Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation

Abstract

RECENTLY measured abundances of beryllium1–4 and boron5 in a number of hot population II halo stars are orders of magnitude above the predicted abundances of those elements from standard Big Bang nucleosynthesis6. Be and B do not, however, show a plateau of constant abundance over a wide range of low metallicities and high temperatures, as is the case for 7Li (refs 7–15). The implication is that the 7Li abundance is largely primordial, whereas the Be and B abundances are due to galactic cosmic ray (GCR) spallation reactions16–22 on top of a much smaller Big Bang component23. But GCR spallation should also produce 7Li. As a consistency check on the combination of Big Bang nucleosynthesis and GCR spallation, we use the Be and B data to subtract from the measured 7Li abundance an estimate of the amount generated by GCR spallation21,22 for each star in the sample, and then add to this baseline an estimate of the metallicity-dependent augmentation of 7Li, due to spallation. The slightly reduced primordial 7Li abundance is still consistent with Big Bang nucleosynthesis, and a single GCR spallation model can fit the Be, B and corrected 7Li abundances for all the stars in the sample.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rebolo, R., Molaro, P., Abia, C. & Beckman, J. E. Astr. Astrophys. 193, 193–201 (1988).

    ADS  CAS  Google Scholar 

  2. Gilmore, G., Edvardsson, B. & Nissen, P. E. Astrophys. J. 378, 17 (1992).

    Article  ADS  Google Scholar 

  3. Ryan, S. G., Norris, J. E., Bessell, M. S. & Deliyannis, C. P. Astrophys. J. (in the press).

  4. Gilmore, G., Gustafsson, B., Edvardsson, B. & Nissen, P. E. Nature (submitted).

  5. Duncan, D. K., Lambert, D. L. & Lemke, M. Astrophys. J. (submitted).

  6. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Kang, H.-S. Astrophys. J. 376, 51–69 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Spite, F. & Spite, M. Astr. Astrophys. 115, 357–366 (1982).

    ADS  CAS  Google Scholar 

  8. Spite, M., Maillard, J. P. & Spite, F. Astr. Astrophys. 141, 56–60 (1984).

    ADS  CAS  Google Scholar 

  9. Spite, F. & Spite, M. Astr. Astrophys. 163, 140–144 (1986).

    ADS  CAS  Google Scholar 

  10. Hobbs, L. M. & Duncan, D. K. Astrophys. J. 317, 796–809 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Rebolo, R., Molaro, P. & Beckman, J. E. Astr. Astrophys. 192, 192–205 (1988).

    ADS  CAS  Google Scholar 

  12. Spite, M., Spite, F., Peterson, R. C. & Chaffee, F. H. Jr Astr. Astrophys. 172, L9–10 (1987).

    ADS  CAS  Google Scholar 

  13. Rebolo, R., Beckman, J. & Molaro, P. Astr. Astrophys. 172, L17–19 (1987).

    ADS  CAS  Google Scholar 

  14. Hobbs, L. M. & Pilachowski, C. Astrophys. J. 326, L23–26 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Hobbs, L. M. & Thorburn, J. A. Astrophys. J. 375, 116–120 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Reeves, H., Fowler, W. A. & Hoyle, F. Nature 226, 727 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Meneguzzi, M., Audouze, J. & Reeves, H. Astr. Astrophys. 15, 337 (1971).

    ADS  CAS  Google Scholar 

  18. Mitler, H. E. Astrophys. Space Sci. 17, 186 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Reeves, H. A. Rev. Astr. Astrophys. 12, 437 (1974).

    Article  ADS  Google Scholar 

  20. Walker, T. P., Mathews, G. J. & Viola, V. E. Astrophys. J. 299, 745.

  21. Steigman, G. & Walker, T. P. Astrophys. J. 385, L13 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Fields, B. Astrophys. J. (submitted).

  23. Thomas, D., Schramm, D. N., Olive, K. A. & Fields, B. Astrophys. J. (submitted).

  24. Smith, V. V., Nissen, P. E. & Lambert, D. Astrophys. J. (submitted).

  25. Deliyannis, C. P., Demarque, P. & Kawaler, S. D. Astrophys. J. (Suppl.) 73, 21–65 (1990).

    Article  ADS  CAS  Google Scholar 

  26. Brown, L. & Schramm, D. N. Astrophys. J. 329, L103 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Dearborn, D., Schramm, D. N. & Hobbs, L. Astrophys. J. (in the press).

  28. Applegate, J. H., Hogan, C. & Scherrer, R. J. Phys. Rev. D35, 1151–1160 (1987).

    ADS  CAS  Google Scholar 

  29. Alcock, C., Fuller, G. M. & Mathews, C. J. Astrophys. J. 320, 439–447 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Kurki-Suonio, H., Matzner, R. A., Schramm, D. N. & Olive, K. A. Astrophys. J. 353, 406–410 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Pinsonneault, M. H., Deliyannis, C. P. & Demarque, P. Astrophys. J. (Suppl.) 78, 179–203 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Terasawa, N. & Sato, K. Astrophys. J. 367, L47 (1990).

    Article  ADS  Google Scholar 

  33. Deliyannis, C. P. & Pinsonneault, M. H. Astrophys. J. 365, L67–71 (1990).

    Article  ADS  CAS  Google Scholar 

  34. Smith, V. V. & Lambert, D. Astrophys. J. 345, L75 (1989); 361, L69 (1990).

    Article  ADS  CAS  Google Scholar 

  35. Brown, L. Astrophys. J. 389, 251–268 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Cameron, A. & Fowler, W. Astrophys. J. 167, 111 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olive, K., Schramm, D. Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation. Nature 360, 439–442 (1992). https://doi.org/10.1038/360439a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360439a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing