Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted chemistry of the deep atmosphere of Uranus before the Voyager 2 encounter

Abstract

The Voyager 2 spacecraft will encounter Uranus in January 1986,and will provide the first spacecraft observations of that planet.It carries an infrared interferometer spectrometer (IRIS) whichhas already detected a variety of infrared active gases in theatmospheres of Jupiter, Saturn and Titan1–4. Some of the detected gases are not in chemical equilibrium but have sources in the deep atmosphere. IRIS observations of these non-equilibrium gases, in particular PH3 (mixing ratio X PH 3 6×10−7) and GeH4 ( X GeH 4 7×10−10) on Jupiter1 and PH3 ( X PH 3 1×10−6) on Saturn3, can be used to deduce the strength of convective mixing in the deepatmospheres of Jupiter and Saturn5,6. Similar deductions could be made about convective mixing rates in the deep atmosphere of Uranus if models of the equilibrium chemistry and thermochemicalkinetics were available to help interpret IRIS observations of the visible Uranus atmosphere. We describe here the results of comprehensive thermochemical equilibrium and chemical kinetic calculations for Uranus. We predict that the most abundant non-equilibrium trace gas derived from the deep atmosphere of Uranus is N2; other important non-equilibrium species include HCl, HF, GeH4, C2H6, PH3, H2Se, CH3SH, CO, CH3NH2, CH3OH, and CO2. Some of these species are detectable potentially by the Voyager instruments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kunde, V. et al. Astrophys. J. 263, 443–467 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Gautier, D. et al. Astrophys. J. 257, 901–912 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Courtin, R., Gautier, D., Marten, A., Bexard, B. & Hanel, R. Astrophys. J. 287, 899–916 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Yung, Y. L., Allen, M. & Pinto, J. P. Astrophys. J. Suppl. 55, 465–506 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Prinn, R. G., Larson, H. P., Caldwell, J. J. & Gautier, D. in Saturn (eds Gehrels, T. & Matthews, M. S.) 88–149 (University of Arizona Press, 1984).

    Google Scholar 

  6. Fegley, B. Jr & Prinn, R. G. Astrophys. J. (in the press).

  7. Hubbard, W. B. & MacFarlane, J. J. J. geophys. Res. 85, 225–234 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Fazio, G. G., Traub, W. A., Wright, E. L., Low, F. J. & Trafton, L. Astrophys. J. 209, 633–637 (1976).

    Article  ADS  Google Scholar 

  9. Cameron, A. G. W. in Essays in Nuclear Astrophysics (eds Bames, C. A., Clayton, D. D. & Schramm, D. N.) 23–32 (Cambridge University Press, 1982).

    Google Scholar 

  10. Lewis, J. S. Icarus 16, 241–252 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Prinn, R. G. & Fegley, B. Jr, Astrophys. J. 249, 308–317 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Bergstralh, J. T. & Baines, K. H. in Uranus and Neptune (ed. Bergstralh, J. T.) 179–212 (NASA CP 2330, 1984).

    Google Scholar 

  13. Orton, G. S. & Appleby, J. F. in Uranus and Neptune (ed. Bergstralh, J. T.) 89–155 (NASA CP 2330, 1984).

    Google Scholar 

  14. Barshay, S. S. & Lewis, J. S. Icarus 33, 593–611 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Fegley, B. Jr & Lewis, J. S. Icarus 38, 166–179 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Prinn, R. G. & Barshay, S. S. Science 198, 1031–1034 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Prinn, R. G. & Olaguer, E. P. J. geophys. Res. 86, 9895–9899 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Lewis, J. S. & Prinn, R. G. Astrophys. J. 238, 357–364 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Prinn, R. G. & Lewis, J. S. Astrophys. J. 179, 333–341 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Gulkis, S., Janssen, M. A. & Olsen, E. T. Icarus 34, 10–19 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Atreya, S. K. & Romani, P. N. in Planetary Meteorology 17–68 (ed. Hunt, G. E.) (Cambridge University Press, 1985).

    Google Scholar 

  22. Stevenson, D. J. Bull. Am. astr. Soc. 16, 658 (1984).

    ADS  Google Scholar 

  23. Tsiklis, D. S., Linshits, L. R. & Goryunova, N. P. Russ. J. phys. Chem. 39, 1590–1592 (1965).

    Google Scholar 

  24. Keenan, J. H. & Keyes, F. G. Thermodynamic Properties of Steam (Wiley, New York, 1936).

    Google Scholar 

  25. Scatchard, G., Epstein, L. F., Warburton, J. Jr & Cody, P. G. Refrig. Engng 53, 413–421 (1947).

    CAS  Google Scholar 

  26. Hunten, D. M. in Uranus and Neptune (ed. Bergstralh, J. T.) 27–54 (NASA CP 2330,1984).

    Google Scholar 

  27. Stone, P. H. Space Sci. Rev. 14, 444–459 (1973).

    Article  ADS  Google Scholar 

  28. Stone, P. H. in Jupiter (ed. Gehrels, T.) 586–617 (University of Arizona Press, 1976).

    Google Scholar 

  29. Flasar, M. & Gierasch, P. in Proc. Symp. Planetary Atmospheres (ed. Vallance-Jones, A.) 85–87 (Royal Society of Canada, Ottawa 1977).

    Google Scholar 

  30. Lewis, J. S. & Fegley, B. Jr Space Sci. Rev. 39, 163–192 (1984).

    Article  ADS  Google Scholar 

  31. Mills, R. L., Liebenberg, D. H., Bronson, J. C. & Schmidth, L. C. J. chem. Phys. 66, 3076–3084 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fegley, B., Prinn, R. Predicted chemistry of the deep atmosphere of Uranus before the Voyager 2 encounter. Nature 318, 48–50 (1985). https://doi.org/10.1038/318048a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/318048a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing