Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microplankton productivity in the oligotrophic ocean

Abstract

Uncertainty about the absolute levels of biological productivity over vast tracts of the world's oceans is a fundamental limitation to our understanding of the marine ecosystem1,2. Various workers have sought clarification through a comparison of the fluxes of oxygen and carbon in the photic layer3–5. A re-examination of data4 used to compare short-term (<1 day) in vitro carbon assimilation with long-term (≈100 day) in situ oxygen accumulation at a station in the north central Pacific has shown that the molar fluxes of oxygen and carbon are, in fact, consistent within the resolution of the comparison6. This test, however, is lacking in discrimination7. A recent comparison of short-term in vitro carbon and oxygen fluxes off Hawaii has been interpreted5 as indicating that short-term (≈12h) carbon uptake in open ocean regions provides an unbiased measure of gross primary production, Pg. We show here that comparisons of short-term oxygen- and carbon-flux measurements do not provide a powerful test of the accuracy of either of the measurements, both of which can be biased by trophic interactions in the microplankton. Consideration of trophic interactions, implicit in the reported data5, leads to the important new conclusion that the active biomass of microheterotrophic organisms was large compared with that of autotrophs, a situation which may be generally applicable to the pelagic zone of the open ocean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  2. Kerr, R. S. Science 220, 397–398 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Tijssen, S. B. Neth. J. Sea Res. 13, 79–84 (1979).

    Article  CAS  Google Scholar 

  4. Shulenberger, E. & Reid, J. L. Deep-Sea Res. 28A, 901–919 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Williams, P. J. LeB., Heinemann, K. R., Marra, J. & Purdie, D. A. Nature 305, 49–50 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Platt, T. Deep-Sea Res. (in the press).

  7. Platt, T., Lewis, M. & Geider, R. Flows of Energy and Materials in Marine Ecosystems: theory and practice (ed. Fasham, M. J. R.) (Plenum, London, in the press).

  8. Peterson, B. J. Ann. Rev. Ecol. Syst. 11, 369–385 (1980).

    Article  Google Scholar 

  9. Smith, D. F. & Horner, S. M. J. Can. Bull. Fish. Aquat. Sci. No. 210 (1981).

  10. Smith, R. & Platt, T. Mar. Ecol. Prog. Ser. 16, 75–87 (1984).

    Article  ADS  Google Scholar 

  11. Strickland, J. D. H. Bull. Fish. Res. Bd. Can. 122, Ottawa (1960).

  12. Laws, E. A. et al. Limnol. Oceanogr. (in the press).

  13. Smith, R. E. H. Mar. Biol. Lett. 3, 325–334 (1982).

    CAS  Google Scholar 

  14. Dring, M. J. & Jewson, D. H. Proc. R. Soc. Lond. B 214, 305–323 (1982).

    Google Scholar 

  15. Bidwell, R. G. S. Can. J. Bot. 55, 809–819 (1977).

    Article  CAS  Google Scholar 

  16. Jackson, G. A. J. Plankt. Res. 5, 83–94 (1983).

    Article  Google Scholar 

  17. Landry, M. R. & Hassett, R. P. Mar. Biol. 67, 283–288 (1982).

    Article  Google Scholar 

  18. Burris, J. E. Primary Productivity in The Sea (ed. Falkowski, P.) (Plenum, New York, 1980).

    Google Scholar 

  19. Gieskes, W. W. C., Kraay, G. W. & Beers, M. A. Neth. J. Sea Res. 13, 58–78 (1979).

    Article  CAS  Google Scholar 

  20. Postma, H. & Rommets, J. W. Neth. J. Sea Res. 13, 85–98 (1979).

    Article  CAS  Google Scholar 

  21. Sheldon, R. W. & Sutcliffe, W. H. Jr, Limnol. Oceanogr. 23, 1051–1055 (1978).

    Article  ADS  Google Scholar 

  22. Beers, J. R., Reid, F. M. H. & Stewart, G. L. Int. Rev. ges. Hydrobiol. 60, 607–638 (1975).

    Google Scholar 

  23. Azam, F. et al. Mar. Ecol.-Prog. Ser. 10, 257–263 (1983).

    Article  ADS  Google Scholar 

  24. Billen, G., Joris, C., Wijnant, J. & Gillian, G. Est. Coast. Mar. Sci. 11, 279–294 (1980).

    Article  CAS  Google Scholar 

  25. Jensen, L. M. Mar. Ecol. Prog-Ser. 11, 39–48 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Wiebe, W. J. & Smith, D. F. Mar. Biol. 42, 213–223 (1977).

    Article  CAS  Google Scholar 

  27. Williams, P. J. LeB. Kieler Meeresforsch. Sonderh. 5, 1–28 (1981).

    Google Scholar 

  28. Sieburth, J. McN., Smetacek, V. & Lenz, J. Limnol. Oceanogr. 23, 1256–1263 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R., Geider, R. & Platt, T. Microplankton productivity in the oligotrophic ocean. Nature 311, 252–254 (1984). https://doi.org/10.1038/311252a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311252a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing