Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible precipitation of ice at low latitudes of Mars during periods of high obliquity

Abstract

Most of the old cratered highlands of Mars are dissected by branching river valleys that appear to have been cut by running water1,2 yet liquid water is unstable everywhere on the martian surface. In the equatorial region, where most of the valleys are observed, even ice is unstable3,4. It has been suggested, therefore, that Mars had an early denser atmosphere with sufficient greenhouse warming to allow the existence of liquid water5. Here, we suggest instead that during periods of very high obliquities, ice could accumulate at low latitudes as a result of sustained sublimation of ice from the poles and transport of the water vapour equatorwards. At low latitudes, the water vapour would saturate the atmosphere and condense onto the surface where it would accumulate until lower obliquities prevailed. The mechanism is efficient only at the very high obliquities that occurred before formation of Tharsis very early in the planet's history, but limited equatorial ice accumulation could also have occurred at the highest obliquities during the rest of the planet's history. Partial melting of the ice could have provided runoff to form the channels or replenish the groundwater system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Baker, V. R. The Channels of Mars (University of Texas Press, 1982).

    Google Scholar 

  2. Carr, M. H. The Surface of Mars (Yale University Press, 1981).

    Google Scholar 

  3. Fanale, F. P. Icarus 28, 179–202 (1976)

    Article  ADS  CAS  Google Scholar 

  4. Farmer, C. B. & Doms, P. E. J. geophys. Res. 84, 2881–2888 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Pollack, J. B. & Toon, O. B. Icarus 50, 259–287 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Pieri, D. C. Science 210, 895–897 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Kieffer, H. H., Chase, S. C. Jr, Martin, T. Z., Miner, E. D. & Palluconi, F. D. Science 194, 1341–1344 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Farmer, D. B., Davies, D. W. & Laporte, D. D. Science 194, 1339–1341 (1976).

    Article  ADS  CAS  Google Scholar 

  9. Jakosky, B. M. & Barker, E. S. Icarus 57, 322–334 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. & Bilski, K. Icarus 44, 552–607 (1980).

    Article  ADS  Google Scholar 

  11. Fanale, F. P. & Cannon, W. A. J. geophys. Res. 79, 3397–3402 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Fanale, F. P., Salvail, J. R., Banerdt, W. B. & Saunders, R. S. Icarus 50, 381–407 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Davies, D. W. J. geophys. Res. 87, 10253–10263 (1982).

    Article  ADS  Google Scholar 

  14. Jakosky, B. M. Icarus 55, 1–18 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Jakosky, B. M. Icarus 55, 19–39 (1983).

    Article  ADS  Google Scholar 

  16. Haberle, R. M., Leovy, C. B. & Pollack, J. B. Icarus 50, 322–378 (1982).

    Article  ADS  Google Scholar 

  17. Pollack, J. B., Leovy, C. B., Greiman, P. W. & Mintz, Y. J. atmos. Sci. 38, 3–29 (1981).

    Article  ADS  Google Scholar 

  18. Jakosky, B. M. & Farmer, C. B. J. geophys. Res. 87, 2999–3019 (1982).

    Article  ADS  Google Scholar 

  19. Haberle, R. M. Pap. Div. planet. Sci., Boulder (1982).

  20. Davies, D. W. J. geophys. Res. 84, 8335–8340 (1979).

    Article  ADS  Google Scholar 

  21. Jakosky, B. M. Space sci. Rev. (in the press).

  22. Rossow, W. B., Henderson-Sellers, A. & Weinreich, S. K. Science 217, 1245–1247 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Twomey, S. Atmospheric Aerosols (Elsevier, New York, 1977).

    Google Scholar 

  24. Ward, W. R., Burns, J. A. & Toon, O. B. J. geophys. Res. 84, 243–259 (1979).

    Article  ADS  Google Scholar 

  25. Ward, W. R. J. geophys. Res. 84, 237–241 (1979).

    Article  ADS  Google Scholar 

  26. Hoffert, M. I., Calligari, A. J., Hsieh, C. T. & Ziegler, W. Icarus 47, 112–129 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Clow, G. D. in Workshop on Water on Mars, 15–16 (Lunar Planetary Institute, Houston, 1984).

    Google Scholar 

  28. Carr, M. H. & Clow, G. D. Icarus 48, 91–117 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakosky, B., Carr, M. Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985). https://doi.org/10.1038/315559a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/315559a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing