Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of a deep marine source of particulate organic carbon using bomb 14C

Abstract

THE influx of bomb radiocarbon (14C) into the oceanic food chain has been evaluated by radiocarbon dating of pelagic organisms in the North Pacific1,2. These studies found a significant gradient with depth of Δ14C (the per mil deviation from the Standard' activity of nineteenth century wood). Such a gradient is not expected according to long-standing assumptions about carbon cycling in the water column3–5; instead, one could expect the Δ14C of organisms throughout the water column to have become equal to that in surface-water dissolved inorganic carbon (DIG) by about 1970 (10–20 years after the production of bomb radiocarbon). Here we present Δ14C values measured in the profiles of suspended and sinking particulate organic carbon (POC) from an open-ocean site and a coastal basin. The 14C activity of suspended POC decreases significantly with depth, as is observed in organisms, whereas that of sinking POC is only slightly lower than that in surface DIC and surface suspended POC. All POC Δ14C results, however, are greater than the corresponding pre-bomb, surface-derived DIC values, and therefore contain bomb 14C. This decrease in 14C activity requires a deep source (or sources) of carbon to sub-surface POC pools. Adsorptive processes involving low-14C-activity dissolved organic carbon (DOC) may provide a mechanism for lowering Δ14C values in suspended and (to a lesser extent) sinking POC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pearcy, W. G. & Stuiver, M. Deep Sea Res. 30, 427–440 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Williams, P. M., Druffel, E. R. M. & Smith, K. L. Deep Sea Res. 34, 253–266 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Honjo, S. in Global Ocean Flux Study: Proceedings of a Workshop (ed. Honjo, S.) (National Academy Press, Washington DC, 1984).

    Google Scholar 

  4. Alldredge, A. L. & Silver, M. W. Prog. Oceanogr. 20, 41–82 (1988).

    Article  ADS  Google Scholar 

  5. Bacon, M. & Anderson, R. F. J. geophys. Res. 87, 2045–2056 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Williams, P. M., Carlucci, A. F. & Olson, R. Oceanology Acta 3, 471–476 (1980).

    Google Scholar 

  7. Bruland, K. W., Franks, R. P., Landing, W. M. & Soutar, A. Earth planet Sci. Lett. 53, 400–408 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Sofer, Z. Analyt Chem. 52, 1389–1391 (1980).

    Article  CAS  Google Scholar 

  9. Williams, P. M. & Druffel, E. R. M. Nature 330, 246–248 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Linick, T. W. Radiocarbon 22, 599–606 (1980).

    Article  CAS  Google Scholar 

  11. Griffin, S. & Druffel, E. R. M. Radiocarbon 27(1), 43–51 (1985).

    Article  CAS  Google Scholar 

  12. Jull, A. J. T., Donahue, D. J., Hathaway, A. L., Linick, T. W. & Toolin, L. J. Radiocarbon 28, 191–197 (1986).

    Article  CAS  Google Scholar 

  13. Linick, T. W., Jull, A. J. T., Toolin, L. J. & Donahue, D. J. Radiocarbon 28, 522–533 (1980).

    Article  Google Scholar 

  14. Stuiver, M. & Polach, H. A. Radiocarbon 19(3), 355–363 (1977).

    Article  Google Scholar 

  15. Jackson, G. A. et al. Eos 70, 146–155 (1989).

    Article  ADS  Google Scholar 

  16. Huh, C. A. et al. Cont. Shelf Res. 10, 137–164 (1990).

    Article  ADS  Google Scholar 

  17. Druffel, E. R. M. J. mar. Res. 45, 667–698 (1987).

    Article  CAS  Google Scholar 

  18. Berger, R., Taylor, R. E. & Libby, W. F. Science 153, 864–866 (1966).

    Article  ADS  CAS  Google Scholar 

  19. Paerl, H. W. Science, 180, 496–498 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Karl, D. M., Knauer, G. A. & Martin, J. M. Nature 309, 54–56 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Bien, G. S., Rakestraw, N. W. & Suess, H. E. Limnol. Oceanogr. 10, R25–R36 (1965).

    Article  ADS  Google Scholar 

  22. Emery, K. O. The Sea Off Southern California (Wiley, New York, 1960).

    Google Scholar 

  23. Eganhouse, R. P. & Kaplan, I. R. Mar. Chem. 24, 163–191 (1988).

    Article  CAS  Google Scholar 

  24. Sugimura, Y. & Suzuki, Y. Mar. Chem. 24, 105–131 (1988).

    Article  CAS  Google Scholar 

  25. Williams, P. M. & Druffel, E. R. M. Oceanogr. Mag. 1, 14–17 (1988).

    Article  Google Scholar 

  26. Druffel, E. R. M., Williams, P. M. & Suzuki, Y. Geophys. Res. Lett. 16, 991–994 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druffel, E., Williams, P. Identification of a deep marine source of particulate organic carbon using bomb 14C. Nature 347, 172–174 (1990). https://doi.org/10.1038/347172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347172a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing