Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substance P in the ascending cholinergic reticular system

Abstract

The neocortex receives a major cholinergic innervation from magnocellular neurones in the basal forebrain1–3. However, an ascending cholinergic reticular system has also been postulated to arise from acetylcholinesterase (AChE)-containing neurones in the midbrain and pontine tegmentum4–5. Lesions of this region decrease both AChE and choline acetyltransferase (ChAT) in various forebrain areas6,7, and recent immunohistochemical studies have identified a group of ChAT-containing cell bodies in the midbrain reticular formation and dorsolateral pontine tegmentum8,9. Here we have combined retrograde tracing with ChAT immunohistochemistry to demonstrate that this tegmental cholinergic cell group also directly innervates the cerebral cortex. Other immunohistochemical studies have indicated that the neuropeptide substance P is also present in certain cells in the laterodorsal tegmentum10, and these too appear to project to the forebrain11,12. We have therefore performed immunohistochemistry for both ChAT and substance P and have discovered that a subpopulation of the ascending cholinergic reticular neurones contains substance P. Thus, peptide–cholinergic coexistence, previously noted in peripheral neurones, also occurs in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Divac, I. Brain Res. 93, 385–398 (1975).

    Article  CAS  Google Scholar 

  2. Lehmann, J., Nagy, J. I., Atmadja, S. & Fibiger, H. C. Neuroscience 5, 1161–1174 (1980).

    Article  CAS  Google Scholar 

  3. Fibiger, H. C. Brain Res. Rev. 4, 327–388 (1982).

    Article  Google Scholar 

  4. Shute, C. C. D. & Lewis, P. R. Nature 199, 1160–1165 (1963).

    Article  ADS  CAS  Google Scholar 

  5. Shute, C. C. D. & Lewis, P. R. Brain 90, 497–522 (1976).

    Article  Google Scholar 

  6. Hoover, D. B. & Jacobowitz, D. M. Brain Res. 170, 113–122 (1979).

    Article  CAS  Google Scholar 

  7. Rotter, A. & Jacobowitz, D. M. Brain Res. Bull. 6, 525–529 (1981).

    Article  CAS  Google Scholar 

  8. Kimura, H., McGeer, P. L., Peng, J. H. & McGeer, E. G. J. comp. Neurol. 200, 151–201 (1981).

    Article  CAS  Google Scholar 

  9. Kimura, H. & Maeda, T. Brain Res. Bull. 9, 493–499 (1982).

    Article  CAS  Google Scholar 

  10. Ljungdahl, Å., Hökfelt, T. & Nilsson, G. Neuroscience 3, 861–943 (1978).

    Article  CAS  Google Scholar 

  11. Sakanaka, M. et al. Brain Res. 230, 351–355 (1981).

    Article  CAS  Google Scholar 

  12. Sakanaka, M. et al. Brain Res. 259, 123–126 (1983).

    Article  CAS  Google Scholar 

  13. Vincent, S. R., Kimura, H. & McGeer, E. G. J. comp. Neurol. 199, 113–123 (1981).

    Article  CAS  Google Scholar 

  14. Levey, A. I. et al. J. Neurosci. 3, 1–9 (1983).

    Article  CAS  Google Scholar 

  15. Shimizu, N. et al. Archs Histol. Japan 41, 103–112 (1978).

    Article  CAS  Google Scholar 

  16. Divac, I. et al. Neuroscience 3, 785–796 (1978).

    Article  CAS  Google Scholar 

  17. Björklund, A. & Skagerberg, G. J. Neurosci. Meth. 1, 261–277 (1979).

    Article  Google Scholar 

  18. Paxinos, G., Emson, P. C. & Cuello, A. C. Neurosci. Lett. 7, 127–131 (1978).

    Article  CAS  Google Scholar 

  19. Whitehouse, P. J. et al. Ann. Neurol. 10, 122–126 (1981).

    Article  CAS  Google Scholar 

  20. Nagai, T. et al. Neurosci. Lett. 36, 195–199 (1983).

    Article  CAS  Google Scholar 

  21. Crystal, H. A. & Davies, P. J. Neurochem. 38, 1781–1784 (1982).

    Article  CAS  Google Scholar 

  22. Kataoka, J. Jap. J. Physiol. 12, 81–96 (1982).

    Article  Google Scholar 

  23. Ryall, R. W. J. Neurochem. 11, 131–145 (1964).

    Article  CAS  Google Scholar 

  24. Belcher, G. & Ryall, R. W. J. Physiol., Lond. 272, 105–119 (1977).

    Article  CAS  Google Scholar 

  25. Krnjevic, K. & Lekie, D. Can. J. Physiol. Pharmac. 55, 958–961 (1977).

    Article  CAS  Google Scholar 

  26. Chubb, I. W., Hodgson, A. J. & White, G. H. Neuroscience 5, 2065–2072 (1980).

    Article  CAS  Google Scholar 

  27. Torrens, Y. et al. Eur. J. Pharmac. 71, 383–392 (1981).

    Article  CAS  Google Scholar 

  28. Klugman, K. P. et al. Br. J. Pharmac. 71, 623–629 (1980).

    Article  CAS  Google Scholar 

  29. Malthe-Sorenssen, D., Cheney, D. L. & Costa, E. J. Pharmac. exp. Ther. 206, 21–28 (1978).

    Google Scholar 

  30. Lundberg, J. M. Acta Physiol. Scand. 112 (Suppl. 496) 1–57.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, S., Satoh, K., Armstrong, D. et al. Substance P in the ascending cholinergic reticular system. Nature 306, 688–691 (1983). https://doi.org/10.1038/306688a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306688a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing