Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital forcing of the inception of the Laurentide ice sheet?

Abstract

According to the astronomical theory of palaeoclimates, the glacial–interglacial oscillations of the Pleistocene have their origin in the insolation forcing caused by the orbital variations of the Earth1. The potential response of the climatic system to the resulting insolation perturbations has been investigated mainly using zonally-averaged energy balance models (EBM)2–6. Atmospheric general circulation models (GCM) include many essential processes (such as the hydrological cycle) neglected in EBMs, but, because of their high computational cost, can be used only for ‘snapshot’ reconstructions of climate at certain times in the past. We show here that the climatic transition at the end of the last interglacial is a particularly relevant period for GCM studies of the sensitivity of climate to the astronomical variations of insolation. We have used a low-resolution spectral GCM to simulate two annual cycles with the insolation conditions of 125,000 yr BP and 115,000 yr BP. For the 115-kyr simulation we find an annual mean cooling over Canada of more than 2 K and increased precipitation. We suggest that such a pattern of response to the insolation changes would favour the extension of permanent snow cover over the Labrador area and could have triggered formation of the Laurentide ice sheet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berger, A. Vistas Astr. 24, 103–122 (1980).

    Article  ADS  Google Scholar 

  2. Shaw, D. M. & Donn, W. L. Science 162, 1270–1272 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Suarez, M. & Held, I. M. J. geophys. Res. 84, 4825–4836 (1979).

    Article  ADS  Google Scholar 

  4. North, G. R. & Coakley, J. A. J. atmos. Sci. 36, 1189–1204 (1979).

    Article  ADS  Google Scholar 

  5. Schneider, S. H. & Thompson, S. L. Quat. Res. 12, 188–203 (1979).

    Article  Google Scholar 

  6. Birchfield, G. E., Weertman, J. & Lunde, A. T. J. atmos. Sci. 39, 71–87 (1982).

    Article  ADS  Google Scholar 

  7. Berger, A. Astr. Astrophys. 51, 127–135 (1976).

    ADS  Google Scholar 

  8. Imbrie, J. Icarus 50, 408–422 (1982).

    Article  ADS  Google Scholar 

  9. Wetherald, R. T. & Manabe, S. J. atmos. Sci. 32, 2044–2059 (1975).

    Article  ADS  Google Scholar 

  10. Mason, B. J. Q. Jl R. met. Soc. 102, 473–498 (1976).

    Article  ADS  Google Scholar 

  11. Kutzbach, J. E. & Otto-Bliesner, B. L. J. atmos. Sci. 39, 1177–1188 (1982).

    Article  ADS  Google Scholar 

  12. Berger, A. Il Nuovo Cimento 2 C, 63–76 (1979).

    Article  ADS  Google Scholar 

  13. Shackleton, N. J. & Matthews, R. K. Nature 268, 618–619 (1977).

    Article  ADS  CAS  Google Scholar 

  14. Shackleton, N. J. Proc. R. Soc. B174, 135–154 (1969).

    ADS  Google Scholar 

  15. Ruddiman, W. F. & McIntyre, A. J. geophys. Res. 82, 3877–3887 (1977).

    Article  ADS  Google Scholar 

  16. Ruddiman, W. F. & McIntyre, A. Science 204, 173–175 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Alexander, R. C. & Mobley, R. L. Mon. Weath. Rev. 104, 143–148 (1976).

    Article  ADS  Google Scholar 

  18. Phillips, N. A. J. Met. 14, 184–185 (1957).

    Article  Google Scholar 

  19. Bourke, W. Mon. Weath. Rev. 102, 688–701 (1974).

    Article  ADS  Google Scholar 

  20. Orszag, S. A. J. atmos. Sci. 27, 890–895 (1970).

    Article  ADS  Google Scholar 

  21. Hoskins, B. J. & Simmons, A. J. Q. Jl R. met. Soc. 101, 637–655 (1975).

    Article  ADS  Google Scholar 

  22. Rodgers, C. D. Q. Jl R. met. Soc. 93, 43–54 (1967).

    Article  ADS  Google Scholar 

  23. Slingo, J. Q. Jl R. met. Soc. 106, 747–770 (1980).

    Article  ADS  Google Scholar 

  24. Kuo, H. L. J. atmos. Sci. 31, 1232–1240 (1974).

    Article  ADS  Google Scholar 

  25. Bhumralkar, C. M. J. appl. Met. 14, 1246–1258 (1975).

    Article  Google Scholar 

  26. Berger, A. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  27. Williams, L. D. Quat. Res. 10, 141–149 (1978).

    Article  Google Scholar 

  28. Andrews, J. T. & Mahaffy, M. A. W. Quat. Res. 6, 167–183 (1976).

    Article  Google Scholar 

  29. Chervin, R. M. & Schneider, S. J. atmos. Sci. 33, 405–412 (1976).

    Article  ADS  Google Scholar 

  30. Johnson, R. C. & Andrews, J. T. Quat. Res. 12, 119–134 (1979).

    Article  Google Scholar 

  31. Ruddiman, W. F., McIntyre, A., Niebler-Hunt, W. & Durazzi, J. T. Quat. Res. 13, 33–64 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royer, J., Deque, M. & Pestiaux, P. Orbital forcing of the inception of the Laurentide ice sheet?. Nature 304, 43–46 (1983). https://doi.org/10.1038/304043a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/304043a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing