Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continuous c-fos expression precedes programmed cell death in vivo

A Correction to this article was published on 16 September 1993

Abstract

THE development of a multicellular organism involves a delicate balance among the processes of proliferation, differentiation and death. Naturally occurring cell death aids tissue remodelling, eliminates supernumerary cell populations and provides structural elements such as hair and skin. In the nervous system, selective cell death contributes to the formation and organization of the spinal cord and sympathetic ganglia1, retina2 and corpus callosum3. But cell death also occurs in several neuropathological conditions, such as amyelotrophic lateral sclerosis4 and Alzheimer's disease5. Therefore an elucidation of the mechanisms responsible for cell death is critical for an appreciation of both normal development and neuropathological disorders. Using a fos-lacZ transgenic mouse6, we provide evidence showing that the continuous expression of Fos, beginning hours or days before the morphological demise of the cell, appears to be a hallmark of terminal differentiation and a harbinger of death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamburger, V. & Oppenheim, R. W. Neurosci. Comment. 1, 39–55 (1982).

    Google Scholar 

  2. Wong, R. O. L. & Hughes, A. J. comp. Neurol. 262, 496–511 (1987).

    Article  CAS  Google Scholar 

  3. Hankin, M. H., Schneider, B. F. & Silver, J. J. comp. Neurol. 272, 191–202 (1988).

    Article  CAS  Google Scholar 

  4. Plaitakis, A. Ann. Neurol. 28, 3–8 (1990).

    Article  CAS  Google Scholar 

  5. Snider, W. D. & Johnson, E. M. Ann. Neurol. 26, 489–506 (1989).

    Article  CAS  Google Scholar 

  6. Smeyne, R. J. et al. Neuron 8, 13–23 (1992).

    Article  CAS  Google Scholar 

  7. Dony, C. & Gruss, P. Nature 328, 711–714 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Buttyan, R., Zakeri, Z., Lochshin, R. & Wolgemuth, D. Molec. Endocrin. 2, 650–657 (1988).

    Article  CAS  Google Scholar 

  9. Gonzales-Martin, C., de Diego, I., Crespo, D. & Fairen, A. Devl Brain Res. 68, 83–95 (1992).

    Article  Google Scholar 

  10. Colotta, F., Polentarutti, N., Sironi, M. & Mantovani, A. J. biol. Chem. 267, 18278–18283 (1992).

    CAS  PubMed  Google Scholar 

  11. Williams, P. L., Warwick, R., Dyson, M. & Bannister, L. H. Gray's Anatomy (Churchill Livingstone, Edinburgh, 1989).

    Google Scholar 

  12. Greene, R. M. & Pratt, R. M. J. Embryol. exp. Morph. 36, 225–245 (1976).

    CAS  PubMed  Google Scholar 

  13. Shuler, C. F., Halpern, D. E., Guo, Y. & Sank, A. C. Devl Biol. 154, 318–330 (1992).

    Article  CAS  Google Scholar 

  14. Olney, J. W. in Kainic Acid as a Tool in Neurobiology (eds McGeer, E. G., Olney, J. W. & McGeer, P. L.) 95–121 (Raven, New York, 1978).

    Google Scholar 

  15. Schwob, J. E., Fuller, T., Price, J. L. & Olney, J. W. Neuroscience 5, 991–1014 (1980).

    Article  CAS  Google Scholar 

  16. Caviness, V. S. Jr. & Rakic, P. A. Rev. Neurosci. 1, 297–326 (1978).

    Article  Google Scholar 

  17. Smeyne, R. J. & Goldowitz, D. J. Neurosci. 9, 1608–1620 (1989).

    Article  CAS  Google Scholar 

  18. Davies, A. M. Development 100, 185–208 (1987).

    Google Scholar 

  19. Grant, G. in The Rat Nervous System (ed. Paxinos, G.) 303–309 (Academic, Sydney, 1985).

    Google Scholar 

  20. Yip, H. K. & Johnson, E. M. Jr. Proc. natn. Acad. Sci. U.S.A. 81, 6245–6249 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Ross, W. et al. Cancer Res. 44, 5857–5860 (1984).

    CAS  Google Scholar 

  22. Evan, G. I. et al. Cell 69, 119–128 (1992).

    Article  CAS  Google Scholar 

  23. Morgan, J. I. & Curran, T. A. Rev. Neurosci. 14, 421–451 (1991).

    Article  CAS  Google Scholar 

  24. Johnson, R. S., Spiegelman, B. M. & Papaioannou, V. Cell 71, 577–586 (1992).

    Article  CAS  Google Scholar 

  25. Wang, Z. Q. et al. Nature 360, 741–745 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Oberdick, J., Smeyne, R. J., Mann, J. R., Zackson, S. & Morgan, J. I. Science 248, 223–226 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Laird, P. W. et al. Nucleic Acids Res. 19, 4293–4295 (1991).

    Article  CAS  Google Scholar 

  28. Fearon, E. R., Hamilton, S. R. & Vogelstein, B. Science 238, 193–197 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smeyne, R., Vendrell, M., Hayward, M. et al. Continuous c-fos expression precedes programmed cell death in vivo. Nature 363, 166–169 (1993). https://doi.org/10.1038/363166a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363166a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing