Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses

Abstract

THERE is a serious discrepancy between estimates of the downward trend in the column abundance of ozone at middle and high latitudes derived from ground-based and satellite data, and those obtained by models that calculate the effect of increases in atmospheric chlorine concentrations, but include only gas-phase chemistry1,2. Recent measurements3,4 of the reaction rate of N2O5 on sulphate aerosols yield very fast rates for a wide range of water content, indicating that this reaction could take place in the stratospheric sulphate aerosol layer, which is present around the globe and year-round between ~14–25 km altitude. Here we include this reaction in a two-dimensional model and find that the calculated decadal ozone trends at both high and middle latitudes agree much more closely with the trends deduced from observations. Inclusion of the reaction also significantly increases the predicted concentrations of key species such as OH, ClO and HNO3, and decreases those of NO and NO2. Measurements of these species in and near the sulphate layer are needed to confirm the importance of this reaction in the observed decrease of atmospheric ozone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. WMO/UNEP Global Ozone Research and Monitoring Project Rep. No. 18, Ch. 7 (World Meteorological Organization, Geneva, 1990).

  2. Stolarski, R. S., Bloomfield, P., McPeters, R. D. & Herman, J. R. Geophys. Res. Lett. 18, 1015–1018 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Mozurkewich, M. & Calvert, J. G. J. geophys. Res. 93, 15889–15896 (1988).

    Article  ADS  Google Scholar 

  4. Van Doren, J. M. et al. J. phys. Chem. 95, 1684–1689 (1991).

    Article  CAS  Google Scholar 

  5. WMO/UNEP Global Ozone Research and Monitoring Project Rep. No. 20, Ch. 3 (World Meteorological Organization, Geneva, 1990).

  6. Chipperfield, M. P. & Pyle, J. A. J. geophys. Res. 95, 11865–11874 (1990).

    Article  ADS  Google Scholar 

  7. Isaksen, I. S. A., Rognerud, B., Stordal, F., Coffey, M. T. & Mankin, W. G. Geophys. Res. Lett. 17, 557–560 (1990).

    Article  ADS  Google Scholar 

  8. Rodriguez, J. M., Ko, M. K. W. & Sze, N. D. Geophys. Res. Lett. 15, 257–260 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Hoffman, D. J. & Solomon, S. J. geophys. Res. 94, 5029–5041 (1989).

    Article  ADS  Google Scholar 

  10. Brasseur, G. P., Granier, C. & Walters, S. Nature 348, 626–628 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Tolbert, M. A., Rossi, M. J. & Golden, D. M. Geophys. Res. Lett. 15, 847–850 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Watson, L. R. et al. J. geophys. Res. 95, 5631–5638 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Mather, J. H. & Brune, W. H. Geophys. Res. Lett. 17, 1283–1286 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Turco, R. P., Toon, O. B., Hamill, P. & Whitten, R. C. J. geophys. Res. 86, 1113–1128 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Hoffman, D. J. Science 248, 996–1000 (1990).

    Article  ADS  Google Scholar 

  16. Prather, M. J. & Watson, R. T. Nature 344, 729–734 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Prather, M. J., McElroy, M. B., Wofsy, S. C. & Logan, J. A. Geophys. Res. Lett 6, 163–164 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Wofsy, S. C. J. geophys. Res. 83, 364–378 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Ko, M. K. W., Sze, N. D., Livshits, M., McElroy, M. B. & Pyle, J. A. J. atmos. Sci. 41, 2381–2408 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Austin, J., Garcia, R. R., Russell, J. M. III, Solomon, S. & Tuck, A. F. J. geophys. Res. 91, 5477–5485 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Brune et al. Science 242, 558–562 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Toohey et al. Geophys. Res. Lett. 18, 21–24 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Brune, W. H., Weinstock, E. M. & Anderson, J. G. Geophys. Res. Lett. 15, 144–147 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Russell, J. M. III et al. J. geophys. Res. 93, 1718–1736 (1988).

    Article  ADS  CAS  Google Scholar 

  25. WMO/UNEP Global Ozone Research and Monitoring Project Rep. No. 20, Ch. 2 (World Meteorological Organization, Geneva, 1990).

  26. Bojkov, R., Bishop, L., Hill, W. L., Reinsel, G. C. & Tiao, G. C. J. geophys. Res. 95, 9785–9807 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, J., Ko, M. & Sze, N. Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses. Nature 352, 134–137 (1991). https://doi.org/10.1038/352134a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352134a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing