Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model of solar-cycle effects on palaeoclimate and its implications for the Elatina Formation

Abstract

Recently published analysis of periodicities observed in the characteristics of the annual deposits of a Precambrian (680 Myr ago) lake in South Australia1,2 suggest a physical link between ancient solar variability, surface temperature and cyclicity in varve thickness. Solar-cycle effects on the present climate have remained elusive3. The smaller abundance of molecular oxygen and ozone in the Precambrian atmosphere made it possible for solar ultraviolet radiation to interact directly with the troposphere. In those conditions, global climatic perturbations may have been associated with the 11-year solar cycle. We use a radiative–comvective–photo-chemical model to investigate the sensitivity of the global surface temperature to changes in the ultraviolet solar irradiance. We show that the response maximizes for an O2 atmospheric content of 3 × 10−3 the present atmosphere level. Two alternative hypotheses about the ultraviolet variability are examined. In the first, the solar-cycle variation is restricted to wavelengths below 200 nm. The induced surface temperature fluctuation, δTs, is very small (<0.03 K), except that the amplitude of the ultraviolet modulation is enhanced with respect to average values for solar cycle 21. The second hypothesis assumes that the ultraviolet variability extends up to 300 nm. In this case, a δTs perturbation of several tenths of kelvin is predicted. It is also shown that other local effects such as the amount of water vapour in the troposphere may restrict the conditions in which solar-cycle variations have affected the palaeoclimate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, G. E. & Sonett, C. P. Nature 318, 523–527 (1985).

    Article  ADS  Google Scholar 

  2. Williams, G. E. Scient. Am. 225, 88–96 (1986).

    Article  ADS  Google Scholar 

  3. Pittock, A. B. Q. Jl R. met. Soc. 109, 23–55 (1983).

    Article  ADS  Google Scholar 

  4. Chandra, S. J. geophys. Res. 89, 1373–1379 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Ramanathan, V. J. atmos. Sci. 33, 1330–1346 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Lacis, A. A. & Hansen, J. E. J. atmos. Sci. 31, 118–133 (1974).

    Article  ADS  Google Scholar 

  7. Wang, W. C. & Stone, P. H. J. atmos. Sci. 37, 545–552 (1980).

    Article  ADS  Google Scholar 

  8. Sasamori, T. J. appl. Met. 7, 721–729 (1968).

    Article  Google Scholar 

  9. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 39, 1189–1205 (1967).

    Google Scholar 

  10. JPL Publication 85–37 (Pasadena, California, 1985).

  11. Brasseur, G. & Solomon, S. Aeronomy of the Middle Atmosphere (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  12. Garcia, R. R., Solomon, S. & Roble, R. G. Planet. Space Sci. 32, 411–423 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Brasseur, G. & Simon, P. C. J. geophys. Res. 86, 7343–7362 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Kasting, J. F. & Donahue, T. M. J. geophys. Res. 85, 3255–3263 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Holland, H. D. The Chemical Evolution of the Atmosphere and Ocean (Princeton University Press, 1984).

    Google Scholar 

  16. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S. & Chapman, G. A. Science 211, 700–702 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Hoyt, D. V. & Eddy, J. A. NCAR tech. Note TN-194+STR (1982).

  18. Lindzen, R. S., Hou, A. Y. & Farrell, B. F. J. atmos. Sci. 39, 1189–1205 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Wang, W. C., Wuebbles, D. J., Washington, W. M., Issacs, R. G. & Molnar, G. Rev. Geophys. 24, 110–140 (1986).

    Article  ADS  Google Scholar 

  20. Barron, E. J. & Washington, W. M. J. geophys. Res. 89, 1267–1279 (1984).

    Article  ADS  Google Scholar 

  21. Sonett, C. P. & Williams, G. E. J. geophys. Res. 90, 12019–12026 (1985).

    Article  ADS  Google Scholar 

  22. Walker, J. C. G. Evolution of the Atmosphere (Macmillan, New York, 1977).

    Google Scholar 

  23. Cloud, P. Mem. geol. Soc. Am. 161, 245–251 (1983).

    Google Scholar 

  24. Crowley, K. D., Duchon, C. E. & Rhi, J. J. geophys. Res. 91, 8637–8647 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gérard, JC., François, L. A model of solar-cycle effects on palaeoclimate and its implications for the Elatina Formation. Nature 326, 577–580 (1987). https://doi.org/10.1038/326577a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326577a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing