Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure, expression and function of a schwannoma-derived growth factor

Abstract

DURING the development of the nervous system, cells require growth factors that regulate their division and survival. To identify new growth factors, serum-free growth-conditioned media from many clonal cell lines1 were screened for the presence of mitogens for central nervous system glial cells. A cell line secreting a potent glial mitogen was established from a tumour (or 'schwannoma') derived from the sheath of the sciatic nerve. The cells of the tumour, named JS1 cells, were adapted to clonal culture and identified as Schwann cells. Schwann cells secrete an autocrine mitogen2 and human schwannoma extracts have mitogenic activity on glial cells3. Until now, neither mitogen has been purified. Here we report the purification and characterization of a mitogenic molecule, designated schwannoma-derived growth factor (SDGF), from the growth-conditioned medium of the JS1 Schwann cell line. SDGF belongs to the epidermal growth factor family, and is an autocrine growth factor as well as a mitogen for astrocytes, Schwann cells and fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schubert, D. et al. Nature 249, 224–227 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Porter, S., Glaser, L. & Bunge, R. P. Proc. natn. Acad. Sci. U.S.A., 84, 7768–7772 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Brockes, J. P., Breakefield, X. O. & Martuza, R. L. Ann. Neurol. 20, 317–322 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Plowman, G. D. et al. Molec. cell Biol. 10, 1969–1981 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shoyab, M., Plowman, G. D., McDonald, V. L., Bradley, J. G. & Todaro, G. J. Science 243, 1074–1076 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Shoyab, M., McDonald, V. L., Bradley, J. G. & Todaro, G. J. Proc. natn. Acad. Sci. U.S.A. 85, 6528–6532 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Lemke, G. E. & Brockes, J. P. J. Neurosci. 4, 75–83 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raff, M. C., Abney, E., Brockes, J. P. & Hornby-Smith, A. Cell. 15, 813–822 (1978).

    Article  CAS  PubMed  Google Scholar 

  9. Baird, A., Schubert, D., Ling, N. & Guillemin, R. Proc. natn. Acad. Sci. U.S.A. 85, 2324–2328 (1988).

    Article  ADS  CAS  Google Scholar 

  10. McCarthy, K. D. & deVellis, J. J. Cell Biol. 85, 890–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Gorman, C. M. et al. DNA Prot. Engng. Tech. 2, 3–10 (1990).

    Google Scholar 

  12. Matsudaira, P. J. Biol. Chem. 262, 10035–10042 (1987).

    CAS  Google Scholar 

  13. Lee, D. C., Rose, T. M., Webb, N. R. & Todaro, G. J. Nature 313, 489–491 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Gray, A., Dull, T. J. & Ullrich, A. Nature 303, 722–725 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Feramisco, J. R., Heffman, D. M., Smart, J. E., Burridge, K. & Thomas, G. P. J. biol. Chem. 257, 11024–11031 (1982).

    CAS  PubMed  Google Scholar 

  16. Gubler, U. & Hoffman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 84, 4767–4771 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Sanger, F., Miklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Bottenstein, J. & Sato, J. Proc. natn. Acad. Sci. U.S.A. 76, 514–517 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, H., Fischer, W. & Schubert, D. Structure, expression and function of a schwannoma-derived growth factor. Nature 348, 257–260 (1990). https://doi.org/10.1038/348257a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348257a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing