Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct identification of atomic and molecular adsorption sites using photoelectron diffraction

Abstract

THE determination of the adsorption geometry of molecules and molecular fragments on single-crystal metal surfaces is central to our understanding of heterogeneous catalysis. Adsorbate structures can be determined precisely by techniques such as low-energy electron diffraction and photoelectron diffraction. Such methods suffer, however, from the rather inefficient approach to data analysis: the diffracted intensities are compared with simulated data for a trial structure, which is successively modified by trial and error until good agreement is achieved. Following a suggestion by Barton that a photoelectron angular distribution may be regarded as a photoelectron hologram1,2, attention has been focused recently on simpler methods for adsorbate structure determination which give real-space information directly3–7. We demonstrate here a direct method for determining both the adsorption site and the adsorbate–substrate separation from photoelectron diffraction data8. We illustrate the method using two adsorption systems: CO on Cu(110) and OCH3 on Cu(111). Our results are consistent with those determined for the same systems by a related method7, which requires a considerably larger data set and provides bond lengths at lower precision. For adsorbates on simple surfaces, we therefore propose that our approach provides an accurate and easily implemented method for structure determination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barton, J. J. Phys. Rev. Lett. 61, 1356–1359 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Thevuthasan, S. et al. Phys. Rev. Lett. 70, 595–598 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Tong, S. Y. & Huang, H. Phys. Ref. B46, 2452–2458 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Tobin, J. G., Waddill, G. D., Li, H. & Tong, S. Y. Phys. Rev. Lett. 70, 4150–4153 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Wu, H., Lapeyre, G. J., Huang, H. & Tong, S. Y. Phys. Rev. Lett. 71, 251–254 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Fritzsche, V. & Woodruff, D. P. Phys. Rev. B46, 16128–16134 (1992).

    Article  CAS  Google Scholar 

  7. Schindler, K.-M. et al. Phys. Rev. Lett. 71, 2054–2057 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Hofmann, Ph. & Schindler, K.-M. Phys. Rev. B47, 13941–13943 (1993).

    Article  CAS  Google Scholar 

  9. Hu, P. & King, D. A. Nature 360, 656–658 (1992).

    Article  ADS  Google Scholar 

  10. Andersson, S. & Pendry, J. B. Phys. Rev. Lett. 43, 363–365 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Ricken, D. E., Somers, J., Robinson, A. & Bradshaw, A. M. Faraday Discuss, chem. Soc. 89, 291–300 (1990).

    Article  CAS  Google Scholar 

  12. de Carvalho, A. V., Asensio, M. C. & Woodruff, D. P. Surf. Sci. 273, 381–384 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Harp, G. R., Saldin, D. K. & Tonner, B. P. Phys. Rev. B42, 9199–9202 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Herman, G. S., Thevuthasan, S., Tran, T. T., Kim, Y. J. & Fadley, C. S. Phys. Rev. Lett. 68, 650–653 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Tong, S. Y., Li, H. & Huang, H. Phys. Rev. Lett. 67, 3102–3105 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Barton, J. J. Phys. Rev. Lett. 67, 3106–3109 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, P., Schindler, KM., Bao, S. et al. Direct identification of atomic and molecular adsorption sites using photoelectron diffraction. Nature 368, 131–132 (1994). https://doi.org/10.1038/368131a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368131a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing