Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reconstruction of an enzyme by domain substitution effectively switches substrate specificity

Abstract

THE polar domains of the two transcarbamoylases, aspartate transcarbamoylase (ATCase) and ornithine transcarbamoylase, (OTCase) from Escherichia coli bind the common substrate carbamoyl phosphate and share extensive amino-acid sequence homology1,2. The equatorial domains of the two enzymes differ in their substrate specificity (ATCase binds aspartate, OTCase binds ornithine) and have decreased sequence identity. While addressing the conservation of specific protein interactions during the evolution of these enzymes, we were able to switch one of their amino-acid-specific equatorial domains to produce a viable chimaeric enzyme. This was achieved by the in vitro fusion of DNA encoding the polar domain of OTCase to DNA encoding the equatorial domain of ATCase. The resulting gene fusion successfully transformed an argl-pyrB deletion strain of E. coli to pyrimidine prototrophy, giving rise to Pyr+ transformants that expressed ATCase but not OTCase activity. The formation of this active chimaeric enzyme shows that by exchanging protein domains between two functionally divergent enzymes we have achieved a switching in substrate specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houghton, J. E., Bencini, D. A., O'Donovan, G. A. & Wild, J. R. Proc. natn. Acad. Sci. U.S.A. 81, 4864–4868 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Van Vliet, F. et al. Nucleic Acids Res. 12, 6277–6299 (1984).

    Article  CAS  Google Scholar 

  3. Gerhart, J. C. & Schachman, H. K. Biochemistry 4, 1054–1062 (1965).

    Article  CAS  Google Scholar 

  4. Legrain, C. et al. Eur. J. Biochem. 80, 401–409 (1984).

    Article  Google Scholar 

  5. Foltermann, K. F., Beck, D. A. & Wild, J. R. J. Bact. 167, 285–295 (1986).

    Article  CAS  Google Scholar 

  6. Bencini, D. A. et al. Nucleic Acids Res. 11, 8509–8518 (1983).

    Article  CAS  Google Scholar 

  7. Krause, K. L., Volz, K. W. & Lipscomb, W. N. Proc. natn. Acad. Sci. U.S.A. 82, 643–1647 (1985).

    Article  Google Scholar 

  8. Honzatko, R. B. et al. J. molec. Biol. 160, 219–263 (1982).

    Article  CAS  Google Scholar 

  9. Kantrowitz, E. R. & Lipscomb, W. N. Science 241, 669–674 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Hoover, T. A. et al. Proc. natn. Acad. Sci. U.S.A. 80, 2462–2466 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Roof, W. D., Foltermann, K. F. & Wild, J. R. Molec. Gen. Genet. 187, 391–400 (1982).

    Article  CAS  Google Scholar 

  12. Hirota, Y. Proc. natn. Acad. Sci. U.S.A. 46, 57–64 (1960).

    Article  ADS  CAS  Google Scholar 

  13. Glansdorff, N., Sand, G. & Verhoef, C. Mutat. Res. 4, 743–751 (1967).

    Article  CAS  Google Scholar 

  14. Cleary, M. L., Garvin, R. T. & James, E. Molec. Gen. Genet. 157, 155–165 (1977).

    Article  CAS  Google Scholar 

  15. Lissens, W., Cunin, R., Kelker, N., Glansdorff, N. & Pierard, A. J. Bact. 141, 55–66 (1980).

    Google Scholar 

  16. Foltermann, K. F., Shanley, M. S. & Wild, J. R. J. Bact. 157, 891–898 (1984).

    CAS  PubMed  Google Scholar 

  17. Baur, H., Stalon, V., Falmagne, P., Luethi, E. & Haas, D. Eur. J. Biochem. 166, 111–117 (1987).

    Article  CAS  Google Scholar 

  18. Nyunoya, H., Broglie, K. E. & Lusty, C. J. Proc. natn. Acad. Sci. U.S.A. 82, 2244–2246 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Gilbert, W. Nature 271, 501 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Richards, J. H., Nature 323, 187 (1986).

    Article  ADS  Google Scholar 

  21. Pauza, C. D., Karels, M. J., Navre, M. & Schachman, H. K. Proc. natn. Acad. Sci. U.S.A. 79, 4020–4024 (1983).

    Article  ADS  Google Scholar 

  22. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  23. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  24. Vieira, J. & Messing, J. Gene 19, 269–275 (1982).

    Article  Google Scholar 

  25. Sanger, F., Coulson, A. R., Barell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houghton, J., O'Donovan, G. & Wild, J. Reconstruction of an enzyme by domain substitution effectively switches substrate specificity. Nature 338, 172–174 (1989). https://doi.org/10.1038/338172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338172a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing