Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin

Abstract

TWO main types of microtubule-associated proteins (MAPs) have been identified in neuronal cells. The fibrous MAPs, including MAP2 and tau, serve to organize and regulate the assembly of microtubules. A second distinct class of force-producing MAPs, including kinesin1, dynein2–4 and dynamin5, are involved in micro-tubule-based movement. These proteins are mechanochemical ATPases which seem to be responsible for the bidirectional transport of organelles and perhaps also the movement of chromosomes. Here we report that MAP2 inhibits microtubule gliding on dynein-coated coverslips, as well as the microtubule-activated ATPase of dynein, indicating that MAP2 and other fibrous MAPs could be important modulators of microtubule-based motility in vivo. By proteolytic modification of tubulin, we found that dynein interacts with microtubules at the C termini of α- and β-tubulin, the regions previously reported to be the sites for the interaction of MAP26,7. The use of site-directed antibodies implicates a small region of α- and β-tubulin, containing the sequence Glu-Gly-Glu-Glu, as the site of the interaction of dynein and MAP2 with the microtubule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. J. Cell Biol. 105, 1273–1282 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Paschal, B. M. & Vallee, R. B. Nature 330, 181–183 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Vallee, R. B. et al. Nature 332, 561–563 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shpetner, H. S. & Vallee, R. B. Cell 59, 421–432 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Serrano, L., Avila, J. & Macioni, R. B. Biochemistry 23, 4675–4681 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Littauer, U. Z. et al. Proc. natn. Acad. Sci. U.S.A. 83, 7162–7166 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Voter, W. A. & Erickson, H. P. J. Ultrastruct. Res. 80, 374–382 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Sackett, D. L., Bhattacharyya, B. & Wolff, J. J. biol. Chem. 260, 43–45 (1985).

    CAS  PubMed  Google Scholar 

  10. Bhattacharyya, B., Sackett, D. L. & Wolff, J. J. biol. Chem. 260, 10208–10216 (1985).

    CAS  PubMed  Google Scholar 

  11. Gunderson, G. G., Kalnoski, M. H. & Bulinski, J. C. Cell 38, 779–789 (1984).

    Article  Google Scholar 

  12. Brown, H. R. & Erickson, H. P. Arch. biochem. Biophys. 220, 46–51 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. Breltling, F. & Little, M. J. molec. Biol. 189, 367–370 (1986).

    Article  Google Scholar 

  14. Ponstingl, H. et al. Proc. natn. Acad. Sci. U.S.A. 78, 2757–2761 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Cleveland, D. W. & Sullivan, K. F. A. Rev. Biochem. 54, 331–365 (1985).

    Article  CAS  Google Scholar 

  16. Little, M. & Seehaus, T. Comp. Biochem. Physiol. B90, 655–670 (1988).

    CAS  Google Scholar 

  17. Miller, R. H., Lasek, R. J. & Katz, M. J. Science 235, 220–222 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Vallee, R. B. meth. Enzym. 134, 89–194 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. Collins, C. A. & Vallee, R. B. Proc. natn. Acad. Sci. U.S.A. 83, 4799–4803 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Smith, P. K. et al. Analyt. Biochem. 150, 76–85 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Serrano, L. et al. Meth. Enzym. 134, 179–190 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Matsudaira, P. J. biol. Chem. 262, 10035–10038 (1987).

    CAS  PubMed  Google Scholar 

  23. Maccioni, R. B. et al. Eur. J. Biochem. 156, 375–381 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Banerjee, A. et al. J. biol. Chem. 263, 3029–3034 (1988).

    CAS  PubMed  Google Scholar 

  25. Krauhs, E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4156–4160 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschal, B., Obar, R. & Vallee, R. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature 342, 569–572 (1989). https://doi.org/10.1038/342569a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342569a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing