des skandinavischen Blockierungsmusters unter zukünftigen Meereisbedingungen dynamisch zu häufigeren Kälteextremereignissen im Winter über Mitteleuropa beiträgt. Darüber hinaus kann eine reduzierte Häufigkeit des Auftretens eines Regimes, welches mit einem Trog über dem westlichen Atlantik assoziiert werden kann, mit einer verringerten Anzahl von sehr warmen Wintertagen über Mitteleuropa in Verbindung gebracht werden. Es wird zudem gezeigt, wie der in den Modellsimulationen thermodynamisch induzierte Erwärmungseffekt infolge der reduzierten Meereisbedingungen zu einem häufigeren (weniger häufigeren) Auftreten von extrem warmen (kalten) Wintertagen führen kann. Dieser thermodynamische Effekt kann folglich den dynamisch induzierten Veränderungen entgegenwirken. Zirkulationsregime in der Sommersaison können nur bedingt mit einem häufigeren Auftreten von europäischen Hitzeextremen im Sommer in Verbindung gebracht werden. Aus diesem Grund wird ein zusätzlicher methodischer Ansatz verwendet, der auf der Identifikation von Zirkulationsmustern basiert, welche große Ähnlichkeit zu typischen atmosphärischen Blockierungen während vergangener Hitzewellen über verschiedenen europäischen Regionen aufweisen. Dies ermöglicht es meereisbedingte Änderungen im Auftreten von Hitzeextremen über drei verschiedene europäische Sektoren in thermodynamisch und dynamisch induzierte Beiträge zu zerlegen. In den Meereissensitivitätsexperimenten kann beispielsweise ein selteneres Auftreten von Blockierungen über Westrussland detektiert werden. Eine in sich geschlossene physikalische Argumentation bezüglich der dynamisch und thermodynamisch induzierten Beiträge zu den detektierten Änderungen in der Häufigkeit von sommerlichen Hitzeextremen stellt jedoch weiterhin eine Herausforderung dar. Im Vergleich zu anderen Aspekten des zukünftigen Klimawandels, wie beispielsweise dem thermodynamischen Einfluss global erhöhter Meeresoberflächentemperaturen, zeigt sich, dass die meereisinduzierten Auswirkungen auf europäische Temperaturextreme wahrscheinlich von untergeordneter Bedeutung sind. Nichtsdestotrotz können die Ergebnisse dieser Arbeit zu einem besseren Verständnis gegenwärtiger und zeitnah zu erwartender Änderungen von Temperaturextremereignissen über Europa beitragen. Zusätzlich dazu bietet die vorliegende Arbeit eine nützliche und ergänzende Perspektive auf die wissenschaftliche Fragestellung, inwieweit der Arktische Klimawandel mit Änderungen in der atmosphärischen Zirkulation und Extremereignissen über den mittleren Breiten in Verbindung gebracht werden kann. Folglich trägt diese Arbeit damit dazu bei einem allgemeinen Konsens in diesem stark debattierten Forschungsgebiet einen Schritt näher zu kommen.show moreshow less

Download full text files

  • SHA-512:2950712bfd4c04c1b7efdfcbfa56a62c136982c1da94e3aa86a014a3952b6cf416755e37745259c8974e65d1025e83b12c6ac2453f9bbc398da26b3efb62deb2

Export metadata

Metadaten
Author details:Johannes RieboldORCiDGND
URN:urn:nbn:de:kobv:517-opus4-604883
DOI:https://doi.org/10.25932/publishup-60488
Reviewer(s):Markus RexORCiDGND, Uwe UlbrichORCiDGND, Joaquim PintoORCiDGND
Supervisor(s):Dörthe Handorf, Markus Rex, Uwe Ulbrich
Publication type:Doctoral Thesis
Language:English
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/07/10
Release date:2023/08/31
Tag:Atmosphäre; Extremereignisse; Klimawandel; Zirkulationsregime; arktisches Meereis; großskalige Zirkulation
Arctic sea ice; atmosphere; circulation regimes; climate change; extreme events; large-scale circulation
Number of pages:xi, 126
RVK - Regensburg classification:UT 6000, UT 8900, UT 2960, UT 2910
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.