Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene

Abstract

THE hydrophobic cores of proteins are generally well packed, with few cavities1,2. Mutations in which a bulky buried residue such as leucine or phenylalanine is replaced with a small residue such as alanine can create cavities in the core of a protein (our unpublished results). The sizes and shapes of such cavities can vary substantially depending on factors such as local geometry, whether or not a cavity already exists at the site of substitution, and the degree to which the protein structure relaxes to occupy the space vacated by the substituted residue. We show by crystallographic and thermodynamic analysis that the cavity created by the replacement Leu 99 → Ala in T4 lysozyme is large enough to bind benzene and that ligand binding increases the melting temperature of the protein by 6.0 °C at pH 3.0. Benzene does not, however, bind to the cavity created by the Phe 153→ Ala replacement. The results show that cavities can be engineered in proteins and suggest that such cavities might be tailored to bind specific ligands. The binding of benzene at an internal site 7 Å from the molecular surface also illustrates the dynamic nature of proteins, even in crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Richards, F. M. A. Rev. Biophys. Bioeng. 6, 151–176 (1977).

    Article  CAS  Google Scholar 

  2. Connolly, M. L. Int. J. Peptide Prot. Res. 28, 360–363 (1986).

    Article  CAS  Google Scholar 

  3. Schoenborn, B. P., Watson, H. C. & Kendrew, J. C. Nature 207, 28–30 (1965).

    Article  ADS  CAS  Google Scholar 

  4. Wishnia, A. Biochemistry 8, 5070–5075 (1969).

    Article  CAS  Google Scholar 

  5. Eisenberg, H., Josephs, R. & Reisler, E. Adv. Prot. Chem. 30, 101–181 (1976).

    CAS  Google Scholar 

  6. Hermans, J. & Scheraga, H. A. J. Am. chem. Soc. 83, 3283–3292 (1961).

    Article  Google Scholar 

  7. Schellman, J. A. Biopolymers 14, 999–1018 (1975).

    Article  CAS  Google Scholar 

  8. Tronrud, D. E. Ten EyCK, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–503 (1987).

    Article  CAS  Google Scholar 

  9. Dao-pin, S., Alber, T., Baase, W. A., Wozniak, J. A. & Matthews, B. W. J. molec. Biol. 221, 647–667 (1991).

    Article  CAS  Google Scholar 

  10. Lumry, R. & Rosenberg, A. Colln Int. CNRS 246, 53–62 (1975).

    Google Scholar 

  11. Campbell, I. D., Dobson, C. M. & Williams, R. J. P. Proc. R. Soc. B189, 503–509 (1975).

    ADS  CAS  Google Scholar 

  12. Wüthrich, K. & Wagner, G. FEBS Lett. 50, 265–268 (1975).

    Article  Google Scholar 

  13. Snyder, G. H., Rowan, III R. & Sykes, B. D. Biochemistry 15, 2275–2283 (1976).

    Article  CAS  Google Scholar 

  14. Lakowicz, J. R. & Weber, G. Biochemistry 12, 4171–4179 (1973).

    Article  CAS  Google Scholar 

  15. Hvidt, A. & Nielsen, S. O. Adv. Protein Chem. 21, 287–386 (1966).

    Article  CAS  Google Scholar 

  16. Tilton, R. F., Kuntz, I. D. Jr & Petsko, G. A. Biochemistry 23, 2849–2857 (1984).

    Article  CAS  Google Scholar 

  17. Kretsinger, R. H., Watson, H. C. & Kendrew, J. C. J. molec. Biol. 31, 305–314 (1968).

    Article  CAS  Google Scholar 

  18. Bennett, W. S. & Huber, R. Crit. Rev. Biochem. 15, 291–384 (1984).

    Article  CAS  Google Scholar 

  19. Ringe, D. & Petsko, G. A. Prog. Biophys. molec. Biol. 45, 197–235 (1985).

    Article  CAS  Google Scholar 

  20. Faber, H. R. & Matthews, B. W. Nature 348, 263–266 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Matsumura, M. & Matthews, B. W. Science 243, 792–794 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Becktel, W. J. & Schellman, J. A. Biopolymers 26, 1859–1877 (1987).

    Article  CAS  Google Scholar 

  23. Dao-pin, S., Baase, W. A., & Matthews, B. W. Proteins struct. funct. Genet. 7, 198–204 (1990).

    Article  CAS  Google Scholar 

  24. Connolly, M. L. Science 221, 709–713 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, A., Baase, W., Wozniak, J. et al. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355, 371–373 (1992). https://doi.org/10.1038/355371a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355371a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing